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THE OBSTRUCTION OF THE FORMAL MODULI SPACE
IN THE NEGATIVELY GRADED CASE

MARIE A. VITULLI

Consider a semigroup ring Bz=Fk[t*/h c H] where ¢ is a
transcendental over an algebraically closed field % of chara-
cteristic 0. Let T'(B) denote T *B/k, B) where T Bk, —)
is the upper cotangent functor of Lichtenbaum and Schles-
singer. Then T(B) is a graded k-vector space of finite
dimension and B is said to be negatively graded if T*(B),=
0. It is known that a versal deformation T/S of B/k exists
in the sense of Schlessinger, where (S,ms) is a complete
noetherian local k-algebra. We say that the formal moduli
space is unobstructed if S is a regular local ring. In this
paper we restrict our attention to the negatively graded
semigroup rings. In this case we compute the dimension of
T*B) and are thus able to determine which formal moduli
spaces are unobstructed.

Let U denote the (open) subset of Speec (S) consisting of all
points with smooth fibres. In a previous paper [5] we computed
the dimension of U. We always have inequalities:

dim U < (Krull) dim S < [mg/ms: ] -

Consequently S is a regular local ring if and only if dim U = [mg/
mi: k] = [TY(B): k]. In the general case the difference [T*(B): k] —
dim U gives some indication of the extent of the obstruction.

I would like to express my gratitude to Dock S. Rim for sti-
mulating my interest in the subject and for his valuable suggestions
and advice.

2. Preliminaries and notation.

(2.1) Let H be a subsemigroup of the additive subgroup N of
nonnegative integers. H is called a numerical semigroup if the
greatest common divisior of the elements of H is 1, so that only
finitely many positive integers are missing from H. Such elements
are called the gaps of H and the number of gaps is called the
genus of H, denoted by g(H). The least positive integer ¢ such
that ¢ + NcC H is called the conductor of H, denoted by c¢(H). The
least positive integer m in H is called the multiplicity of H and
is denoted by m(H). Throughout this paper H will denote a
numerical semigroup, & an algebraically closed field of characteristic
0.
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Let By denote the Fk-subalgebra of the polynomial ring k[t]
generated by the monomials ¢*, he H. By is called the semigroup
ring of H.

When no possible confusion can arise we simply write B for
By, g for g(H), ¢ for ¢(H) and m for m(H).

(2.2) We now construct a generating set called the standard
basis for H, denoted S,. Let m =m(H). For 0Z7=<m-—1
choose a; to be the least positive integer in H such that a; = j
(mod m).

Forl1<j<k<m—1, set

— ik
fin= XX, — XJUP X, 50

where 0 < r(J, k) <=m — 1 and a; + a, = e(J, B)m + a,;n. Set I =
I; equal to the ideal of P=k[X,, ---, X, _,] generated by {f; ihcici<m
where P is a polynomial algebra over k.

PROPOSITION 2.3. If we define a k-algebra map @: k[X,, +++, X,,_,]—
B by pX;) =1t for 0j<m—1 then 0>I—-P—>B—0 1s
exact. Furthermore, if we assign the weight a; to X; in P, then
® is a homomorphism (of degree 0) of graded k-algebras and I is
homogeneous.

We will not attempt to give a precise definition of T* here.
For definition and details of T°, T" one can consult [1]; for the full
cohomological properties one should consult Rim’s article “Formal
Deformation Theory” [4] (note that our T plays the role of Rim’s
D%). We state here some properties of T'* that will facilitate our
computations. For proofs of these assertions see [4] and [5].

PROPOSITION 2.4. Let P be a polynomial algebra over R and
let 0 -I—P—A—0 be exact. Then for any A-module M,

T(A|R, M) = Derz(A, M),
TY(A|R, M) = Coker (Dery(P, M) — Hom (I/1?, M))
= the set of isomorphism classes of R-algebra
extensions of A by M.

(2.5) In our case, if B = B, then T'(B) = TB|k, B) becomes
a graded k-vector space via the exact sequence of (2.3). We then
have

"B)= @& T'B),

—<p<Loo

@ Coker (Der, (P, B), — Homy(I/I? B),) ,

—o<p<o

N
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so that

T'(B), = the set of isomorphism classes of (degree 0)
graded k-algebra extensions of B by B(p)

where B(p) is the graded k-module obtained from B by shifting the
degree by p;i.e., B(D), = B,,,.

