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COMPACT OPERATORS OF THE FORM uCφ

HERBERT KAMOWITZ

If A is the disc algebra, the uniform algebra of func-
tions analytic on the open unit disc D and continuous on its
closure, and if u,φeA with | |^ | | rg 1, then the operator uCφ

is defined on A by uCφ: f(z) —> u(z)f(φ(z)). In this note we
characterize compact operators of this form and determine
their spectra.

We recall that a bounded linear operator T from a Banach space
Bι to a Banach space B2 is compact if given a bounded sequence
{xn} in B19 there exists a subsequence {xn]c} such that {Txn]c} converges
in B2.

If φ: D —> D, we let φn denote nth t h e i t e r a t e of φ, i.e., φQ(z) = z

and φn(z) = 9>(9>»-i(s)) for ^ e ΰ and w ^ 1. Our main resul t is the

following.

THEOREM. Let ueA, φeA, \\φ\\^l and suppose φ is not a
constant function.

I. The operator uCΨ is compact if, and only if, \φ(z)\ < 1
whenever u(z) Φ 0.

II. Suppose uCφ is compact and let zQeD be the unique fixed
point of φ for which φn(z) —»zQ for all ze D. If \zo\ = 1, then uGψ

is quasinilpotent, while if \zQ\ < 1, the spectrum σ(uCφ) — {u(zo)φ'(zo)
n \ n

is a positive integer) U {0, u(z0)}.

1* Characterization of compact uCφ. We first consider the easy
case in which φ is a constant function.

THEOREM 1.1. Suppose ue A and <p(z) = ae D for all zeD.
Then uCφ is compact.

Proof. Since <p{z) — a for all zeD, (uCφ)f(z) — u(z)f(φ(z)) =
f(a)u(z). Therefore the range of uCψ is one-dimensional and so uCφ

is compact.

We next give a necessary and sufficient condition that uCφ be a
compact operator for those φ which are not constant functions.

THEOREM 1.2. Suppose ueA, φeA, \\φ\\^l and φ is not a
constant function. Then uCφ is a compact operator on A if, and
only if, \φ(z)\ < 1 whenever u(z) Φ 0.
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Proof. Since everything holds if u = 0, we will assume that u
is not identically zero.

1. Suppose uCΨ is a compact operator on A. We must prove
that if z e D and u(z) Φ 0, then \φ{z)\ < 1. Since φ is not a constant
function, the maximum modulus principle implies that \φ{z)\ < 1
whenever \z\ < 1 and thus it suffices to show that \φ(z)\ < 1 when
u(z) Φ 0 and z lies on the unit circle. Assume the contrary and let
θ satisfy u(eίθ) Φ 0 and \φ(eiθ)\ = 1. Set μ == φ(eid) and for each posi-
tive integer n, define fn by fn(z) - (!(z + μ))\ Then | |/J | - 1.
Since wQ, is assumed to be compact, there exists a subsequence
{fnk} and a function f in A with (uCφ)fnk —> i*7 in A. That is,
w(s)(i(9>(s) + £θ)Λ* -* ίXs) uniformly for 26fl. But (i(9>(«) + μ))w& -» 0
for \z\ < 1 and so F(z) = 0 on Zλ However, ί7 is continuous on S
and therefore F(z) = 0 on 5 . Hence (uCφ)fnk —> 0 uniformly on 5 .
In particular, u(eί0)β(φ(eiθ) + μ))%A ~> 0. But for all fc, we have
\u(eίθ)(i(φ(eiθ) + ^))%&] = N(β?:0l ^ 0. This is a contradiction. Hence
if uCψ is compact and u(z) Φ 0, then \φ(z)\ < 1.

2. Conversely, assume \φ{z)\ < 1 whenever u(z) Φ 0. To show
that uCo is compact, assume fneA and ||/Λ | | ^ 1. Since {fn} is a
uniformly bounded sequence of functions on D, it is a normal family
in the sense of Montel and so there exists a subsequence {fnjc} and
a function g analytic on D with fnk —> g uniformly on compact sub-
sets of the open disc D. We observe that this convergence implies
suPιwι<i \g(w)\ ^ 1. Now defined a function G on the closed disc D
by setting G(z) = 0 whenever \z\ = 1 and u(z) = 0, and letting G(») =
u(z)g(φ(z)) otherwise. We claim that Ge A and (uCφ)fnk —> (? uniform-
ly on 5 .

