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ON COMMON FIXED POINT SETS OF COMMUTATIVE
MAPPINGS

TECK-CHEONG LIM

Let C be a compact convex subset of a locally convex
topological vector space X. Anzai and Ishikawa recently
proved that if 7,, ---, T, is a finite commutative family of
continuous affine self-mappings of C, themn F (X7, A4,T)) =

», F(T,) for every A, such that 0< 4, <1 and >4, =1,
where F(T) denotes the fixed point set of 7. It is natural
to question whether the conclusion of their theorem is
dependent on the topological properties of X, C and 7T,—in
this case, the linear topology, the compactness and the
continuity. We shall see that this is not; the theorem can
be formulated in an algebraic context.

Our theorem, when applied to Hausdorff topological vector spaces,
yields a better version of Anzai-Ishikawa’s theorem (see Corollary 2).

DEFINITION 1. A subset B of a real vector space is said to be
(algebraically) bounded if M..,e(C — C) = {0}, where C = C,(B), the
convex hull of B.

Every bounded convex subset of a Hausdorff topological vector
space is algebraically bounded. Every bounded subset of a locally
convex Hausdorff topological vector space is algebraically bounded.

THEOREM 1. Let C be a convex subset of a real vector space X
and T, -+, T, a finite commutative family of affine self-mappings
of C. If the set D= {TmTy2+«s Typre:0 = m; < 0,4 =1, --+, n} 1s
bounded for each x e C, then F(3'-y MTy) = Niey F(T,) for every 0 <
N < 1 with Y7o, = 1.

LEMMA 1. Let x, be a sequence in a Banach space such that
2, — x. Then the sequence vy, defined by
yn = (1/2”)(%0 + 'nCl.xl + M + %Cixi + M + xn)

converges to w.

Proof. For an arbitrary ¢ > 0, choose m such that ||z, — x| <
¢/2 for 1 = m. Choose N = m such that

1/2*1 + ,C, + « -+ + .Cn-y) < ¢/(2D)

for all » = N, where D is a number such that ||z, — z|| £ D for all
2=0. Then
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Y — ||
= [[(1/2"’)(960 —x+ 'nC1(x1 - w) + oo+ nCm—l(xm—l - {X/') + oo+ Ly — x) H
=@29@ + ,C6 + -+ +,C,)D + (/2)1/2(C,, + +++ + 1)
<e

for all n = N.

REMARK 1. The above lemma is also a consequence on Silverman-
Toeplitz’s theorem on regular method of summability.

Proof of Theorem 1. We may assume that » = 2. The inclusion
Ny F(T,) c FG P \T,) is obvious. Let A = M1 + \,T,, B =M\ + N, T,
and T = (1/2)(A + B). Then T = (1/2)(I + 7T, + »,T,). Moreover,
F(T)=FM\T,+N\T,), F(A) = F(T,) and F(B) = F(T,). Letxe FO\.T,+
»T,) = F(T). For every n, we have
A + B\"
x = ( 2 > x

(1)
= %(A”w + ,CLA"'Bx + «++ + ,C,A" "By + -+« + B™x)

and
(2) Tw= zl—n(TlA”x +,C.T.A""'Bx + +++ + ,C, T, A" 'B'x + - -+ + T,B"x) ,
where we make use of the commutativity of A and B and the affine

property of T..
Following Anzai-Ishikawa’s computation [1], we have

Il
M§

m1 o )
Ary — T\ A™y 2O NMT Yy — Z wCi M TN Ty
i=1

3 o
+
= o

1l

WCA N — WG M N TY, WCoy = wCiyy = 0

©
Il
=3

I
M§

Ty — S (—p)Tiy

i= m0+

(Ea Ty — Z B TI@/)

i=mp+

o
Il

Here, m, is the largest integer less than or equal to \,(m + 1);
Y = mCi)‘-'l _i7\'zz. - 'mCi—l)\’l *Hl)\é-l ’

=20 for 0 <¢=<m, and <0 for m, +1 <7 =m + 1;
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as m — oo a; = Mila, =0 for 0 <1 = m,, B, = — /o, =0 for m, +
1<i<m+1,3%a =1and 3 .Ri=1

Let E = Cy(D). By the convexity of F, A"y —T\A"yeca, (B — E)
provided Tiye E for 1 =0, -+, m + 1.

Since T, and T, are affine, Ti:A*Bxc E for j, k=0, .-+, n; 1=
0,1, --.. It follows from (1) and (2) that

x— T

= zl‘n((A”x - TlAnx) + %CI(A"—IB:B — TIA"_IB:I)) 4 oeee (B'nx_ Tanw))
e %(M(E’ — B+ ,Ca, (E—E)+ ++++ ,Co_,0,(E — E)+ a,(E — E))

C 2@+ nCa, + o+ + G+ o+ + @B — B),
the last inclusion being a consequence of the convexity of £ — K.
Since E — E is convex and 0cE — E, we have ¢ (F — KE) <
g — K) if ¢, < ¢, Hence by Lemma 1 and the boundedness of E,
N A(n)(E — E) = {0} where

A = 2(ay + .0, + -+ + G+ oo +,).
It follows that # = Tyx. Similarly ¢ = T,x. This completes the proof.