Those monomial curves B, for which T'(H), = T'(By),. = 0 are
the so called mnegatively graded semigroup rings of Pinkham [3].
In [5] we completely classified these and described a method for
computing T'(H),. We now recall these results and set up some
notation which will be used in § 3.

(2.6) Let S; ={a,=m,a, +--, a,_,} denote the standard basis
for H (as in 2.2). For each integer p let G, = {a e Syla + pe H}
and let R, = {f;.<€Iyla; + a, + p¢ H}. By abuse of notation asso-
ciate with each f;, of R, a vector f;, = (fis -, fi%w") of k™ where
the Ith component is given by

fie=—e(, k) if 1=0 and »(j, k) =0,
= —(e(, k) + 1) if 1 =0=120,k),
= -1 if L=k =0,
= 2 ifl=5=kF,
= 1 ifl=gjorl=Fkand j#%k,
= 0 otherwise .

Again by abuse, let R, denote the vector subspace of k™ spann-
ed by those f;, in B,. We note that if a,¢ G, then f}, =0 for all
fir€R,. Thus if G, # @, dim R, < G, — 1.

PROPOSITION 2.7. In the notation above,

dim T, = dim T'(H), = max {0, 4G, — dim R, — 1} .

(2.8) We say that H is an ordinary semigroup of multiplicity
m, denoted by H,, if H={0,m,m + 1, m + 2, ---}, We say that
H is hyperordinary if H = mN + H, where H, is ordinary and
0<m<m.

THEOREM 2.9. H is negatively graded if and only if H is of
one of the following types:

(i) H is ordinary;

(ii) H s hyperordinary;

(iil) Ewxcluding the above two cases, H is mnegatively graded of
multiplicity m if and only if there exists precisely one gap m + 1
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between m and 2m; if © =1 then 2m + 1¢ H (or H would be hyper-
ordinary).
If 2= i< m — 1 then

T . .
H,,={10,mm-+1 - m+im+i+1,m+1i+2 -},
If i =1 we have

T
H,,={0,m m-+2 «-,2m,2m +1,2m + 2, 2m + 3, ---} .

3. A Dimension formula for T'(H). We now compute the
dimension of the tangent space T'(H) for the negatively graded
semigroup rings. We first deal with the ordinary and hyperordinary
cases and finally with those of the third type.

For these semigroups T'(H) = T'(H_.). Recall the notation of
(2.6) and let a = a(H) denote the least positive integer in H —
m(H)N, let ¢ =c¢(H). Then p =< 2a — ¢ entails R_, = @ since for
fis€Il we have a; +a, —p=2a —p=c¢ so that a; + a, — pc H.
Thus by Proposition 2.7 dim T(H)_, = max {0, #G_,—1}.

Throughout these computations [r] = the greatest integer =r;
{r} = the least integer = r;d,, denotes the Kronecker delta, i.e.,
0,, =1 1if » = s and 0 otherwise. Once a semigroup H is fixed we
let T,=T'(H),. By dim( ) we mean dimension as a k-vector
space.

Now assume H is ordinary or hyperordinary so that H = mN -+
{om +4,pm +¢+1,pm + 1+ 2,---} where p=1land 1 <1< m—
1. Then a(H) = pm + 1.

ProposiTION 3.1. Let H=mN + {pm + 1, pm + 2, ---}. Then

dm7 ,=1-1 flslsm—1,
=m — 2 ifl=morm+1=1l=pm+ 2
and mkl,
=m — 1 ifm+121=pm+ 2 and mll,
=@+ Dm—1+ 0,5 if P +3=1=(+ m,
= O,y if 0+ 2m=1<@2p+ Lm
and ml|l,
=0 otherwise .
Consequently,

dim T H)=p—-Dm -1+ mm —1) -1 if m=3,
= 2p if m=2.

Proof. Note that 2a(H) — ¢(H) = pm + 2 so that for 1 <1 <
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pm + 2 we have dim T_, = #G_;, — 1.

