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ON SELF-ADJOINT DERIVATION RANGES

JOSEPH G. STAMPFLI

The properties of those operators on a Hilbert space
which induce a derivation whose range after closure is
self-adjoint are studied. Such operators are termed D-
symmetric. A characterization of compact D-symmetric
operators is given. Normal derivations are considered, and
an example of an irreducible, not essentially normal, D-
symmetric operator is presented.

Let <(5#) denote the bounded linear operator on a Hilbert
space 5. For Ae & (57) define a linear operator

4 F(F) —— F(5F)
as follows
Ao X— AX — XA

for all Xe <(&#°). Then 4, is an inner derivation on <°(5#°) and
remarkably enough all (linear) derivations on £ (57°) are of this form
(see [11], [12] and [18]). The properties of inner derivations, their
spectrum [13], norm [20] and ranges [2], [10], [21], [23] have been
scrutinized carefully in recent years. In the paper we wish to
consider the class of operators which have self-adjoint derivation
ranges, at least after one closes in the norm topology.

DEFINITION. A operator A € & (57) is D-symmetric if (range 4,) =
(range 4,.)” (the — indicates closure in the norm topology). We denote
range 4, by <#(4,). We denote the class of D-symmetric operotors
by & Obviously A is D-symmetric if and only if <2(4,) is a self-
adjoint subspace of <(5#°). The concept of D-symmetric was intro-
duced by Bunce and Williams.

Another paper [1] on this topic appeared at the same time as
this one, and we have modified our terminology in accordance with
theirs. On one occasion a more general result appears in [1] and in
that instance (Theorem 3) we have merely stated our result, which
is needed elsewhere, while omitting the proof.

The paper has been expanded to include an example of an irre-
ducible D-symmetric operator which is not essentially normal.

1. General considerations. We would like to explore the class
& in this paper. We begin by proving a very simple yet often-times
useful lemma concerning membership in .5~
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LEMMA 1. Let Ac £ (5#F). If there exist monzero vectors f, g €
&2 such that

(1) Af =)\f, A*f = 7\f and

(2) A*g = Ag.
Then A is mot D-symmetric.

Proof. We must show that #(4,)” # A(4,.)". Since F# = (4,) =
H(d,_;) we may assume without loss of generality that »x = 0. Note
that A*f = w+0 where w L f. Define an operator Xec £ (57) as
follows.

Xw=9g and X=0 on {w}.
Then ((A*X — XA*)f, 9) = —(g9, 9) # 0. But for any Ye 57
(AY — YA)f,9)=0.
Thus dist [A*X — XA*, Z#(4,)] > 0 which completes the proof.

The last lemma has a sequential analogue which is sometimes
useful.

LEMMA 2. Let Ae £ (257F). Assume lim,_ . |[|(A — N)f.|| = 0 and
lim sup ||(A — N)*f.||=¢>0 where {f,} is an orthonormal sequence.
Assume ||(A — N)*g,.|| — 0 where {g,} is an orthonormal sequence. Then
A 18 not D-symmetric. Conversely, if A is D-symmetric then A has
an infinite dim. direct summand modulo the compacts.

Proof. We may and do assume » = 0. We may also assume
|A*f,|l = ¢ >0 for all » by considering a subsequence if necessary.
Set A*f, = a,.f. + w, where w, | f,. Then|a,|—0. We claim w,— 0
weakly. Indeed, for any he 257

(wm h) = (A*fn - anfm h’)
= (fm Ah’) - (anfm h)——>0 .

By choosing a subsequence of the {f.}’s and perturbing slightly if
necessary, we can arrive at sequences {f.}{w,} such that || A*f, — w, || —0
and {f,}, {w,} are mutually orthogonal i.e., (f., w,) = 0 for all n, m.
(Since the last argument is standard by now we forgo any presenta-
tion.) We now define Xe & (57) as follows

Xfo=0 for n=1,2, .-
Xw, =g, for n=12 ...
X=0 on {wp}".

