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COMPACT OPERATORS OF THE FORM u«C,

HERBERT KAMOWITZ

If A is the disc algebra, the uniform algebra of func-
tions analytic on the open unit disc D and continuous on its
closure, and if u,p€ A with |l¢|| =1, then the operator uC,
is defined on A by uC,: f(z) > u(z)f(¢(z)). In this note we
characterize compact operators of this form and determine
their spectra.

We recall that a bounded linear operator T from a Banach space
B, to a Banach space B, is compact if given a bounded sequence
{x,} in B,, there exists a subsequence {x,,} such that {Tx,} converges
in B,.

If p: D — D, we let ¢, denote n* the iterate of @, i.e., p,(z) = 2
and @,(2) = @(@,_.(2)) for ze D and n = 1. Our main result is the
following.

THEOREM. Let ucA, pc A, |lp|| £1 and suppose ¢ is mot a
constant function.

I. The operator uC, is compact if, and only if, |p(z) <1
whenever u(z) # 0.

II. Suppose uC, is compact and let z,€ D be the umique fixed
point of @ for which @,(z) — 2, for all ze D. If |z =1, then uC,
is quasinilpotent, while if |z, < 1, the spectrum a(uC,) = {u(z,)@ (z,)"| 0
1s a positive integer} U {0, u(z,)}.

1. Characterization of compact uC,. We first consider the easy
case in which ¢ is a constant funection.

THEOREM 1.1. Suppose uc A and o) =acD for all zeD.
Then uC, is compact.

Proof. Since @(z) =a for all zeD, (uC,)f(z) = u(@)f(p() =
f(@)u(z). Therefore the range of uC, is one-dimensional and so uC,
is compact.

We next give a necessary and sufficient condition that «C, be a
compact operator for those ¢ which are not constant funections.

THEOREM 1.2. Suppose uc A, pc A, ||p|| £1 and ¢ is not a
constant function. Then uC, is a compact operator on A if, and
only if, |p(2)] < 1 whenever u(z) # 0.
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Proof. Since everything holds if v = 0, we will assume that u
is not identically zero.

1. Suppose uC, is a compact operator on A. We must prove
that if ze D and wu(2) # 0, then |p(z)] < 1. Since @ is not a constant
function, the maximum modulus principle implies that |p(z)] <1
whenever |z| < 1 and thus it suffices to show that |p(z)] < 1 when
u(z) # 0 and 2z lies on the unit circle. Assume the contrary and let
0 satisfy u(e’) = 0 and |p(e%)] = 1. Set ¢ = p(e*’) and for each posi-
tive integer =, define f, by f.(2) = Gz + ). Then ||f,]| =1.
Since uC, is assumed to be compact, there exists a subsequence
{f,) and a function F in 4 with (uC,)f,,— F in A. That is,
w(2)(3(@(z) + )" — F(z) uniformly for ze D. But (3(e(z) + 1)) — 0
for |2| < 1 and so F(z) =0 on D. However, F' is continuous on D
and therefore F(z) =0 on D. Hence (uCy)f,, — 0 uniformly on D.
In vparticular, wu(e??)(3(p(e*) + p))"* — 0. But for all %k, we have
lu(e®)E(p(e®’) + )™ = |u(e”)| == 0. This is a contradiction. Hence
if uC, is compact and u(z) = 0, then |[p(z)] < 1.

2. Conversely, assume |p(z)] <1 whenever u(z) # 0. To show
that «C, is compact, assume f,c A4 and ||f,]| < 1. Since {f,} is a
uniformly bounded sequence of functions on D, it is a normal family
in the sense of Montel and so there exists a subsequence {f,,} and
a function g analytic on D with f, — ¢ uniformly on compact sub-
sets of the open disc D. We observe that this convergence implies
SUp|, < lg(w)] = 1. Now defined a function G on the closed disc D
by setting G(z) = 0 whenever |z| = 1 and u(z) = 0, and letting G(z) =
w(2)g(p(z)) otherwise. We claim that G € 4 and (uC,)/f,, — G uniform-
ly on D.

