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ON Y-CLOSED SUBSPACES OF X, FOR BANACH SPACES
XcY; EXISTENCE OF ALTERNATING ELEMENTS
IN SUBSPACES OF C(])

JURGEN VOIGT

If XC Y are Banach spaces, with continuous embedding,
we consider property (P3): If L c X is a closed subspace of
Y, then L is finite dimensional. If the embedding X (Y is
compact (property (P1)), then (P3) follows. It is shown that
(P1) implies also (P2): In (P3) the dimension of L can be
estimated from above in terms of the norm of the mapping
id: (L, |- lly) > (L, ||+ |]1x). For some examples which are known
to satisfy (P3) but not (P1), we show that also (P2) is valid.

The main tool for the proof of (P1) = (P2) is the exis-
tence of ‘‘alternating’’ elements in subspaces of R* and
C[0, 1]. In order to obtain such elements we investigate the
structure of certain subsets of the unit cube in R*.

Introduction. Let (Y, ||-]ly) be a Banach space, X CY a linear
subspace which is also a Banach space (X, ]||-]|x), with continuous
embedding id: (X, || ||x) — (Y, || -||x). If additionally

(PD) id: (X, [+ [l) — (X, [I-]ly)  ts compact ,
then
(P3) any || -||y-closed subspace L C Y, which is contained in X, 1is

finite dimensional.

(The closed graph theorem shows that ||- ||, and || - ||+ are equivalent
on L, and then (P1) implies that the unit ball in L is relatively
compact.) There are, however, examples of pairs (X, Y) which
satisfy (P3) but not (P1) ([3], [6], [7])-

In order to state a quantitative version of (P3) we define the
function @: [0, ) — N, U {=},

P(K)X=p(K; X, Y))
: =sup{dim L; ¢ X linear subspace, ||z|/y =< K||z||;(x¢e L)}
= gup {dim L; L C X linear subspace, N, < K},

where

Ny =sup {2l wel,|z], =1}
is the norm of the mapping id: (L, || -|ly) — (L, || - |lx). Then
(P2) P(K) < e for all Kel0, o)
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implies (P8): If Lc X is ||-|zclosed in Y, then id: (L, ||-|l;) —
(L, ||+ |lx) is continuous by the closed graph theorem, i.e., N, < oo.
Therefore dim L < p(N;) < oo.

With the function +: N, — [0, <],

y(m)(=yp(n; X, Y))
: =inf {N;; Lc X linear subspace, dim L = n}

(Yr(m) = o if n > dim X), it is easy to see that (P2) is equivalent to
(P2h P(n) —> o for m—> oo,

The function @ was defined in [6],[7] in the context considered
there. For the same case Pajor defined the function 4 and noticed
the equivalence of (P2) and (P2') (private communication of M.
Rogalski to R. Tandler, 1977).

For Y: =C[0, 1], X: = W0, 1), 1 < p < o, property (P1) is satisfied.
In [6],[7] it is shown that also (P2) is satisfied. The function o is
not calculated explicitly, its finiteness being proved by a compactness
argument. The search for an explicit expression of ¢ for this case
was the starting point of this paper. We obtain it not only for the
cases 1 < p < « but also for p = 1, thereby giving a new proof of
(P3) for this latter case (§4).

For the computation of @ in the cases just mentioned we use
the existence of alternating elements in the || -||,~unit ball of sub-
spaces of C[0,1] (§2). These elements are also used to obtain (P1)=
(P2) for the special case XY = C[0, 1]. It turns out that this case
is already the general case for a pair (X, Y) satisfying (P1)(§3).