Then for any Y e £(57);
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(AY —YA)f., 9.)—0 as n— «a.
On the other hand

[(A*X — XA*)f0, 9.)]
= [(XA*f,, 9.)] = |(Xw,, g.)| — | X [|(A*fa — wh) ||
= ||9.1F —e. where ¢,—0.

Thus dist[4*X — XA*, #(4,)] =1 and so A is clearly not D-
symmetric.

REMARK. One can of course replace the orthonormal sequences
of the lemma by sequences which converge weakly to zero. One
might suggest that no conditions at all are required. After all {f,}
has a weakly convergent subsequence; if it converges to zero fine,
if it does not converge to zero then A has on eigen vector. Be that
as it may we wish to point out that the proof does not go through
under these slightly more general conditions.

More precisely, there exists a D-symmetric operator A with the
following properties.

(1) Af =0 but A*f + 0 for some fe o7 f # 0.

(2) A*g,— 0 for orthonormal sequence {g,}.

ExaMPLE 1. We define our operator A as follows. Let {,} be
an orthonormal basis for £
Set

A*h, = ah,,, for n=1,2 .-,

where

a,=1 and a,= for n=2.

log
Then A satisfies the conditions above (just set f = h, and g, = &,).
Moreover A is D-symmetric since Z(4,)~ = 2%, the ideal of compact
operators as was proved in [21]. We remark that we will have
occasion to use this operator in other parts of the paper. Since a
slightly stronger form of the next theorem appears in [1] we state
the result without proof.

THEOREM 3. Let Ae L (57) be essentially normal. Then A is
D-symmetric if and only if A~T implies A*~T for all Te. 7 (trace
class).

DEFINITION. An operator A € &¥(5#°) is subnormal if there exists
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a larger Hilbert space 5% D 57 and a normal operator Ne &£ (27)
such that Af = Nf for all fe s~

COROLLARY 4. Let Ae <£(57) be a subnormal operator with a
cyclic vector and no point spectrum. Then A is D-symmetric.

Proof. Since A is subnormal with a cyclic vector, A is essentially
normal by a result of Berger and Shaw [4]. To complete the proof
we will show that A commutes with no trace class operator T (other
than 0). Indeed if T commutes with A, then T is subnormal by
Yoshino’s theorem. But any compact subnormal operator is normal.
Since the eigenspaces for T reduce A, and A has no point spectrum
we conclude that T is 0.

COROLLARY 5. Let Te £ (5#) be a hyponormal weighted shift
(unilaterial or bilaterial) with mo point spectrum. Then T is D-
symmetric.

Proof. Since T is hyponormal the weights must be increasing
in modulus. Since T has no point spectrum they must all be nonzero.
Since the modulus of the weights must converge as n — 4o ; T must
be essentially normal. It is well known that {7} contains no trace
class operators (see [19], page 62) which completes the proof.

REMARK. Before going further we would like to show that both
of the hypotheses in Corollary 4 are necessary. To demonstrate the
relevance of the condition ¢,(A) = @ is easy. Let S be the unilateral
shift operator. Set T'= S0 on 57 P 5% where 57 can be finite
or infinite dimensional. Clearly T is subnormal and it follows imme-
diately from Lemma 1 that T is not D-symmetric.

The foregoing example raises an interesting question. If A and
B are D-symmetric how about A@ B? The example demonstrates
that some care must be exercised. There is one rather easy and
obvious positive result which we state without proof. The reader
may find Rosenblum’s theorem [17], useful here.

PROPOSITION 4. Let A and B be D-symmetric. If o(A) No(B) =
@; them A @ B is D-symmetric.