We first show that G is continuous on D. Indeed, G is continu-
ous on {z|u(z) # 0} since |p(z)] < 1 on this set and g is continuous
on D. Further, if [2*| =1 and u(z*) = 0, let {z,} be a sequence in
D converging to z*. For each m, G(z,) = 0 or G(2,,) = u(2,)9(@(2))-
Since |g(p(z,))] <1 it follows that lim,.. G(z,) = 0 = G(z*) and so
G is continuous at each ze D. Also G is analytic on D since w and
gop are analytic on D. Hence G e A.

To show that (uC,)f,, — G uniformly on D, let V = {¢”/|u(e’) = 0}
and suppose ¢ > 0. Since w is continuous, there exists an open set
U>DYV for which |u(t)] < ¢ for t€ U. Also since |u(z)] <1 for z¢ U
and D\U is a compact set, there exists », 0 <7 <1, such that
lp(2)] = r for z¢ U. Moreover, since f,, — ¢ uniformly on compact
subsets of D, u(z)f, (p(2)) — u(2)g(p(2)) uniformly for z¢ U. That
is, there exists an integer N such that |u(2)f, (p(z) — G(2)| =
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[w(2)f, (@) — w@)g(p(z)| < ¢ for k= N and all z¢ U. On the other
hand, for ze U\V and for all k%,

[(uCo)f(2) — G(2)] = [u(2)f,(P(2) — w(2)g(p(2))]
= sup [[w(@)| | fo (@) — g(@(@NI] < e[|l fapll + llgll] = 26 .

Finally, if ze¢ V, then (uC,)f,(2) = u(2)f,,(p(2)) =0 = G(z). Hence
given ¢ >0, there exists an integer N such that |[(uC,)f, (2) — G(2)| < 2¢
for k= N and all zeD. That is, (uC,)f,, — G uniformly. Thus if.
|p(2)] < 1 whenever u(z) = 0, then the operator «C, is compact.

2. Spectra of compact uC,. If T'is a bounded linear operator
from A to A we let d(T) denote the spectrum of 7. As before, we
first consider the case where @ is a constant function.

THEOREM 2.1. Suppose uc A and @) =acD for all zeD.
Then o(uC,) = {0, u(a)}.

Proof. 0 and wu(a) are both eigenvalues uC,. For, if F(z) =
2z —a, then (uC,)F(2) = u(2)F(p(z)) = u(2)F(a) = 0, while if G(z) = u(z),
then (uC,)G(z) = u(2)G(@(2)) = w(a)G(z). Thus {0, u(a)} < o(uC,).

On the other hand, since the range of uC, is one-dimensional,
o(uC,) contains at most two elements and therefore o(uC,) = {0, u(a)}.

In determining the spectra of the remaining compact operators
of the form uC, we will make use of the following theorem of
Denjoy and Wolf.

THEOREM A (Denjoy [2], Wolf [6]). Suppose ¢ is an analytic
Sunction mapping D to D. If ¢ is mot conformally equivalent to
a rotation about a fixed point, then there exists a unique 2’ €D for
which @,(z)— 2 for all zeD. If ¢ 1is continuous at 7', then
p(z) = 2.

Suppose p € A and @: D— D. It is easy to show that if ¢ %= ¢,
then there is at most one fixed point of ¢ in the open disc D. There
may, however, be infinitely many fixed points on the boundary of
D. However, if the function ¢ is not equivalent to a rotation, then
Theorem A asserts that there exists a unique fixed point z,¢ D,
which we call the Denjoy-Wolf fixed point of @, for which ¢, (2) — 2,
for all ze D. The spectrum of a compact operator of the form uC,
will depend on the location of the Denjoy-Wolf fixed point of .

THEOREM 2.2, Suppose uc A, p€ A, ||p|| =1, @ is not a constant
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Junction and @ has all its fived points on the unit circle. If uC,
1s a compact operator, then uC, is quasinilpotent.

Proof. Let z, be the Denjoy-Wolf fixed point of ¢, which by
hypothesis has modulus 1. Since %C, is compact, Theorem 1.2
implies u(z,) = 0. Let V = {¢"|u(e?) = 0}.

Choose ¢ > 0. As in Theorem 1.2 there exists an open set U
such that U>V and |u(t)] < ¢ for all te U. Also, since D\U is com-
pact there exists », 0 < » < 1, such that |p(w)| < = for all we D\U.
Since {p,} is a bounded sequence and hence a normal family, there
exists a subsequence {p,,} such that {p,} converges uniformly on
compact subsets of D. In particular, {p,} converges uniformly for
|z < r. But@,(z)—z forall ze D. It follows that {p,(z)} converges
uniformly to z, for |z| < 7.