1. Subsets of alternating elements in the unit cube in R*, We
are going to use the following notations: For k<N, we denote by

E* =[—1,1] = {x e R ||z|l. < 1}, B° = {0},

the unit cube in R*(=unit ball in (R%, || -].).
For n e N we define
Fit,: = {xe E* there exist 1 < 5, < j, < --+ < j, <k such that
Ti, = =(=)""(r =1, .-, n)} ,
Fk,n: = F}Z“UF]’:,:,,‘ .
For convenience of notation we also denote F, = F;, = Fi, = E*

Let us note that F,,={x € E*; ||z||.= 1} is just the boundary of E*.
Also the following identities are easily proved:

F]:,n = '—F/:—,ka,n: ——Fk,ny
Fi.NFr=Fy,(meN),F,, =0 for n>k.
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THEOREM 1.1.' For all k€ N, there exists a homeomorvhism
g B* — Fii.

with the following additional properties:
(@) gu(—x) = —gu(®) for all xeF,,,
(b) for all ne N, the mapping g, induces homeomorphisms

Gl o)t U5 —— Fif a0 .

Proof. We proceed by induction on k. For & = 0 we have the
unique map g, E° = {0} - F}, = {(1)}, which has properties (a), (b)
because the sets considered there are empty.

Let us assume that the statement is true for © — 1. Then we
define a mapping

9 By —— Fipy s,
(Gr(@y ooy @), — 1) if x,=-1,

G (@) = {(gres(®yy ==+, Tpr)y Ti) if —1<e, <1,
(=gpo(—2), -+, —2-), 1) if 2, =1,

for 2 = (2, -+-, 2,)e F,,. At the end of proof we are going to
extend ¢, to the desired homeomorphism g,. Before we do this we
want to show some properties of ¢,.

(i) We show that ¢, is a homeomorphism. It is easy to see
that F, is the union of the three closed sets

G*: = {xe E* x, = =1},
G = {x € Ek; (@y, = -, x/a~1) € Fk—1,1} ’
and that F,,,, is the union of three closed sets

H*: = {2/ eEkH; (yly ) yk) eFI;T:h Yprr = il} ’
H': = {yGEH‘; (yu Tty y:’c) € Fla.z} .

Now, g7: = gile-: G~ —> H~ is a homeomorphism, by the assumption
that g,_,: E* ' — Ff, is a homeomorphism. Taking into account F;, =
—F5,, we obtain by the same argument that ¢i: = §,|e+: G"— H”
is a homeomorphism. If zeG' is such that x, = 1, then from
@y oo+, ) e F,_,, we obtain §,(x) = (—g, (—2y, =+, —x,_), 1) =
(gps(®y, =+, 2,_,), 1) by property (a) of Theorem 1.1. This shows that
for all e G’ we have §.(x) = (gr_s(s, -+, Z4_1), Zp). S0 we obtain
that ¢i: = §,|s: G’ — H' is a homeomorphism, by the assumption that
Gi-ilre_ .t Fieiy — Fu, is 2 homeomorphism (property (b) of Theorem
1.1).

From what we have shown it follows that ¢, is continuous. To
show that ¢, is a homeomorphism it suffices to show the equalities

! Concerning the results of this section cf. “Added in proof, 1.”
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(G- NG =H NnH,
9(G*NG)=H*NH,
because giF: G* — H* and g): G' — H' are homeomorphisms. The first

equality follows from G- NG' = @, H N H* = . To show the
remaining two equalities we note

G* N G = {CL‘EE"; (xu %y xk—1)€Fk—1,1y Ly, = il} ’
H= n H = {yeEkH; (yu ) yk)eFk,zy Ypir = il} .

If xeF,, yeFy, di(x) =y, then:

xeGENG

— (xu tt wk—l) € Fk—1,1y Xy = +1

mmand (yu ct Yy yk) = gk-—l<xl? ) xk—l) € Fk,z’ Yir1 = Ty = +1
= yecH*NH .

(ii) For all z€ F,, we have §,(—z) = —g,(x). This follows
directly from the definition of §, if « is such that z, = =1. If —1<
z, < 1 then (xu cT Ty xk—1)eFk—1,u and (gk—l(_xly M) xk—l)’ "xk) =
—(gp_i(y, ++-, x4_,), x;,) follows from (a) of Theorem 1.1.

(iii) For all n e N, ¢, induces homeomorphisms

Gelri): Bt — Fifinan

In view of (i) and (ii), it is sufficient to show §.(F'},) = Fiii e SO
let xe F,, ye Fi,,, ¥ = §,(x): then:
xeFi,
Q) (@, -, 2_)eFi,., and 2z, =1,
m {or 2) (@, -+, eFi,, and 2, <1
i(l) Yoy *o Ue) = — G~y +++, —%) € Fr and ¢y, =1,
or (2) (Yu =** Yu) = Gea(®yy *++, Tue) € Filin and 9,0, <1
—yeFiiun..