We first show that G is continuous on D. Indeed, G is continu-
ous on {z\u(z) Φ 0} since \φ(z)\ < 1 on this set and g is continuous
on D. Further, if |^*| = 1 and u(z*) — 0, let {zm} be a sequence in
D converging to z*. For each m, G(sJ = 0 or G(^m) = u(zm)g(φ(zj).
Since |flr(^(«J)l ^ 1 it follows that l i m ^ G(zJ = 0 = G(s*) and so
G is continuous at each ze D. Also G is analytic on D since u and
(/ o φ are analytic on D. Hence G e A.

To show that (uCφ)fnk ~> G uniformly on 5, let V - {e^|u(e^) = 0}
and suppose ε > 0. Since u is continuous, there exists an open set
UZDV for which \u(t)\ < ε f or t e U. Also since \u(z)\ < 1 f or z£ U
and D\U is a compact set, there exists r, 0 < r < 1, such that
\φ(z)\ ̂  r for z£ U. Moreover, since fnje —> g uniformly on compact
subsets of D, n{z)fn]i{φ{z)) —> u(z)g(φ(z)) uniformly for z$U. That
is, there exists an integer N such that \u(z)fnk(<p(z)) — G{z)\ —
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\u(z)fnk(φ(z)) - u(z)g(φ(z))\ < 6 for k ^ N and all z £ U. On the other
hand, for ze U\V and for all k,

\(uCφ)fnk(z) - G(z)\ = \u(z)fnk(φ(z)) -

£ sup [\u(z)\\fnk(φ(z)) - flr(^(«))|] ^ e[||ΛJ| + NU] = 2ε
zeUlV

Finally, if z e V, then (uCφ)fnh(z) = u(z)f%k(φ(z)) = 0 = G(z). Hence
given β > 0, there exists an integer AT such that \(uCφ)fnjc(z) — G(z)| < 2ε
for Jfc ̂  N and all ^ e ΰ . That is, (uCφ)fnjt -> G uniformly. Thus if .
\<p(z)\ < 1 whenever u{z) = 0, then the operator ^C^ is compact.

2* Spectra of compact ^C ,̂* If T is a bounded linear operator
from A to A we let σ(T) denote the spectrum of T. As before, we
first consider the case where φ is a constant function.

THEOREM 2.1. Suppose ueA and φ(z) = aeD for all zeD.
Then σ(uCφ) = {0, u(a)}.

Proof. 0 and u(a) are both eigenvalues uCψ. For, if F{z) =
« - α, then (uCφ)F(z) = u(z)F(φ(z)) = u{z)F(a) = 0, while if G(z) = ^(2),
then (uCφ)G(z) = u(z)G(φ(z)) = u(a)G(z). Thus {0, w(α)} c σ(^C9).

On the other hand, since the range of ^C^ is one-dimensional,
contains at most two elements and therefore σ(uCΨ) = {0,

In determining the spectra of the remaining compact operators
of the form uCψ we will make use of the following theorem of
Denjoy and Wolf.

THEOREM A (Denjoy [2], Wolf [6]). Suppose φ is an analytic
function mapping D to D. If φ is not conformally equivalent to
a rotation about a fixed point, then there exists a unique z' e D for
which φn(z) —> z' for all ze D. If φ is continuous at z', then
φ(z') = Z\

Suppose φeA and <p: D-^ D. It is easy to show that if φ Έ£ Z,
then there is at most one fixed point of φ in the open disc D. There
may, however, be infinitely many fixed points on the boundary of
D. However, if the function φ is not equivalent to a rotation, then
Theorem A asserts that there exists a unique fixed point zϋeD,
which we call the Den joy-Wolf fixed point of φ, for which <pn(z) -» z0

for all zeD. The spectrum of a compact operator of the form uCφ

will depend on the location of the Den joy-Wolf fixed point of φ.

THEOREM 2.2. Suppose ue A, φe A, \\<p\\ = 1, φ is not a constant
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function and φ has all its fixed points on the unit circle. If uCφ

is a compact operator, then uCφ is quasinilpotent.

Proof. Let zQ be the Denjoy-Wolf fixed point of φ, which by
hypothesis has modulus 1. Since uCφ is compact, Theorem 1.2
implies u(z0) = 0. Let V = {eiθ\u{eί0) = 0}.