Now choose 6 >0 such that {seD||s — 2| <d}cU. Since
@ (w) — 2, uniformly for |w| <, there exists a positive integer N
such that |p,(w) —2/<d if xw=N and |w 7. Thus
p.(fw||lw] £7}))cU for n = N. Therefore, for each ze D and each
positive integer n, at most N elements from z, ¢(z), ---, @,(2) lie in
D\U. From the definition of U, if t¢ U, then |u(t)] < e. Hence for
all ze D and n = N,

[uC)"f1(2)] = [u(z) « + + WPuor (NS (@a(2)] = [ul[Ye* Y[ f1] .

Therefore [[(uC,)"[| = [lu|["e"™™ and so [[uC,[,, = lim, ... [[(uC,)"|['" = e.
This holds for all ¢ > 0; consequently ||uC,|/,, = 0 as required.

We next show that if uC, is a compact operator on A and if @
has a fixed point z, in D, then o(uC,) = {u(z,)®'(z,)"|n is a positive
integer} U {0, u(z,)}. This will be proved first for z, = 0 and then,
by a standard argument, extended to arbitrary fixed points z, in D.

LeMMA 2.3. Suppose uc A, pe A, ||| £1 and (0) =0. Then
u(0) € a(uC,) and w(0)p'(0)" € a(uC,) for every positive integer m.

Proof. (i) u(0)eo(uC, since no [feA satisfies u(0)f(z) —
u(2)f(p(z)) = 1. For, evaluating at z = 0 gives u(0)f(0) — u(0)f(0) =
0=+1.

(ii) If #'(0) =0, then ¢ is not a conformal map of D onto D.
Therefore if ¢'(0) = 0, the composition operator C, is not invertible
and so uC, is not invertible. Thus if ¢'(0) = 0, then u(0)'(0)» =0¢
o(uC,) for every positive integer .

(iii) If u(0) = 0, then again uC, is not invertible and therefore
if u(0) = 0, then u(0)p'(0)" = 0 e o(uC,) for every positive integer n.

(iv) Finally if u(0)p'(0) = 0, we will prove that w(0)p'(0)"e
o(uC,) for every positive integer n by showing that for each such
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integer n, the function 2" is not in the range of (u(0)p’(0)* — uC,).

Suppose the contrary, that for some positive integer » there
exists fe A with u(0)p'(0)"f(2) — w(2)f(p(z)) = z". Write f(2) = 2"f(2)
where f,e A and f,(0) #0. Then f,(z)=/fy0) + <(|z]). Also let
w(z) = u(0) + &(|z]) and @(z) = ¢'(0)z + £°(|z]*). Then

w(0)p'(0)"f(2) — u(2)f(p(2)) = 2"
is equivalent to

u(O)QZ"(O)"Z’"[fo(O) + Z(z])] — (u(0) + (2@ 0z + Z(|z|™ 1))
X (f(0) + (|2])) = =z

or
(1) [#(0)@'(0)"£,(0) — u(0)@"(0)"fo(0)]2" + < (|z|"™) = 2" .

If m # n, then the left side of (1) has order m and the right side
has order n, a contradiction. On the other hand, if m = n, then
the left side of (1) has order at least n 4 1 since the coefficient of
2" vanishes, while the right side of (1) has order », which again is
a contradiction.

Hence for each positive integer %, u(0)®'(0)" € a(uC,).

LEMMA 2.4. Suppose 0 £ucA, ||p|| £1, (0) =0 and @ is not
a constant function. If N is an eigenvalue of uC,, then € {u(0)p'(0)*|n
18 a positive integer} U {u(0)}.

Proof. Suppose \ is an eigenvalue of uC, with f as correspond-
ing eigenvector. Then \ = 0 since ¢ is not a constant function and
the algebra A has no zero divisors. Write f(z) = az™ + 27(|z|™™),
m =0, wz =bz" + 2(2/""), r =0 and p(z) = ¢cz* + 2(|z|*™), s =1,
where abc # 0. Then Mf = (uC,)f becomes

Maz" + Z(|2["™M)] = [b2" + (|2l ]aez + Z(|2|" ™)™ + Z(|jz|™)]
or
arxz™ + (|z|"*") = abe™2™ ™ + (|2 ) .