Finally we extend ¢, to a homeomorphism g,: E* — Fj,,;. Denote
by ¥ the point (1,1, ---,1)e E***, For e F,,0 =<t <1 we define

gi(tx): = tgu(x) + (L — )y .

From §.«)¢ F,,,, we obtain immediately g¢,(tx)e Fi.,,. For ze E*,
the extension g, can also be written as

P . . 2 _ .
o lalli) = el o) + @ = liallog i 20,

Y if z=0,

9:(z) =
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which shows that ¢, is continuous. If ye Fi..,, ¥y # ¥, then

2= Ly — gll.ge (7 + 2 L= L) e B+,
2 ly — ¥l
and ¢g.(z) = --- = y. This shows that g, is surjective. In fact it is
easily calculated that the expression obtained above yields the inverse

iy -7l (7 -2 L= ) i yeFi, v+,

ly — ¥Vl

0 if y=1%

g:'(y) =

of ¢,. This shows that g, is bijective as well as that g;' is continuous.

So we have obtained a homeomorphism g,: E* — F},,.. The pro-
perties of ¢, proved in (ii), (ili) show that g, satisfies (a), (b) of
Theorem 1.1.

COROLLARY 1.2. For n,keN,1 <n <k, there exists a homeo-
Mmorphism fi, .2 Fi i — Fr, which also satisfies f..(—x) = —fi ()
for all e Fy_, ..

Proof. From Theorem 1.1 we obtain that

Slont = Ge-1°01-2°"* " °Gten2°Trnts| 14—p- 11

is the desired homeomorphism.

Let us note that, for our application in §2, it would have been
sufficient to show that the mappings considered in Theorem 1.1 and
Corollary 1.2 are continuous.

2. Alternating elements of subspaces of R* and C(J).

THEOREM 2.1. Let ke N. Let LCR* be a linear subspace,
n: =dim L(Zk). Then there exists x = (x,, - -+, %,) € L with the follow-
ing properties: |[x|l, <1, and there exist 1 <7, < J, < +-- < 1.5k
such that x;, = (—=1)" for all » =1, ---, n.

Proof.* With F,, from §1, one has to show that LNF,, #+ &.
There exist linear functionals I;: R*— R, j =1, ---, k — n, such that
L =N5r1%0). Then l:=(l, -+, li—w)| s, ¢ Frn — R*™™ is continuous,
and I(—z) = —l(x)(xe F,,,) by the linearity of I. From Corollary
1.2 we obtain that lof,,: F,_,.,, — R* ™ is a continuous mapping
satisfying lof;, . (—x) = —lof, . (x) forall xe F\_,,,,. Now F,_,, 6 =

2 A simplified proof is sketched in “Added in proof, 1.”
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oE* "+ where E* " = {x € R* "% ||z||., < 1} is open, bounded, sym-
metric, and 0e E**, and therefore Borsuk’s theorem implies that
there exists x¢ F_,,,, such that lof, . (x) =0 ([9, Corollary 3.29],
[2, §10, Satz 3]). This shows f,.(x)e LN F,, #* @.

REMARK 2.2. One might be tempted to think that Theorem 2.1
is a special case of a more general statement which would say that,
under the assumptions of Theorem 2.1, for any mn-tuple y =
Yy, *++, Yu) €{—1, 1}* there exist xc L, ||z]. <1, and 1 £ j, < -+ <
Jn < k such that z;, = y(r =1, ---, n). Such a statement, however,
is not true, as the following example shows: Let L c R® be the 2-
dimensional space spanned by (1, 1, —2), (1, —2,1). Then there is no

zel,||z]l. <1, which has +1 in two coordinatesf

In order to state the next theorem we need a definition. By a
compact totally ordered set we understand a totally ordered set J =
(J, £) which is compact in the order topology (cf. [4, Exercise (6.96)]).
By C(J) we denote the Banach space of continuous real-valued func-
tions, endowed with the supremum norm.