Suppose I >+ 1m and set g =1— [I/m]m + 6, 1/mjmm. If
g=1 then R, 2{f,, -, fims}; f ¢g=2=m—1 then R ,2
{foo = fumes Sooh; if 3<q=<m then R_, 2 {fiy, -+, fro-v *** frim—ns
Jfaa—}. Finally if ¢ =2 = m we see that B_, = @ for 2(p + 2)< I
2(2p + 1) while R_; = {f,,} for I > 2(@2p + 1). Our assertions follow.

Then assume pm +3 =1 (p+ 1)m and set ¢g=1—pm so
that G_, =Sy —{a,} if ¢g<m while G_,,yn =Sz Then R_, =
(Finlas + @ < pm + a) = {f5uld + kb < g — 1),

Set R, = {f.1, ***, fues)- Then R, generates R_, for if j+k=
q—1 and j=2 we have (as vectors) fi,= fujier + *°* + foi—
(fig—s + *++ + fu). Since rank R’ , = q¢ — 2 we have dim T_, = (p +
1)m -1+ 61,(1’+1)m'

Summing up the various components we see that

dim TYH) = (p — 1)(m — 1 + m(m — 1) — 1 if m =3,

=2p if m=2.
Now suppose H = mN + {pm + i, pm + ¢ + 1, ---} where 2 <
1<m—1. Then ¢(H) =a(H) =pm + 1 =a,., We treat the cases

2t < m and 2¢ > m separately but as the proofs are analagous we
only give the former.

ProposITION 8.2. Suppose that H = mN + {pm + 2, pm + ¢ +
+ 1, .-} where 2 <1< mj2. Then

dim T'(H)_; =1 if 1l<i—-1,
=1-1 if iflsm—1,
=1-2 of m—i+l1=l<=m,
=m-—2 if m+1=Z=I<pm+1 and
mil,
=m—1 if m+1=I<pm+1 and
mll,
= m—2(l—pm — 1) =01 pmesras W PMFI+HISI=pm
+21—1,
= m—2(l—pm—1)+140, povm o PMT2=I<pm
+5l,(p+1)m+1 +2":+1 ’
= m—min2i+1, m—1)—1 if l=pm+2i+2,
+6l:(?+1)m+6i,2
= (p+L)m—1+0; prim if pm+21+3=<1
s=(@+bHm,

=0 otherwise .
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Consequently,
dim TY(H) = (p — L)(m — 1* + m(m — 1) + i(t — 2) + 0,,, -

Proof. Now2a(H) — c¢(H) =a(H) =pm + tsoforl=l<pm + 1
we have dim T_, = #G_, — 1.

Forom+1+ 121 (p+1m+1—1 we set q=1—[l/m]m+
M+0;,psyme Then G_, =Sy — {a,} if ¢g#m and G_,in = Sg. We
note that R_, = {f;.la; + ¢, < a; + 1 and j + k # g(mod m)}. Then
B_pmrirn = {fii} entails dim T_ 0140, = m — 3.

Suppose that pm +1+2=<1<p9m +2i—1. Then R_, =
{(fisli +k<i+q—1 and k= j =i} and is generated by R, =
{fiis =+ Fiaomv firvitns =+ fivre—s}. For suppose f;,eR,— R, so
that 7 =27+2,k<q¢q—8. Then 1 +2<j+k—1=<qg—1 and as
vectors fj, = dj. — 45 — 4, where 4, = 33250 (fionn — firne)-

As for independence, we observe that fi.; <<, fimes fizritn ** s
Sfi+1,2i-1 are independent. This is more readily seen by substituting
the vectors

Ve = fiprs = firnr £ 1+ 1=Sr =20 —2
and

Voics = foi + frge — fivnmims if 20 <m,
= —fina if 20 =m

for the last 7 — 1 vectors.

Thus dimR_, =2(l —pm — i) — 2 and dim 7T, = m — 2(l — pm—
1) for pm +1+2=51< pm + 2¢ — 1.

We wish to consider those integers ! between pm + 27 and
(p+1)m+ 17— 1.

Suppose pm + 201l <pm+2i+1 and let ¢ =1 — pm. Then

L= {fun o0 Fiagmo 00y Fominaerimens Sivnivn =0 Sirta—o) generates

R_, as above and has rank 2(¢ — 1) — 3 — 0., ps1ymssr

Letl=pm+2i+2and set g =2t +2. If 7 =2 so that ¢=6
then R, = {f.., Sow fes) i m=4 and R, = {fos fos fou - o
min (5, m — 1), f,,} if m = 5. In either case rank R_, = $#R_, — 1 as

we note that

iz = Jos — fas if m=4,
Jou = Sos — fan if m=5,
Jou = fos — Joz + fas if m=6.