ExAMPLE 2. We now present a second example which is inter-
esting on several counts. Let 5£ = L*4, dA/x) where 4 denotes the
unit disc and dA denotes area measure. Define an operator M on
=7, as follows. For fe 57 M: f(z) — zf(2). Let S be the unilateral
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shift operator on 5% where {e¢,};-, is the canonical basis for S. Now
set T=MPS on o = 57D 5%4,. Then T is a subnormal operator
and 0,(T) = @. Moreover T is the direct sum of two D-symmetric
operators. However T itself is not D-symmetric as we shall show.
James Deddens has independently shown that the operator MP SPH
S .-- ¢ &~ It suffices to exhibit a trace class operator L which

commutes with 7 but not with T*. Our operator L will have the

form '8 g! Since T = ;én g,l the condition TL = LT is equivalent

to MJ = JS. Let @ = X, when D is the disc of radius « centered
at 0 and @ < 1.

Define Je, = 2@ for n = 1,2, --- (J maps 5% into 5#). Then
JSe, = Je,,, = 2""'@ while

MJe, = Mz"p = 2""'p .

By continuity and linearity MJ = JS. Observe that ||z"@| =
1/27:“ rvdrd — aiv+(2n + 2). Hence
D

Wl < 5 1Jell < S VI T2 < o

Thus T and hence L is of trace class. It remains to show that L
does not commute with 7*. But T*L = LT* is equivalent to M*J =
JS* which is equivalent to SJ* = J*M. However it follows from
[22] Theorem 3 that no nonzero operator (trace class or not) can
intertwine the shift and a normal in this way. Thus L does not
commute with T* and we are finished.

Although this example was included primarily to illustrate that
the subnormal operator in Theorem 8 must have a cyeclic vector; it
also gives some indication of the subtleties involved in characterizing
just when the direct sum of D-symmetric operators is D-symmetrie
since neither M nor S is a particularly pathological operator.

2. Compact symmetric operators. We Wwill now give a classifi-
cation of compact symmetric operators modulo one difficulty. The
method does give rise to a situation where the direct sum of D-
symmetric operators is D-symmetric.

The proof of the next lemma was suggested by B. B. Morrel
and is more concise than the original. A more general result will
appear in the Appendix. We also note that the first half of Lemma
5 was obtained independently by L. Fialkow [7].

LeEMMA 5. Let A = SxdE’(k) be a mormal operator and T an
arbitrary operator in F (). If Elc(A)No(T)] =0, then the
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equations AX = XT and YA = TY have only the trivial solution
X=Y=0. If 0,(T*YNag(4*) =@ and A|E[c(A)Na(T)] has a
complete set of eigenvectors, then the equation AX = XT has only the
solution X = 0.

Proof. Let ue 5 and assume that AX = XT. For all v e o(T),
the resolvent set of T, (4 — N)X(T — N)"'u = Xu. Since Xue
range (A — \) for all ne f(T), it follows from [16] that

Xue E(o(T)5# = E[o(T) N 6(A)]5# =0 .

Since v was arbitrary; X = 0. To handle the case YA = TY,
take adjoints and use the fact that range A = range A* for a normal
operator A. )

In the second part, let {®,} be a complete set of eigenvectors for
AlE[o(A)No(T))s7 If u € 57, then arguing as before Xu ¢ E[o(T)|5# =
E[o(T) N 6(A)]57; whence Xu = Ya,p, (Where Ap, = \,®,). Note that
X*(A - )9, =0 = (T — A)*X*®, which implies that X*p, =0
since (T — \,)* is injective. Thus

| Xull* = (Xu, Za,P.)
= (u, Ja, X*p,) =0

whence X = 0.

THEOREM 6. Let Ae (7)) be compact. Then A is D-symmetric
if and only if A= NPQ on 574D 574 = 5 where N a is compact
normal operator with no kernel and @ s a quasinilpotent D-symmetric.
operator If A is D-symmetric and Q s trace class then @ = 0. The
decomposition s unique.