THEOREM 2.3. Let J be a compact totally ordered set. Let
LcC(J) be a linear subspace, dim L = n(e N,). Then there exists
f e L with the following properties: || f|l.. <1, and there exist t, - -,
t.ed, b, <t,< ---<t,, such that f(t.) = (=17 for all »r =1, ---, n.

Proof. Without restriction we may assume dim L = n. There
exist s, -+, s,€J such that dim {(f(s), ---, f(s.); f €L} =n. From
dim L = n it follows that for each x € R" there exists a unique f e L
with f(s;) = a;(j =1, ---, n), that the mapping R"sx — f ¢ C(J) thus
defined is linear and continuous, and therefore

C:=sup{||fll; [f(s)] =1 forall j=1,--+,n}< .

We define the system % : = (Fc J; F finite, {s,, ---, s,} € F}, which
is directed by inclusion. For each Fe & F ={¢, ---, t,},t, < t, <
e < ty,, the set {(f(t), -, f(t)); feL} is then a linear subspace
of R*, of dimension n. By Theorem 2.1 there exists f"e L: | f7(t;)| <
1(7 =1, ---, k), and there exist 1 < j, < --- < j, =k such that
Fot:) = (=1r(r=1, -=-, ). Wedefinet”=(t/, -, t£): = (ts, -+, t,),
zps = (f7, t). Then (zp)res isanetin L x {(¢, «+-,t)e€J™ t, < t, <
<+ = t,}. Moreover ||f”||. < C since {s, ---,s,}CF and |f7(t)| <1
for all te F. Now By ={feL; | fl|l. £C} is compact in C(J) (and
therefore equicontiuous), and {(¢, «--, t,)eJ"t, <t, < --- <t} is
compact. This implies that the net (z,),.- has a cluster point
(f: (tn ] tn))r feBG, (tu ) tn)eJny t,= o £ 4.
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Let ¢ > 0. Since B, is equicontinuous and J is compact we obtain
an open covering (U, ---, Uy,)) of J such that for all 1€ {1, ---, m(e)},
t,t'e U;, fe B, we have | f(t) — f(t")] £e. Forr=1, ---, n we choose
i, such that ¢,e U;. LetteJ. Since (f, (¢, ---, t,)) is a cluster point
of (2;)rc., there exists Fe &, te F, such that ||f — fF|l. < e, tle
Ui(r =1, ---,n). This implies

[ f(t) — (=17 = |f®) — frED)]
Sf@) — @D + 1@ — f7@0] = 2¢,
fO =10 — FFOI+ 1 Olse+1.
Since ¢ > 0 and teJ were arbitrary, we obtain f(t,) = (—1)"(r =1,

«-.,m), and || f|l. <1. Finally, f(t,) # f(t,..) together with ¢, < ¢,
implies ¢, < t,.,(r =1, «--, m — 1).

3. (P1) implies (P2). Let the function %:[0, ) — [0, =) be a
modulus of continuity, i.e., h is nondecreasing, and h(0) =
lim,_, h(s) = 0. We denote

Lip,[0, 1]: = {f: [0, 1] — R; f continuous, there exists C=0
such that | f(¢) — f(")| < Ch(|t — t'|) for all ¢, ¢ €0, 1]} .

Lip,[0, 1], endowed with the norm || fl},: = || fll. + | fls, Where
[l =inf{C = 0; [ f(t) — f(t) = Ch(t —t']) for all ¢, ¢ <[0,1]},

is a Banach space.

For X: = Lip,[0, 1], Y: = C|[0, 1], the Arzela-Ascoli theorem
implies that (P1) is satisfied. We are going to show that (P2) is also
satisfied, and that this implies (P1) = (P2) in general.

THEOREM 3.1. Let h be a modulus of continuity. Let X: =
Lip, [0, 1], Y: = C[0, 1]. Then (P2) is satisfied, more precisely

1
%._.

Y(n) =1+ 2h( 1>_l (neN,n=2)

(where h(l/(n — 1))™ = oo if h(l/(n — 1)) = 0).