Choose ε > 0. As in Theorem 1.2 there exists an open set U
such that UZDV and \u(t)\ < ε for all te U. Also, since D\U is com-
pact there exists r, 0 < r < 1, such that \φ(w)\ < r for all w e D\U.
Since {<p%} is a bounded sequence and hence a normal family, there
exists a subsequence {<pOTfc} such that {φnj) converges uniformly on
compact subsets of D. In particular, {φnje} converges uniformly for
\z\ ̂  r. But φn{z) —> zQ for all ^ G D . It follows that {φn(z)} converges
uniformly to z0 for \z\ <£ r.

Now choose S > 0 such that {seD\\s — zo\ < δ} c £7. Since
<P*(w) —> £0 uniformly for \w\ ^ r, there exists a positive integer AT
such that \φn(w) — zo\ < d if n ^ N and |te;| ^ r. Thus
9?Λ({w||w| ^ r})aU for n^ N. Therefore, for each zeD and each
positive integer n, at most AT elements from z, φ(z), •••, φn(z) lie in
5\Z7. From the definition of U, if t e U, then |u(ί)| < ε. Hence for
all z e D and n^ N,

\[(uCφYf](z)\ = \U{Z) U{φn^{z))f{φn{z))\ £ |MΓ6 ^ | | / | | .

Therefore \\{uCφ)
n\\ ̂  ||w||^6w-^ and so \\uGφ\\ΛP = limn^\\(uC9)

n\\1/n ^ ε.
This holds for all ε > 0; consequently \\uCψ\\sp = 0 as required.

We next show that if uCΨ is a compact operator on A and if ψ
has a fixed point z0 in D, then σ(uCφ) = {u(zo)φ'(zo)

n\n is a positive
integer} U {0, u(z0)}. This will be proved first for z0 = 0 and then,
by a standard argument, extended to arbitrary fixed points z0 in D.

LEMMA 2.3. Suppose ue A, φe A, \\φ\\ <; 1 and φ(0) = 0. Then
u(0) e σ(uCψ) and u(0)φ\0)n e σ(uCφ) for every positive integer n.

Proof, ( i ) u(0)eσ(uCφ) since no / e i satisfies u(0)f(z) —
u{z)f{φ{z)) = 1. For, evaluating at 2 = 0 gives %(0)/(0) - w(0)/(0) =
0 ^ 1.

(ii) If φ'(0) = 0, then >̂ is not a conformal map of D onto Iλ
Therefore if φ'(0) = 0, the composition operator Ĉ  is not invertible
and so uCφ is not invertible. Thus if φ\0) = 0, then u(0)φ\0)n = 0 e
σ(uCφ) for every positive integer w.

(iii) If 'fct(O) = 0, then again uCφ is not invertible and therefore
if u(0) = 0, then u(0)φ'(0)n = 0 e σ(uCφ) for every positive integer %.

(iv) Finally if u(0)9?'(0) =£ 0, we will prove that u(Q)φ'(0)n e
σ(uCφ) for every positive integer w by showing that for each such
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integer n, the function zn is not in the range of (u(Q)φ'(0)n — uCφ).
Suppose the contrary, that for some positive integer n there

exists feA with u(0)φ\0)nf(z) - u(z)f(φ(z)) = z\ Write f(z) = zmf0(z)
where foeA and /0(0) Φ 0. Then fo(z) = /0(0) + <S?(\z\). Also let
u(z) = u(0) + έ?(\z\) and <p(z) = <p\0)z + έ?(\z\2). Then

- U{z)f(φ{z)) =

is equivalent to

- (u(0) + ^(

x

or

(1) M0)^'(0r/0(0) - u(O)φ\O)»fo(O)]zm

If m Φ n, then the left side of (1) has order m and the right side
has order n, a contradiction. On the other hand, if m = n, then
the left side of (1) has order at least n + 1 since the coefficient of
zn vanishes, while the right side of (1) has order n, which again is
a contradiction.

Hence for each positive integer nf u(0)φ\0)n e σ(uCφ).

LEMMA 2.4. Suppose 0 ^ ueA, \\φ\\ <L1, <p(0) = 0 and φ is not
a constant function. If X is an eigenvalue of uCφ, then X e {u(0)φ'(0)n\n
is a positive integer} U

Proof. Suppose X is an eigenvalue of uCφ with / as correspond-
ing eigenvector. Then λ Φ 0 since φ is not a constant function and
the algebra A has no zero divisors. Write f(z) = azm + ό?(\z\m+1),
m ^ 0, u{z) = bzr + έ?(\z\r+ί), r ^ 0 and φ{z) = czs + ^(|z| 8 + 1), s ^ 1,
where abc Φ 0. Then Xf = (uCψ)f becomes