COROLLARY 1. Let C be a bounded convex subset of a vector
space and T, +-+, T, a finite commutative family of affine mappings
of C. Then F(OU NT.) = Nicy F(T,) for all positive numbers \;,
1 =1, -+, n such that >3, N, = L.

COROLLARY 2. Let C be a convex bounded (in the usual sense)
subset of a Hausdorff topological wector space and T,, ---, T, a finite
commutative family of affine mappings of C. Then FC 7 NT,) =
Nr F(T,) for all positive numbers \;, 1 = 1, «++, n such that >, \,=1.

REMARK 2. We note that the boundedness condition cannot be
removed. The mappings T'x =« + a, T, = 2 — a, a = 0 defined on
R' are commutative and affine, with F(T,) = F(T, = ¢ and
F(1/2)T, + (1/2)T,) = R

COROLLARY 3. Let C, T, i=1, ---, n be defined as in Corollary 2.
Assume that T? «+- T2 =T, «-- T, for some p = 2 and that for each
xeC and each i =1, -+, n, the set

Ag = {Tp: - Tmivn TMX:0 = m; < o, =1+, m}
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18 bounded, where N indicates that T is missing. Then FCrnT) =
N F(T,) for all positive numbers Ny T =1, «o+, n such that
Z:‘ Ay = 1.

Proof. If m;,i=1,-..,n are n natural numbers and m; =
min {m,;, 1 = 1, ---, n}, then
Troeee TP X = Tmi-mj ... f’]{"j*"‘f cor Tra=miTms oo Trig
=T i ees Ty ™iTE oo Thxe AJTF -+ Tha)
where k is an integer satisfying 0 <%k < p. It follows that
Ap =T o T7mp: 0 <o, < o0, 8 =1, -+-, 1)
=U{A(T! - Thw)yi=1, - ,m, k=0, ---,p — 1} .
Hence Awx, being a finite union of bounded sets is bounded.
The special case when » =2 and p = 2 can be given a simple

direct proof. We shall illustrate it for the case ), = A = 1/2. First
we prove:

LEMMA 2. For each m = 1, there ewxists rational numbers
(depending on n and not mnecessarily monmegative) \,, - - -, Nns21 SUCh
that

Mot s N =1 = @/207
and such that the equation
D" = (1/2%*1)(‘4#“2*ﬂ) + MABDY™E et 4 NABIDYE ..

(3)
+ )"[n/g]A[”/Z]B[”/ﬂDn—2[7/,/21

is valid for any two commutative affine mappings A, B defined on
a convex set, where D=1/2(A+ B). ([m] denotes the largest integer < m.)
Proof. 1If such rational numbers )\, exist for a fixed n, then by
putting A = B = I, we see that
)\:1 + e + )"[n/zl = 1 - (1/2”_1) .

We shall prove by induction on #n. Forn =2, \, = 1/2. Assume
that the lemma is true for m <. Then

_|_ )\'IABDn—l + . + )\J[n/ﬂA[n/2]B[u/2]Dn—2[n/2J+1 .

(4)
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Making use of the induction hypothesis for m = n» — 1, substitue
n+1 n+1
(1/2n—2)<A :-zi- B > = D" — p, ABD" 0~ —

— ﬂ[( 1)/ZJJA_[(n-"-/Z]‘B[('/L—I/Z]-D"‘—l‘2[('n—l)/Z]
n—

into (4). The proof will be then complete by collecting similar terms
and making use of [(n —1)/2] + L =[(n + 1)/2] and [(n + 1)/2] — [r/2] =0
or 1.

COROLLARY 4. Let C be defined as in Theorem 1 and A, B be
two commutative affine self-mappings of C such that A*B* = AB and
such that the sets {A™x:n =0,1,2, ---} and {B"x:n=0,1,2, ---} are
bounded for each x€C. Then F((1/2)A + (1/2)B) = F(A) N F(B).

Proof. Let xeF((1/2)A + (1/2)B). Using Lemma 2 and the
condition A*B® = AB, we have

(5) = <A ;F B )x — (1/2%-1)<Ai‘2iﬂ) n <1 — z_j}__l)ABx .

Thus,

¢ — ABo = L (A2EEL _ gps).

By the boundedness condition, we see that ABx = x. By (3) for
n = 2, we have x = (A% + B*)/2. By applying A to x = (1/2)Ax +
(1/2)Bx we have Ax = (1/2)A%¢ + (1/2)x and hence A*x — ¢ = 2(Ax—x).
Thus by repeatedly replacing 4, B by A? and B’ in the above argu-
ment, we obtain A*x — x = 2"(Ax — x). This contradicts the boun-
dedness of {A"x:n =0,1,2, ---} unless Az = 2. Similarly Bx = z,
completing the proof.
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