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ON MAPPING AN n-BALL INTO AN O+1)-BALL
IN COMPLEX SPACE

S. M. WEBSTER

This paper is concerned with proper holomorphic map-
pings from the unit w-ball Bn in complex %-space Cn into
the unit (rc+l)-ball in CΛ+1. It will be shown that if such
a mapping / is sufficiently regular at the boundary then
the image of / lies in a complex hyperplane, provided wg:3.

The main aspect of the problem dealt with here is the minimum
regularity assumptions required of / at the boundary. The main
result gives the extension past almost all real analytic boundary
points of a proper bolomorphic mapping / of a domain in Cn into
Bn+1 assuming / continues to a C3 immersion of the boundary.

Biholomorphic mappings between strongly pseudo-convex domains
with C°° or real analytic boundaries have received much more atten-
tion. It has recently become clear that the boundary smoothness
of such mappings follows rather easily if one assumes initially some
small amount of regularity. See [2], [4], and [5] for the real
analytic case, and [3] for the C°° case.

We shall show that a similar situation holds in the present case.
More precisely, we prove the following theorem, which is of a
local nature.

THEOREM. Let D c Cn, n ^ Z, be a domain which contains a
strongly pseudo-convex analytic real hypersurface M in its boundary.
Let f be a holomorphic mapping of D into the unit ball Bn+1 cCn+1

which extends to a three times continuously differentiate immersion
of M into the unit sphere S2n+1. Then f extends holomorphically
to a neighborhood of every point in some dense open subset of M.

In order to apply this theorem to mappings of Bn into Bn+ι, we
recall the following result, which is Theorem 3.1 of [6]:

PROPOSITION. Let V be a nonsingular portion of a complex
hypersurface in Cn+1 and let N = V Π S2n+1. Suppose n i> 3 and N
is locally equivalent to S2™"1 as C-R manifolds. Then V is an
open subset of a complex hyperplane.

This is proved using the Chern-Moser theory and a "pseudo-
conformal" analogue of the Gauss equations. See [6] for more
details.
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The theorem and proposition give immediately the following
corollary.

COROLLARY. In addition to the hypothesis of the theorem sup-
pose that D is the unit ball Bn c Cn, n ^ 3. Then the image of f
lies in a complex hyperplane.

The corollary is false for n — 2, as the simple example (z, w) —>
(z2, Λ/2ZW, W2) of H. Alexander shows.

For the proof of the theorem let z = (z19 , zn) be coordinates
on Cn and r(z, z), dr Φ 0, be a real analytic function vanishing on
M. Restricting to a neighborhood of a point of M, we may assume
rn Φ 0 and put

(1) La =

where

, rj = dr/dzj , etc.

Also, let zf = (z[, , z'n+1) be coordinates on Cn+1 and put τ\z\ zf) —
z'-z' — 1, where z' z' — Σzr

3z'3 . The map / is given by z' — f{z).
We begin with a lemma, the proof of which is an easy exten-

sion of the argument given by H. Lewy in [2] for the equidimen-
sional case. See also [5] and S. I. Pincuk [4]. Lemma 1.3 of [4]
applies to our case also and allows us to drop the requirement that
/ be an immersion along M.

LEMMA. Let zQ be a fixed point of M. Suppose that for some
choice of a and β the vectors f, Lrf, 1 ̂  7 < n, and LaLβf are
linearly independent over the complex numbers at the point zQ.
Then under the assumptions of the theorem f continues holomor-
phically to a neighborhood of z0 in C\

Proof. Under our assumptions we have r' / = ur where u > 0
is real analytic in D and C3 on D U M. Since Lar == Laf = 0 we
also have

LaLβ{r' f) = LaLβf f= (LaLβu)r .

Thus, these functions are continuous o n ΰ U l and vanish on M:

(2) r = 0 — / . / - 1 - Laf f = LaLβf f = 0 .

Now we fix a complex line I which intersects M transversely
near zQ and let w be a point of I near z0 but outside D U M. View-
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ing r(z, z) as a power series in z and z, we can define a unique z
in I f] D by the equation r(z, id) = 0, since rw ̂  0. This point 2 =
z(w) depends anti-holomorphically on w. With z thus fixed we
define wf implicitly by the following equations

( 3 ) f(z) W = 1 , Lβ/(s, w) w' = LaLβf(z, w). w' = 0 .

These equations are linear in w' with coefficients which are anti-
holomorphic in w for w in I and outside D U M. The implicit func-
tion theorem (or Cramer's rule) yields a unique solution wf = /(w)
which is holomorphic for w in ϊ and outside D (J M. As w ap-
proaches a point in ikf its image z(w) approaches the same point. The
continuity assumptions, the uniqueness of solutions to (3), and equa-
tion (2) guarantee that / and / agree on M Γ) Z- Hence, / extends
holomorphically to I. We now vary the line I parallel to itself as
in [2] obtaining a continuous extension of / which is holomorphic
on either side of each I n M. By Morera's theorem / is seen to be
holomorphic in the parameters on which I depends and hence holo-
morphic. For further details we refer to [2].