Proof. Assume A is D-symmetric. Let (A —\)f =0 where
N =0, fes”

Clatm. f reduces A. Since A* is compact there exists a vector
g € &7 such that (4—\)*g=0. It followsfrom Lemma 1 that (A—\)*f=
0, thus f reduces A. Now order the nonzero eigenvalues of A in
decreasing modulus [N, ] = [N, = [Nyl = -+ . Use the fact just proved
to show that E, = {fe 22 Af = \Jf} reduces A and A|E, is normal.
Repeating the argument for A, A, ---, we find that

A=N&hHBQ on FPBsoA

where N is normal with no kernel, and @ is quasinilpotent. Since
A is D-symmetric so are both N and @. This proves the first half
of the theorem.
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Assume now that A = N where N is normal with trivial
kernel and @ is quasinilpotent and D-symmetric. Since @ is compact,
the operator A is essentially normal. It follows from Theorem 3;
that A is D-symmetric if and only if A ~ T— A* ~ T for T of trace
class. Write 7= |LL|. 1t AT = TA then

T3T4
NT, — TN NT, - T,Q
QT, — LN QT, - TQ

It follows from Lemma 5 that

T, 0
T,= T, =0. Thus T=|O’ 7|

Moreover T, ~ N implies T, ~ N* and T, ~ Q implies T, ~ Q* by
Theorem 3. Thus T ~ A* and hence A is D-symmetric, again by
Theorem 3. Note that no use was made of the compactness of N in
the second half of the theorem.

Finally, let us consider the case when @ is trace class. By Theorem
3, if @ is D-symmetric and Q@ ~ T, T of trace class then @ ~ T*.
But Q itself is trace class. Thus @ ~ @* whence @ is normal.

The characterization just given is not altogether satisfactory since
we do not know which quasinilpotent compact operators are D-
symmetric. We note that the class is not vacuous. Indeed in Example
1 following Lemma 2, the weighted shift S with weights {(log n)™}
is D-symmetric and it is obviously compact and quasinilpotent. Of
course the equally compact and quasinilpotent operator SE0 is not
D-symmetric by Lemma 1.

Before going further we observe that the D-symmetric operators
are not closed. To see this consider the following operators defined
on the orthonormal basis {f,}%

n~'f, for k=1

£ —1,2 ..
fon for E>1 5"

Snf k=
In other words S, is just the unilateral shift with the first weight
diminished. It is well known that S, is subnormal or hypernormal
and since the other hypothesis are satisfied. S, is D-symmetric for
all n by Corollary 4 or 5. However S, — S, where the first weight
of S, is zero and thus S, is not D-symmetric by Lemma 1. The fact
that & is not closed was also noted in [1].
Next we wish to characterize the compact operators in .55 the
closure of the D-symmetric operators, We need thefollowing lemma
which appears in [8] page 916 and is attributed to R. G. Douglas.
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LEMMA 7. Let Te ¥ (57) be a compact quasinilpotent operator.
Then T 1is the norm limit of, finite rank milpotent operators.

Before attacking .&“ we need the following sharpened version of
Lemma 2.

LEMMA 8. Let Te (). Assume that p is an isolated point
of o(T) and furthermore that (T — p) is Fredholm. If Te .S~ then
E,={fezor:T; = pf} reduces T and T|E. is normal.

Proof. Let v = dist [y, o(T)\¢t]. Since the spectrum is an upper
semi-continuous function of the operator, there exists a 6, > 0 such
that ||T — S|l <4, implies that o(S)c{o(T') + v/4}. Define idempotents
as follows

1 -
j— 1 7\1
Py = SFO“ T)"d

i

and
_ 1 Q-
P, = Z_ﬂigp(x S)~dn

where I'(t) = pt + 7/2¢% for 0<t<2rx. (We are also assuming that
IS — T|| < é,.) It is well known that ||P;, — Ps|| —0as ||T — S||—0.
Since (T — ) is Fredholm; the subspace P,2# is finite dimensional
and is invariant under 7. Thus by continuity Py5# is finite dimen-
sional for S close to T and P,5# is invariant for S. Assume Se¢ .~
The first part of the proof of Theorem 6 may be repeated to show
that P;o# reduces S and S|Ps;5# is normal. Choose S,e.&” where
S,— T. Since P;, — P, in norm, it follows that P,5# reduces T
and T|P, is normal which completes the proof.