Proof. Let L cLip,|0, 1] be a subspace of dimension = n = 2.
By Theorem 2.3 there exist felL, ||fll.=105¢ < -+ <, <1
such that f(¢,) =(—L"(r =1, ---,n). It follows that there exists
ref{2, «--, n} such that ¢, —¢t,_, £ 1/(n — 1). This implies

iz f 4 L) = £ 1y
1z il + e =Tl 2 1 a2 0)
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N, =sup {(Ifll; fe L, Ifll. =Bz 1+2m(—10),
n—1
therefore +(n) =1 + 2h(1/n — 1))'. (If A(1/(n — 1)) =0, then Lip,[0, 1]
consists of the constant functions, dim Lip, [0, 1] = 1, ¥(n) = .)

THEOREM 3.2. (Pl) implies (P2).

Proof.* Let (X, Y) satisfy (Pl). Without restriction we may
assume that X is dense in Y, and that X and Y are Banach spaces
over R. Since the unit ball B of X is relatively compact in ¥ we
conclude that Y is separable. (B! is a compact metric space, therefore
separable; X = U,.xnnB is dense in Y.) Now a theorem of Banach
and Mazur states that the separable Banach space Y is norm isomorphie
to a closed subspace of C[0,1] ([1, Ch. XI, §8, Théoréme 9], cf. [5,
§21.3, (6)]). So we may assume without restriction that Y is a closed
subspace of C[0, 1].

Now the unit ball B of X is relatively compact in C[0, 1], there-
fore uniformly equicontinuous. This implies that k: [0, o) — [0, o),

h(s): = sup{| f(¢&) — f)]; ¢, ¢ [0, 1], [t — | =s, fe B},

is a modulus of continuity. By the definition of %, we have |f|, <1
for all feB. Let N be the norm of the injection id: (X, ||-|x) —
(Y, [[-lly). Then [|fllh=I[flle +[flh=Nlfllx +1=N+1LfeB)
shows that the injection id: (X, || - ||x)— Lip,[0, 1] is continuous. Now
the desired statement follows from Theorem 3.1 together with Lemma

3.3 proved subsequently.

LEMMA 3.3. Let (X, Y) satisfy (P2). Let XC X be a Banach
space, with continuous embedding X => X. Then (X, Y) satisfies (P2).
If N is the norm of the embedding X< X, then (n; X, ¥) =
N-wp(n; X, V), p(K; X, Y) £ o(N-K; X, Y).

Proof. Let L X be a subspace of dimension = n. Then L C X,
and

y(n; X, Y) < sup {||ofly; xe L, |||y < 1}
< Nsup{||z|[s;xe L, ||z, <1}.

This implies (n; X, Y) = N(n; X, Y), and therefore (P2) for
(X, Y). )
If K=0, and L C X is a linear subspace with

llzllx = Kl|2[ly(xe L),

3 An alternative proof is sketched in “Added in proof, 2.”
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then||z||y < N||z||3 < NK||z||y(x € L)shows that dim L < p(N-K; X,Y).
This proves the inequality for o.

ExaMPLE 3.4. Let 0<a =<1, h(s): =s%(s=0). Then X: =
Lip,, [0, 1] is just the space of Holder continuous functions, with
Holder exponent a. Let Y: = C[0,1]. (This is a special case of a
situation considered in [10, VI. 8].) We are going to calculate

gn; ) =1+ 2(n — 1) (meN)

for this case. From Theorem 3.1 we obtain “=" for n=2. To
obtain “<” we consider

L. = { feCl0,1]; f affine linear on all intervals [ e —1 , ——7’—:‘ ,
' n—1 n—1

z’=1,---,n~1}.

Then L cLip, [0,1], dim L =n. If feL,| f|l. =1, then it is easy
to show |f(t) — f(t")| < 2(n — L)*[t — t'|*(¢, t' €0, 1]), and therefore
flh, =1+ 2(n —1)*. This implies “<”.

Y(1) =1 is true in the situation of Theorem 8.1: “=” follows
from || f|l.. = || f1l.(f € Lip, [0, 1]), and “ <" is obtained by considering
the constant functions.