So we have dimR_, =min(¢ —1,m — 1) — 2+ 0,,. If =3 then
set R’—l = {fzu fi,i+1’ M) fi,min(q—-l,m—l); fi+1,i+29 * %y Jit1,2i-1 i+2,i+2}' Note
that (firyim — fiie) = firnivs — Sirnive + firvnire — fuire and if 20 <m
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we have fi,. = fiin — fio + (1 — 0pisy, ) finirae SO R, generates R_,
as above and has rank min (¢ — 1, m — 1) — 1.
Now assume that I >pm + 20+ 2. If I (p+1)m setg=1—
pm and let R, = {fis *=*, Figeir ==y Jig—r} U B_, Where
B—l = {fi+1,i+u cccy Jitn 2i—1} if q > 31
= {fi+17 RS TR fi+1,q—-i—1’ 0ty Jirei- i+2,q~141}

if20+3<q¢g=<3t.

Observe that if f,.,,eR_, and 7 = 2i, setting ¢t = [j/i] we have
fi+1,j = (1 - 6ﬁm~1)fi,.7'+1 - [fi,i——i 'i_fi,i—zi +oeee + fi,j—(t—ni] + [fi,j—i+1 +
fi,j—2i+1 4o + fi,j—(t—l)i-[»l] + (1 - Bj,ti)[fi—!—l,j—(t—ni - fi,j——(t——l)i—(—l]‘ Simi-
larly if 4 =2 then f,,,,.s1 = fi,s 18 in the span of R’,. Finally
note that (f, .- — firioic) = (Fisngmi — Firngmict) + (Firizs — fitrirn) SO
that R’, generates R_, as above. Hence dim R_, = ¢ — 2.
If (p+1lm+i—1=21>@®+1Dm (and | > pm + 27 + 2) set
g=1l—pm so that i1+3 < ¢g—7i < m—1. Set
’—l:{fz’,iy MY fi,q——i; s !fi,m—l} U B-—l
where
B, = {firrm1 * s firraia) if ¢ > 31,
= {firnirn =0 Sivnamicn * %y firvzion Fire qio) if 20+3=¢=3¢.

Then R', generates R_, as it has maximal rank m — 2. Hence
T_l = 0.

Finally suppose that I = (p + )m + ¢ (and I > pm + 27 + 2) and
set q=1—[l/mlm. If 1<q=<1—1so that I = (p + 2)m then

R—z =2 {fl,u M f1,q—u ) fl,m—l! fz,q—l} .
If 1 <q¢=<2i—1 then
R—l =2 {fzw Sy Jiam—1 Jitid T % i+1,2i—1} .

If 20 <qg<m—1 then

R—l ; {fi,z’, ct fi,q—i’ cccy i,m~1} U B—l
where

B_i = {fitvie1 =" firraion g If ¢ =21+ 1 or ¢ > 31,

= {fi+1,i+29 tty Jirnei- Jar e z'+2,i+2} if q = 21 + 2 ’

= {fi+1,i+1r cty Jirg—i-n 00 %y Jitei- St i+2,q—i~1}

if 20 +3Zq¢<31.
If ¢ =0 so that [ = (p + 2)m then
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R—z = {fl,u °e ')fl,i—-n c Y fmn—u i,m—i+1y i+1,m—1} .
In all cases dim R_, = m — 1 so that T_, = 0.

PROPOSITION 3.3. Suppose H=mN + {pm + i, om +¢+ 1, ---}
where 1= 2 and 21 > m. Then

dim TY(H)_, =1 if 1flsm—1,
=7-1 if m—i+1=I<i-1,
=12 if iZlEm,
=m — 2 if m+1Zl=pm+1

and mil,
=m—1 if m+1I<pm+1
and ml|l,

= m_‘2(l'—pm—i)-al,pm+i+1+3l,(p+1)m

of pm+i+1ZIS(p+m,
= pm+21— 140, (pmisn) if (p+m+1glspm+2i,
=1 if | =pom+2i+2 and i=2,
=0 otherwise.