Equating powers, we get m = r + ms and ax = abc™.

Since r and m are nonnegative integers and s is a positive
integer, m = r + ms implies (i) » =m =0 or (ii) » =0 and s = 1.
In the first case, b = u(0) and so ax = abe™ implies » = u(0), while
if » =0 and s =1, then b = u(0), ¢ = ¢'(0) and ax = abc™ implies
A = u(0)p'(0)™ for some positive integer m, concluding the proof.

THEOREM 2.5. Suppose 0 = ucd, peA,|lpl| £1, 0) =0, ¢ is
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not a constant function and uC, is a compact operator. Then
owuC,) = {u(0)p'(0)"|n is a positive integer} U {0, u(0)}.

Proof. By the Fredholm alternative for compact operators, every
nonzero element in o(uC,) is an eigenvalue. It follows from Lemma
2.4 that the only possible eigenvalues of wC, are u(0) and u(0)®'(0)"
for positive integers m; on the other hand Lemma 2.8 shows that
each of these numbers is in o(uC,). Hence o(uC.) = {u(0)p'(0)"|n is
a positive integer} U {0, u(0)}.

I should like to thank the referee for greatly simplifying my
original proof of Theorem 2.5.

For arbitrary z,& D we have

THEOREM 2.6. Let uc A, pc A, |lpll =1 and uC, be a compact
operator on A. Suppose z, is the Denjoy-Wolf fixed point of .

(i) If @ is a constant function, then o(uC,) = {0, u(z,)}-

(ii) If o is mot a constant function and |z| =1, then
o(uC,) = {0}.

(iii) If @ 1s mot a constant function and |z,| < 1, then o(uC,) =
{w(z)p (z)"|n 1is a positive integer} U {0, u(z,)}-

Proof. The only statement that has not been proved is (iii).
Also if u = 0, then certainly o(uC,) = {0}.

Thus assume u % 0, @ is not a constant function and ¢(z,) =
z,eD. Let p» be the linear fractional transformation p(z) =
(z, — 2)/(1 — Z,2). Then p maps D onto D and pep =2. If we
define S by Sf(z) = f(p(z)) for ze D, then S is an isometry on A
and S = S7'. Let+ = popop and u*(z) = u(p(z)). Then u*e€ A and
Sw*Cy)S™ = uC,. Indeed,

[Sw*CyS™'1f = [SW*CHI(f o p) = S[u* - fepoy]
= (u*op) . (foqu//‘Op) =U- (fo@) = (uCo)f .

Consequently o(u*Cy) = o6(uC,). Since +(0) =0, it follows from
Theorem 2.5 that o(w*Cy) = {u*(0)y'(0)"|n is a positive integer} U
{0, u*(0)}.  But u*(0) = u(p(0)) = u(z,) and §'(0) = @'(z,). Thus
o(uC,) = {(u(z,)@'(z,)"|n is a positive integer} U {0, u(z,)}.

REMARKS. 1. By considering the adjoint (uC.)* of uC, it can
be shown that each nonzero eigenvalue of uC, has multiplicity one.

2. Operators of the form uC, on A for those ¢ which are con-
formal maps of D onto D were considered in [3]. Except for the
case where @ has finite orbit, their spectra consist of circles, dises
or annuli centered at the origin.
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3. Caughran and Schwartz [1], Schwartz [4], and Shapiro and
Taylor [5] have considered compact composition .operators on H”.
Included in their papers are geometric conditions on ¢ insuring that
C, be compact. They also determine o(C,) when C, is compact. It
is shown that if C, is a compact composition operator, then ¢ has
a fixed point z, in D and o(C,) = {¢'(z,)"|n is a positive integer}U
{0, 1}.

4. The arguments leading to Theorem 2.5 are valid if we H”
pe H”, |p(z)] <1 for |2 <1 and uC, acts on H?,1 < p < o. Thus
for such w and o, if ¢(z,) = 2,€ D and uC, is a compact operator on
H?, then again o(uC,) = {u(z,)®'(z,)"|n is a positive integer} U
{0, u(zy)}.
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