4. Uniformly closed spaces of functions of bounded variation.
For a compact totally ordered set J, we denote by CBV(J) the space
of continuous functions of bounded variation,

CBV(J) ={f:J— R; f continuous, |f|, < o},

where
1
[ fly: = sup{jEzllf(tj) — f@i) sty o e, < -0 S tz} .

CBV(J), endowed with the norm || f||,: = || fll. + |fls, is a Banach
space.

THEOREM 4.1. Let J be a compact totally ordered set, X: =
CBV(J), Y: = C(J). Then (X, Y) satisfies (P2); more precisely (n) =
2n — 1(n e N).*

Proof. Let L cCBV(J) be a linear subspace of dimension = n.
By Theorem 2.3 there exist fe L, ||fll.=1,¢, «++, t,€J, t, < »++ < iy,
such that f(¢,) = (—=1)"(r =1, ---,n). This implies || fl|ly = || f|l. +
|fly=1+2n—1), N,=1+2(n—1). This proves y(n) = 1+ 2(n —1).

4 cf. “Added in proof, 3.”
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REMARK 4.2. (a) Theorem 4.1 implies that (CBV(J), C(J)) satisfies
(P8). For J=[0, 1], this statement is due to Mokobodzki and Rogalski
[6, Théoréme 9]; cf. also [7, Théoréme 16]. A more general statement
has been obtained by Pajor (cf. [7, Théoréme 22]).

(b) For 1 < p =<  we consider Y: = C[0, 1], X: = W}(0, 1) (the
Sobolev space of real, absolutely continuous functions whose derivative
is in L,0, 1)). As norm on Wy(0,1) we take || f|l.,: = || flle + | 1l5-
For p > 1, property (P1l) is satisfied (cf. [6, proof of Proposition 1]).
In [6], [7] it is shown that, for p > 1, the function ¢(K; p): =
o(K; W0, 1), C[0, 1]) is finite for all K < oo, but no explicit upper
bound was obtained. Also the problem was posed if lim,_, ,., p(K; D)
is finite. ([6, Probléme 6], [7, Probléme 7]; let us note that our
function o(K; p) is slightly different from @(K, p) considered in [6],
[7], but it is easy to see that the formulations of the problem are
equivalent.)

From |f|, = |l < | ll.(f € WX0, 1)), which implies that the
embeddings W30, 1) = W0, 1)=CBV]0, 1] have norm <1, and Lemma
3.3 we obtain o(K; p) £ p(K; 1) = p(K; CBV]0, 1], C[0, 1]). To calculate
the last quantity, let L c CBV[0, 1] be a linear subspace. If K is
a bound for the mapping id: (L, ||-ll.) — (L, ||+ llv), and n = dim L,
then Theorem 4.1 implies K=2n — 1, n <[(K+ 1) 2(=max{neN;n <
(K + 1)/2}). This shows @o(K; p) < [(K + 1)/2]. The subspace L C
W0, 1), defined in Example 3.4, is an n-dimensional subspace for
which N, = 2n — 1; thus we obtain

P(K; D) =[K;r 1]-

(Cf. [7, example at the end of §III].) This solves the problem men-
tioned above. At the same time we have calculated ¢(K; 1) ([6,
Probléme 11], [7, Probléme 19]).

5. Examples.

ExXAMPLE 5.1. Let I be an index set. Let 1< p < ¢ o0, X =
I,(I), Y: =1,(I). (Here the elements of [,(I) are taken K-valued,
K =R or C.) If I is infinite, then (P1) is not satisfied. It follows
from [3, Théoréme 2, (2)] that (P3) is satisfied. We are going to
show that (P2) is also satisfied. In order to do this and to calculate
(i p, @): = P(n; 1(I), 1,(I)) we proof an estimate.

LEMMA 5.2. Let LCcO(I) be a subspace with dim L = n(e N,).
Then there exists x€ L, ||x|l, =1, card{ce [; [2(¢)| = 1} = n.