THEOREM 9. Let Te & (57) be compact. Then Te .~ if and
only if T=NDQ where N is normal with ker N = {0} and Q is
quasinilpotent.

Proof. Order the nonzero points in the spectrum of 7 by de-
creasing modulus as say || = |A\,] = ---. Then \, is isolated in
o(T) and (T — »,) is Fredholm. It follows from the previous lemma
that E, = {fe2#: Tf =\ f} reduces T and T|E, is normal. Re-
peating the argument, just as in Theorem 6, we see that T = NP Q
when N is normal with trivial kernel and @ is quasinilpotent.

To prove the sufficiency let T = N@ Q. Since N is normal, in
light of Theorem 6 it suffices to show that @ € .~ for every compact
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quasinilpotent operator Q. In view of Lemma 7 we need only consider
finite rank nilpotent operator Q. Assume for the moment that 57
is separable. Choose an invertible operator S such that

(1) SQS!is in Jordan canonical form with respect to the basis
{fubt.

(2) The 1’s in the matrix appear below the main diagonal.

(3) SQS'f,_, =f. but SQS™'f, =0 for k = n.
Set M =||S]]-]|S™*|]|. Let ¢ >0 be given. We define a operator V as
follows:

(1) If SQS7'f, = fiw then Vf, = fi.,

(2) If E<mn and SQS'f, = 0 then Vf, = eM 'f,.,

(8) Vfi, =ayfrn for k = n where a, = eM'(log k).
By construction, V' is a shift operator on 22 with no nonzero weights
and [|SQS—V||<eM™. Moreover V is compact and we claim that
V does not commute with any trace class operator. Note that V
differs from the operator in Example 1 at only a finite number of
weights. It is easily seen that the commutant of a weighted shift
is little influenced by modification of the first few weights, provided
one does not make any nonzero weights zero. (See [19], page 62.)
In particular the operator in Example 1 does not commute with
any trace class operator (in fact any C, operator). Thus neither
V nor S7'VS commutes with a trace class operator. Hence S™'VS
is D-symmetric. But ||Q — SV S||=]|S™(SQS™* —V)S|| < ¢ which
completes the proof.

3. Degree of approximation. Let A be a normal operator. Let
AX — XA =W for some X, We <&°(57). Since A is D-symmetric,
there must exist a sequence of operators {Y,} such that

A*Y, - Y A —W.

In general the operators {Y,} are not uniformly bounded. For if they
were then a subsequence Y,, would converge weakly to Y and hence

A*Y —YA*=W.

However it is known that <#(4,) and #(4,.) are not equal for an
arbitrary normal operator (see [10]). The following question thus
arises: How is the norm of Y, related to the norm of [A*Y, —
Y, A* —W]? Before attacking this question we need the following
lemma, whose proof was suggested by Grahame Bennett.

LEMMA 10. Let M = [M;;] be an n X n operator valued matrix
on SF =5P - Pz Set M = [0,;M,;] where |6,;] =1 for i, j =
1, .-+, n. Then || M| = n*|| M|l
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Proof. Let f=(f, -+, f.) wWhere ||f||=1 and f,e.5~. Thus
1Bf 1P = 5 | 0.0

T

2

Set g = (0, f1, -+, 0:nfn), Whence |¢g|?]| = 1. Let P, denote the pro-
jection of 27 in 5#,. Then

Z 0:;M,;f; = P.Mg® .
7
Thus

= ||[P.Mg™” |
= Mg (P = (| MIP .

.2
|
I

l Z 01’1’ij

Hence

IMfIF = SIIMIF <l M.