We now consider the case in which /, Lrf, 1 <£ 7 < n, and all
LaLβf are linearly dependent at all points of some open subset of
M. By (2) and the fact that / is an immersion on M it follows that
the LJLβf are linear combinations of the Lrf. This says that part
of the "second fundamental form" of M vanishes.

To study the behavior of M immersed in S2n+1 we consider a
unitary frame field β0, ea9 1 <[ a < n, en adapted to M as follows. Let
e0 — if = iz', the ea span the holomorphic tangent space H(M) of M,
and en be in the holomorphic tangent space H(S2n+1) and orthogonal
to H(M). We define differential one-forms θif ωίh by

(4) df^dz'^Σtθtet,

n

( 5 ) dei = Σ (diό^ό

Since the frame is unitary and e0 = ώ' we have

6 . o>€i + ώy, = 0 ,

ω o i = iθh ωjQ •= iθ5 .

Now let e — e0 + αβw, where the C2 function a is chosen so that
e is tangent to M. From (4) we get

(7) ds' = 0oe + 0 Λ + {βn - aθo)en

repeated Greek indices are summed from one to n — 1. Hence, θn =
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aθ0 when restricted to M. Substituting into (5) gives

( 8 ) de = i(l + aa)Θoe + (ίθa + aa)noc)ea + (da + aωnn — ia2άθ0)en ,

and

( 9 ) dea = iθae + ωaβeβ + (ωan - ίaθa)en .

We shall show that

ωan - ΐα0α = 0 , mod θ0 ,

dα + aωnn = 0 , mod θ0 .

It follows from (4) and (6) that ΘQ — — iω00 is a nonzero real
one-form annihilating the holomorphic tangent spaces H(S) and
H(M), and that the θt span the (1, 0)-forms restricted to S2n+1. Since
/ is C3 the exterior derivatives of (4) and (5) exist and ddf = ddet =
0. Substituting (5) and (6) into these exterior derivatives gives

dθ0 = iθa A θa ,

(11) dθa = θβA (ωβa - iδ^Λ) + aθ0 A ωna ,

dωan = (ωaβ - δβ̂ ά>Λ J Λ α)^ + α/90 Λ θa .

It follows from the first of these equations that the Levi form of
AT relative to this coframe is the identity matrix daβ.

Let Xa, χa, and 1 = 1 be the vector fields on M dual to θa9 θa9

θ0. It follows that the Xa are linear combinations of the operators
(1). From (4) we have Xaf = ea and Xf = e. By definition of the
Levi form.

Xβea - XβXJ = [Xh Xa]f = ίδβae + Bβarer ,

for some functions Έ, since Xaf = 0. Our present assumption implies
that Xβea is a linear combination of the er,

Xβea = A^rβr .

Thus,

dea = X^eΛ + X^«^ + -XeΛ

- (A^/i + BβJβ)eγ + i^αβ + XβA .

Prom this and equation (9) we see that #0 = 0 implies ωa% = ίaθa\
hence we put

(12) ωan = iaθa + 6Λ ,

for some functions ba of class C1. The first equation of (10) is
proved.
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Now we take the exterior derivative of (12), use the equations
(11), and compute mod#0 This yields

[(da + aωnn)daβ + baθβ] A θβ = 0 , mod ΘQ .

Hence,

(da + aωnn)δaβ + baθβ = 0 , mod θ0 .

It is here that we must assume n ^ 3. We can then take β Φ a
and get ba = 0. Putting β — a gives the second equation of (10).

Now let t —> z(t) be a smooth curve in M which is always
tangent to the holomorphic tangent planes of M. From (8), (9), and
(10) we have a homogeneous system of equations of the form

ξaea ,
dt

dt

where the f's and η's are C1 functions of t. It follows that the
complex hyperplane spanned by e, eβ, 1 ^ a < n, is a constant plane
P, and that f(z(t)) remains in P Π S2Λ+1.

Because of the strong pseudo-convexity of Λf, which is reflected
in the first equation of (11), the bundle H(M) of holomorphic tangent
planes forms a contact structure. By a classical theorem (see [1])
this contact structure is locally equivalent to the standard one given
by the contact form dz — y1dx1 yn~ιdxn-i on R2n~\ For this
contact structure it is clear that the set of points which may be
connected to the origin by piecewise smooth (or even piecewise-linear)
curves which are tangent to the distribution of planes contains an
open set.

From these considerations it follows that an open subset of
f(M) lies in P n S*n+ί; hence f(D U M) c P. By the Lewy-Pincuk
theorem / extends holomorphically past M.

The above reasoning shows that the closed set B of points at
which all LaLβf are dependent on the Lrf is either all of M, and /
extends holomorphically past every point of M; or B has no interior
and / extends to a neighborhood of every point of M not in B.
This finishes the proof.

It seems reasonable to conjecture that the theorem is true under
the weaker hypothesis that / be C2 to the boundary, which is all
that is required in the lemma. Also, the conclusion may hold for
all points of M.
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