Consequently, dim T'(H) = (p — L)(m — 1)* + m(m — 1) + i(t—2)+9, ,.

COROLLARY 3.4. Suppose H is ordinary or hyperordinary of
multiplicity m and a(H) = pm + 1. Then

dim TY(H) = (p — )(m — 1> + m(m — 1) + i(t — 2) + 0,, ©f m=3,
=20 if m=2.

We finally deal with those negatively graded semigroups of the
third type so that there is precisely one gap m + ¢ between m and
2m. Recall that if 1 =1 then 2m + 1¢ H. In any case, a; =m + j
for j == ¢ while a;, = a; + a, whenever j + k =1 + 0,,m. Again we
deal with a series of cases governed by the relation of 4 and m.
As the proofs are similar we only give the proof in case 2<i<m—
1< 24,

ProposITION 3.5. Let H= H, — {m + 1, 2m + 1} where H, is
ordinary and m = 3. Then

dim T*(H)_, =z-—[l;1]+5m if 1<l<=m—2,
=z_[l;1:l—1 if m—1<l<m+1,
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- [ ! *2“ 1 ] 84 Bipe if mA2<I=md

and 1<2m—2,

—m — [ L ; 1 } 4 Oumse  f mABSI<2m—2,

= Oy + Oy if 1=2m—1,

=14 0+ Opme if l=2m,

= Opms 1 O if l=2m+1,

= 0 if 1=2m+2 or 3m+2,
= Omys T Omys if 1=38m ,

= O,z if 1=3m+1, 4m or 5bm,
=0 otherwise.

Consequently,

dim T'(H) = ’ﬁ(M_Z”ﬂ +2 4 89, +20,.,.

PROPOSITION 3.6. Suppose H = H,, — {m + i} where H, is ordi-
nary and 2 <1 < (m — 2)/2. Then

dim TY(H)_, =1 if 114,
=[l-1 if 1+1Zl€m—i—1,
—l-2- [l_ﬂ_;_l’i]—a,,mﬂ if m—i<i=m+1,
= 2m-—l—[ﬁi;—m]+ﬁl_m+i

+00mein of mA+25ISm4-i4+1,
=2m — (I + )+ 9d,, if m+i+25I<m+i+4
and 1<2m—1,
=2m — (I + 1) if m+i+55I<2m—1,
= Op, + O of 1=2m—1 and =2,
=0, if 1=2m and i=2,
=0 otherwise.
Consequently,

dim T'(H) = m* — (i + Lym + _"(_“zf_ll + 35, .

ProPOSITION 3.7. Suppose that H = H,, — {m + i} where H, 1is
ordinary and 2i =m —1=1=2. Then
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dim TY(H)_, =1 of 1Slsm—i—1,
—l—1-— _U‘T“Z@] if m—i<l<i,
—1—2— _”_"2:.’_”]—5,,“1 if i+1<i=m+1,

L

= 2m— l——l-+—i21”—”:|+5,,m+i

+ 0t miisr if m+2=51<2m—1 ,
=17 — [H’T“m] + Omys Af 2m—i+1ZISM A+,
=1 if l=m+i+1,
= Ops if l=m+4 and 1=2,
= Oy + Oms if 1=2m and 1=2,
= O0pmys + Omys if 1=2m+2,
= 0ps + Onss if 1 =3m and 1=m—1,
= Opys if l=4m ,
=0 otherwise.

Consequently,
dim T'(H) = mi—(i+Lym +1<1‘2i1—)+25,,,,4 ifiz=3,
—m?—3m + 5+ 0, ifi=2.

Proof. We note that 2a(H) —c¢(H) =m — ¢+ 1. Hence for
1<!l<m—1+1one has dim T_;, = #G_, — 1. Also note that

G_i = {ag *++y Quyy Ay} iflgslsm—1—-1,
= {tg, ==+, @;_y} ifm—-—i1Z151,
=ty o Ay @) fi+lslis=m—1,
={ay, ***, Ap_y} if l=m,
= Sg — {aq, a1_n} ifm+1l1glsm+1-1,
=Sy — {@i_w} fm+1=512m—1,
= Sy if l=2m and | # 2m + 1,
= Sy — {ag ifl=2m+4.