X[azm + έ?{\z\m+ι)] = [bzr + έ?{\z\r+ι)][a{czs

or

aXzm + ^ ( | z | m + 1 ) = abcmzr+ms +

Equating powers, we get m = r + ms and aX = αδcm.
Since r and m are nonnegative integers and s is a positive

integer, m = r + ms implies (i) r = m = 0 or (ii) r = 0 and 8 = 1.
In the first case, b = u(0) and so aX = αδcm implies λ = tt(O), while
if r = 0 and 8 = 1, then b = w(0), c = <ρ'(0) and αλ = αδcm implies
X, = u{ϋ)φ\ϋ)m for some positive integer m, concluding the proof.

THEOREM 2.5. Suppose 0 =£ % e A, φ e A, \\φ\\ ̂  1, ^(0) = 0, φ is
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not a constant function and uCψ is a compact operator. Then
σ{uCψ) — {u(0)φ\0)n I n is a positive integer} U {0, u(Q)}.

Proof. By the Fredholm alternative for compact operators, every
nonzero element in σ{uCφ) is an eigenvalue. It follows from Lemma
2.4 that the only possible eigenvalues of uCφ are u(0) and u(0)φ\0)n

for positive integers n; on the other hand Lemma 2.3 shows that
each of these numbers is in σ(uCφ). Hence σ{uC^ = {u(0)φ\0)n\n is
a positive integer} U {0, u(Q)}.

I should like to thank the referee for greatly simplifying my
original proof of Theorem 2.5.

For arbitrary zQe D we have

THEOREM 2.6. Let ueA, φeA, \\φ\\ 5^1 and uCφ be a compact
operator on A. Suppose z0 is the Den joy-Wolf fixed point of φ.

( i ) If φ is a constant function, then σ(uCΨ) = {0, u(z0)}.
(ii) If φ is not a constant function and \zo\ = 1, then

σ(uCφ) = {0}.
(iii) If φ is not a constant function and |£0|'< 1, then σ(uCp) =

{u(zQ)φ'(zQ)n\n is a positive integer} U {0, u(zQ)}.

Proof. The only statement that has not been proved is (iii).
Also if u ΞΞ 0, then certainly σ{uCφ) = {0}.

Thus assume u ^ 0, φ is not a constant function and φ(z0) =
z0 e D. Let p be the linear fractional transformation p{z) —
(z0 — z ) / ( l — z o z ) . T h e n p m a p s D o n t o D a n d p°p — z . I f w e

define S by Sf(z) = f(p(z)) for ze D, then S is an isometry on A

and S = S" 1. Let ψ = poφop and u*(z) = u(p(z)). Then w * e A and

S(u*Ct)S-1 = uC P . Indeed,

p) = S[u* /opoψ]
= (U*op).(fopoψop) = u-(foφ) = (uCφ)f .

Consequently σ{u*Cψ) = σ(uCφ). Since ^(0) = 0, it follows from
Theorem 2.5 that σ{u*Cψ) = {u'\0y/(0)n\n is a positive integer} U
{0, u*(0)}. But u*(0) - u(p(0)) •= u(zQ) and -f (0) = <p\z0). Thus

= {u(zo)φ\zo)
n\n is a positive integer} U {0, u(z0)}.

REMARKS. 1. By considering the adjoint (uCφ)* of uC9 it can
be shown that each nonzero eigenvalue of uCψ has multiplicity one.

2. Operators of the form uCφ on A for those ψ which are con-
formal maps of D onto D were considered in [3]. Except for the
case where φ has finite orbit, their spectra consist of circles, discs
or annuli centered at the origin.
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3. Caughran and Schwartz [1], Schwartz [4], and Shapiro and
Taylor [5] have considered compact composition operators on Hp.
Included in their papers are geometric conditions on φ insuring that
Cφ be compact. They also determine σ(Cφ) when Cφ is compact. It
is shown that if Cψ is a compact composition operator, then <p has
a fixed point zQ in D and 0(Cφ) = {φ'(zQ)n | n is a positive integer} U
{0, 1}.

4. The arguments leading to Theorem 2.5 are valid if ueH00

<peH°°, \φ(z)\ < 1 for \z\ < 1 and uCφ acts on Hp, 1 £ p ^ oo. Thus
for such u and φ, if <p(̂ 0) = zQe D and u(X is a compact operator on
Hp, then again σ(uCφ) = {u(zo)φt(zo)

n | ̂  is a positive integer} U
{0, u(z0)}.
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