Proof. (i) If Jc I, cardJ < m, then there exists 0 == y e L such
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that y(¢) =0 for all ceJ. Proof: If we define the linear forms
fo L — K, f(x): = x(¢) (where z = (2(¢); c€ 1)), then .., f7*(0) is a
subspace of L, of codimension < card J < #. This shows that
N.cs f7'(0) cannot be all of L. .

(ii) Let zel, ||z|l. =1, card{¢tel; |x(¢)] =1} < n — 1. Then
thereexists Ze L, ||Z]|.. =1, card{ce I; |Z(¢)| = 1} > card{ce I; |x(c)| = 1}.
Proof: From (i) we obtain 0 = y € L, y(¢) = 0 for all ce I with 2(¢) = 1.
It is easy to see that there exists ¢ > 0 such that ||z + ty|l. =1,
card{¢ce; |x(¢) + ty(t)| =1} = card {ce [; |x(¢)| =1} + 1. (Take t: =
inf {s = 0; ||z + sy||. > 1}, and use 2(¢) — 0, y(¢) — 0 for “c— ",

(iii) From (ii) the desired statement follows by induction.

There is a slight similarity between Lemma 5.2 and Theorem 2.3.
Indeed, for I = N, we may consider the compact totally ordered set
J = NU{c} and obtain the statement of Lemma 5.2 from Theorem
2.3.

ESTIMATE 5.3. Let 1 < p < o; let LCl,(I) be a subspace,
dimL = n. Then sup{||x|,; zeL, ||z|. <1} = n'2.

Proof. For the element x € L obtained from Lemma 5.2 we have
Hall. =1, 2], = Cher |2(0)|7)V? = n¥2.

Continuation of Example 5.1. We are going to show

pvP-we for neN, with n Zcard!,
¥(n; p, q) = .
o for neN, with n >ecard !,

thereby establishing (P2).

Let Lcl,(I) be a subspace, dim L = n (then necessarily n <
card I), and let N, be the norm of the mapping id: (L, || - ||,) — (I, || + |I,)-
For x e L, we then have

2l < ll2llf llells” = NElj@|7le]lE,
lzll, = Nillzll, = NE“ ™ [[z|l.. ,

and therefore sup{||z|l,; x € L, ||z||. <1} < NY“?», Now Estimate 5.3
implies n'/? < Ny« pW»~W0 < N, which shows y(n) = nv/?~W0,

To show equality, we take JC I, card J = n, and consider L: =
{xe K% x(t) =0 for all c¢J}. If xelL, then Holder’s inequality
implies ||z]|, £ n¥/?~"?||z]||,, which shows N, < nW/» =2,

ExampLE 5.4. Let ¢ be a probability measure on a measure
space. Letl < 9 < o, X: = L (), Y: = L,(¢). Except if ¢ is atomie,
(P1) is not satisfied. By [3, Théoréme 1], (X, Y) satisfies (P3). From
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a different proof for this fact, given in [8, Theorew: 5.2], we obtain
that also (P2) is satisfied: If LcL,.(¢), dimL =n, and N, =
sup {l| fllo; f €L, || fll, =< 1}, then the proof in [8, loc. cit.] shows

N,=zn" for p=2, N,=zn" for 1=p<£2.
This implies
y(n; p) = n’? for p=2, Yn;p)=n” for 1=p=s2.

It seems to the author that the best bound should be (n; p) = n'?
for all pe[l, ). This is correct for p = 2: Taking g = Lebesgue
measure on [0, 1], and considering

L: ={f:[0,1]———+K;f constant on (j;l’_i_>

for all j=1,-",’nk,

one obtains +(n; p) < n'? for this special case. The above distinction
for p = 2, p < 2 comes from the fact that the bound is first calculated
for p = 2.

REMARK 5.5. We presented Examples 5.1 and 5.4 because for
these Examples (P1) is not satisfied but (P3) is satisfied, and moreover
even (P2) is satisfied. This raises the question for an example
satisfying (P3) but not (P2), or else whether it can be proved that
(P2) and (P3) are equivalent.” Also, for noncountable index set I,
Example 5.1 provides an example of nonseparable spaces satisfying
(P2).

Added in proof. 1. In this remark we sketch a simplified
version of the proof of Theorem 2.1.