Ifm—i+2=1<m+1then R_,={f;.la; +ar=m+1+1i}=
{(field +kE=1+1—mand k + i}. Hence dim R_;, = [(l + 7 — m)/2] —

al,m-l-l.'
IIm+2=1=2m —1 set ¢g=1—m. Then
R ={fixla; + @, =2m + i + q or a; + a, <2m + ¢}
={fiuli+k=i+qand j,bk+io0r j+k=<q—1}.
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Hence

o= 8pan {f; ;i *0, fq,iy ooy frosuatigrim fun o0y fxyq—z}
and dimR_,=q+ [(¢ +9)/2] -8=1—m + [(Il + 1 — m)/2] — 3.
If 2m —1+1<1<m-+ 1 then
R_,={fiula; +a,=2m + 1+ qor a; + a, < 2m + q}
={fseli+k=1+qand j,k+i0r j+E=<q—1}
PN
= SPaN { fisg—mirm—tr ** %y Jar =00y f[(q+i)/2],{<q+i)/zb Jin o0 fm—z} .
Hence dimR_,=m —1—{(¢ + 9)/2} +q¢—2=m + [(¢ + ©)/2] — 7 — 3.
Suppose l=m + 1+ 1=2m — ¢+ 1 so that 2¢ = m. Then if

i=m—1 we have | =2m and R_, = span{f,., -, fim—s} SO that
dim 7_,=1. If i<m—2 then R_,=span{fi,, **, fiict, fritsmmoss ***»

Ffi—ii+e} and has rank m — 38 so again dim T_, = 1.
Now suppose m +1+2=<1=<2m —1 and set g=101—m. If
7 =2then m =5 and R_, = {f,,, fos} s0odim T ,=1. If ¢ =8, R_ =

AN

span {f1,1, =+, fii ** s frgmo fisgomrrmoss =% Ficvotr fitr,a-1 Soi-1) SO that
dimR_,=m —2 and T_, = 0.

Assume that I =2m >m + 1+ 1, s0 i <m — 2. If 1= 3 then

PN

R—l = span {fl,ly Sty fl,iy ct Yy fl,m—zr fz,i—u fi-{-l,m—l}/f'nd T——l = 0.

If i=2and m =4 or 5 then R_, = {f,,, fuz " frmess fo.m—s} SO
that dim T_z = 1.

Now suppose [ =2m + 1 and set ¢ =1 —[I/m]lm. If ¢ =1 or
q=1and Il = 38m + ¢ then

R—-l = {f1,19 c ';.fl,m—x} .
If I =2m + 7 so that G_, = S, — {a,} then R_, is spanned by:

AN N L
{fm, "',fl,i—u fm‘y "',fl,m—u fz,i—x} if 4 =3 ’
{fus s fima} if i=2and m <4,

{fio frofos) if i =2 and m =5.

Consequently dim 7_, = 6,,(0,.s + 0. Suppose ¢ =2 =1 — 1. Then
R_, is spanned by:

oS
{fl,Z’ "‘:fl,z‘y "'rfx,m—ufz,zyfz,i—J if ¢ = 4 ’

/\ . 3
{f1,29 fx,a, ’”,f1,m—1y fz,zy fz,m—1} if i=38 and m = 5 ’
{(fio ford if i=3 and m =4 and [ =2m + 2,

{f1,2;f1,3»f2,2} if ¢+ = 3,m=14 and [ =8m + 2.

We note that dim T_,,,,s) = 6,s + 0. NoOw suppose 3=g=m—1
and that ¢ # 4. Then R_, is spanned by:
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A~ ~ R cn - .
{flm "',f;,\q—u ""f1,i, '";fl,m—nfz,q—ufz,i—x} if 1= 3 and q#:@‘l"l
{f1,u .”)/j\'lyu .”,fl,m—lyfi-)-l,z-)—l} if q= 1+ 1 =m — 1 ’
{fl»l?flymfl,thf1,47f3,3} if ¢ = 2; m = 5; qg=4.

Hence dimR_, =m — 1 and T_,=0. If ¢ =0 so that [ = [I/m]m=
3m, then R_, is spanned by:

{fiv oo fimes fopima} 1 =m — 2,

{fir s fimaifi=m—1m=<4and=3m,

{(fiwr oy fimeo fomot if i=m —1and m =5,

{(fitifi=m-—1,m=38and [ =4m,

{Finy o s fimens fod if t=m — 1, m =4 and [ = 4m
or m =3 and [ = bm .

Hence

dim T, = Bm,?, + 3m,4‘5i,3
dim T—4m = Bm.S
dim7_, =0 if m|l and [ = 5m .

COROLLARY 3.8. If H 1is megatively graded of the third type
with ¢(H) =m + 1 + 1 < 2m then

dim T(H) = m? — (i + Dm + i(@—%i) L2, ifiz3,
=M —3M + 6 — Opy— Opys of T =2.

If ¢(H) = 2m + 2 then

1m

dim THH) = i”izz___ 2480, 4+ 20, .

4. The obstruction of the formal moduli space. Let B = By
be negatively graded and let T'|S represent the versal deformation
of Bl|k in the sense of Schlessinger [6]. Then (S, mg) is a complete
noetherian k-algebra with residue field k. 7 is flat as an S-module
and T @k = B.

Pinkham [3] has shown that 7'|S admit gradings as k-algebras
which are compatible with the structure of B as a graded k-algebra.
One then has the isomorphism 7T%(B) = Hom,(ms/m}, k) in the cate-
gory of graded k-vector spaces. Thus dim 7'(B) also is the dimen-
sion of the tangent space (my/m%)* of the formal moduli space
Spec (S).

We say the formal moduli space is unobstructed if S is a regular
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local ring. Now S is regular if and only if Krull-dim S = dim (mg/
m%) if and only if S is formally smooth over % ([2], Proposition
28. M). Thus the formal moduli space is unobstructed if and only
if dim T*(B) = Krull-dim S.

Let U denote that open subset of Spec (S) cansisting of all points
having smooth fibers, i.e., U = {x € Spec (S)|T(x) is smooth over
k(x)} where T(x) = T @s £(x) and k(z) = A,/p,4A..

In [5] we showed that U is nonempty (as B can be smoothed)
and effectively computed the dimension of U. We note that

dim U < dim Spec (S) < dim T*(B) .

Hence Spee (S) is unobstructed iff dim U = dim T'(B).

We now recall the dimension formula for U and compare dim U
to dim T'(B).

If H is a numerical semigroup let End (H) = {n e N|n+H*C H}
where H* = H — {0}. Let MH) = [End (H): H] so that 1< \MH) =
g(H) =g. :

PROPOSITION 4.1. If H is megatively graded with MH) = X\,
g(H) =g and U is as above then

dimU =29 +x—1.

Proof. See [5], proof of Corollary 6.3.

Now suppose that H is ordinary or hyperordinary of multiplicity
m with a(H) = pm + 1 (recall that a(H) = inf {H — mN?}). Then
g(H) =p(m — 1) +¢—1 and MH) =m — 1 ([5], Proposition 2.2).
Thus dimU =29 +Xx—1=@p -+ 1)(m — 1)+ 2t — 3. Combining
this with Corollary 3.4 we obtain:

PROPOSITION 4.2. Suppose that H is ordinary or hyperordinary
of multiplicity m with a(H) = pm + 1. Then

dim T*(H)—dim U=p(m—1)(m—38)+1i(1—4)+3+4d,, if m=3,
=0 if m=2.

Consequently the formal moduli space for By is unobstructed iff
m = 3.

Now suppose H is negatively graded of the third type with
m(H) =m and m + ¢ a gap for H. Then g(H)=m+d,, and MH)=
m — 1 — 0,,(m — 2) ([5], Proposition 2.2). Hence dim U = 2¢g + N\ —
1=3m—14¢—1—20,,(om —4). Combining this with Corollary 3.8 we
obtain:
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ProposITION 4.3. Suppose that H = H,, — {m + i} where H, 1is
ordinary and 2 <1< m — 1. Let U be as above. Then

dim T'(H) — dim U = (m — 8% — 8, — 6,5 if <=2,
=m2—(i+4)m+(ij—1lgj—2)+2am,,, ifi=3.

If H=H, — {m + 1, 2m + 1} then

dim T(H) — dim U = ﬁﬂ%‘—& 480, 4 20, .

Summarizing, the formal moduli space for By is unobstructed iff
m=4o0rm=>5and 1+ 2 (ie., m + 2¢ H).
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