From the proof of Theorem 2.1 it is clear that for this proof
it would be sufficient to know that for the set F, the following
Borsuk’s tpye theorem is valid.

THEOREM A.l. Let k,nmeN, n<k. Let I:F,,— R be con-
tinuous and odd (i.e., l(—z) = —l(x)). Then there exists xeF,,
such that l(x) = O.

The whole object of §1 in our context is to prove the existence
of the homeomorphism f,: Fi_n11, — F}, of Corollary 1.2; this ho-
meomorphism is used in the proof of Theorem 2.1 to obtain implicitly

5 ef. “Added in proof, 4.”
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the statement of Theorem A.l. We are going to indicate a simpler
proof of Theorem A.l.

LEMMA A.2. For k,me N, 1=n=<k-—1, there exists h,,,: F,,— R,
continuous and odd, such that hiL(0) N F,, = Fi .-

Proof. Define h,,: F,,— R by

dist (%, Fy,ns1) if xe F,,

by (@) =
() —dist (=, F,,.,) if xeF5, .

Standard arguments show that %,, can be extended to a continuous
and odd mapping A, ,: F,, — R, which then has the desired properties.

Proof of Theorem A.l. Extend ! to a continuous and odd
mapping {: F.,— R*". Apply Borsuk’s theorem ([9, Corollary
3.29], [2, §10, Satz 3]) to the mapping (f, Bornss Pmsy =+ %5 hp1): oy —
R, to obtain z € F, , with (I, by s, + -+, he)@)=0. Now O=h, ,(z)=
Byo(®) =+ + = hy,_(x) imply xe F,,,, and so l(z) = I(z) = O.

The author is indebted to N. Rogler for a discussion as a con-
sequence of which he found this proof of Theorem A.l.

2. An alternative (and very natural) proof of Theorem 3.2 (P1) =
(P2)) was communicated by R. Tandler. His proof exploits directly
the fact that the 4K-ball B,, in X is precompact in Y. The number
of translates of the unit ball in Y which is needed to cover B, is
shown to be an estimate for ¢(K; X, Y).

3. In §4 we were restricted to the case of real valued functions
because Theorem 2.3 is valid only for real valued functions. On the
other hand, if E is a finite dimensional (real or complex) Banach
space, then (P3) is known for (X: = CBV(J; K), Y: = C(J; E)) [10,
Satz IV.4]. In this remark we want to indicate how to carry over
Theorem 4.1 to the case of R™-valued functions. (This also covers
the case of C™-valued functions.)

We consider R™ endowed with the norm ||-||... Let I:={1, ---, m},
J a totally ordered compact set; then I x J, with lexicographical
order, is a totally ordered compact set. Define j:C(J; R™)S f
FeCIxJ) by FG,t): =ft) (Gel ted). If LcCBV(J:R™ is a
subspace of dimension =n, then L: = j(L)CCBV(IxJ) has dimension
=n, and by Theorem 2.3 t}iere exists fe L such that Uf][w =1,|fly
=2(n—1). Then || fll.=Ifll.=1, and || flly=1+m7'(| f |y —2(m — 1))
=2(n/m)—1. For X=CBV(J; R™), Y=C(J: R™), this implies yr(n: X,Y)
=2(n/m) — 1, and therefore (P2).
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4. In this remark we indicate an example satisfying (P3) but
not (P2); c¢f. Remark 5.5.

For me N, let l,(m) be R™, with norm
denote the l,-sum of (l,(m); me N) by

.. For p=1,2, we

Sumy: = fo = @i zwelm), ol = (3 llzalr)” < ) .

Then (X: = > Il(m), Y: = D}l (m)) satisfies (P3) but not (P2):

Obviously +(n; X, Y) =1 for all ne N, therefore (P2) is not
satisfied.

Let Lc X be a subspace which is closed in Y. It is easy to see
that Y is reflexive, and therefore so is L. The norms x and
are equivalent on L, by the closed graph theorem. Assume that L
is not finite dimensional. Since L is also closed in X, and X is [,(N),
it would follow that L contains I,(N) [1, XII, §2, Théoréme 1], so
that L could not be reflexive. This yields a contradiction.
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