Since f was arbitrary we conclude that

| M| < n2|| M| .

THEOREM 11. Let A be a normal operator in 7 (227) with o(A)C I’
where I' is a rectifiable curve and length I' = /. Let AX — XA =W.
Then there exists a Y€ L (57) such that

1Y = nllX]
and

1(A*Y — YA*) — W] = 3n7/([ X]| .

Proof. Choose n? distinct points A, ---, A,, on I' such that the
dises D(\;, #n7%) cover I'. Disjointify the dises to obtain sets K; (not
necessarily open or closed) such that U” K; oI, K,N K; = @ for
i+ 4, and K;C D(vs, on~?). Let A — gxdE(h). Set 27 = B(K)SF
and set A4, = 3\;E(K;). Clearly A, is normal and |[|[A — A4,] Z
n7%, (4, is a matrix on 57 P --- P 5752, A = diag (0, -+, N,2)). Let
X=[X,] on 545 --- D o7.. Clearly [[(4,X — XA4,) —W| £
2| X||-n~%2. Moreover (A4,X — XA,) =[(v; — 7)) X,;]. Set Y =0,;X,;
where @ = (A, — »;)/(v; — ;). Since [6,;] =1 for all 4, it follows
from Lemma 11, that || Y||<n|| X||. By definitionof4,;, A;Y — YA =
A, X — XA,. Moreover

Az, Y] —[4% Y]
= 2n7/]| X]] .
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Combining the equations above we see that

[(A*Y — YA") = W[ = 2n7'7|| X|| + 2n7°7]| X ||
< 3n || X|| for n>1

which completes the proof.
REMARK. R. Moore in [14] proved the following

PrOPOSITION A. Let A be normal and let || X, ]|<1 for n =
1,2 .--. If ||AX, — X, A|| > 0 then ||A*X, — X, A*|| — 0. The
technique im the theorem above can be modified to show the following.

ProroSITION B. Let A be a normal operator with o(A) C I” when
I' is a rectifiable curve. Let || X|| <1. If ||[AX — XA| <J then
|A*X — XA*|| < CoY* when C is a universal constant.

Since the proof is similar to the above we omit the details.

4., Ampliation. Let S,e & (&7”) and denote its ampliation S, @
S, P --- (o many copies of S). In general S, D-symmetric does not
imply S is D-symmetric. Joel Anderson has been kind enough to
point out to us that it follows immediately from Lemma 2 that the
ampliation of the (D-symmetric) operator in Example 1 is not D-
symmetric. We next show that operators close to the unilateral
shift have D-symmetric ampliations. (It follows immediately from
Theorem 3, that the unilateral shift is D-symmetric, a fact also
observed in [1].) Note that condition 1 of the theorem is essential.
If the condition is dropped the operator (let alone its ampliation) need
not be D-symmetric as an example following the proof shows. The
example also shows that D-symmetry is not preserved under similarity
but much simpler examples will do that.

THEOREM 12. Let S, be a weighted shift operator with weights
Qyy Gy . Assume that

(1) 1— S¢S, 1s compact

(2) (a) S is similar to the unilateral shift ov

d) 0< M < |S"fll <M for all fe H with ||f|l =1 and n =
1,2 -+, or

() 0<inf,;la, @y =+ Guy] and SUD, . @00 = v Gy ] < o0
Then S, the ampliation of S,, 1s D-symmetric.

Proof. We first observe that conditions (a), (b), (¢) under 2 are
equivalent. Indeed, the equivalence of (a) and (b) is implicitly contained
in [15]; and the equivalence of (b) and (c¢) is easy and may be found
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in [19]. Note that S is unitarily equivalent to the operator which
sends (fy, fa <) to (0, a,fs, Qyfsy -++) ON AP 4P -+ where each
57 is a copy of 5~ Let SX— XS=W. We must show that
[|(S*Y — YS*) — W|| < ¢ for any preassigned ¢ > 0. As a first approxi-
mation to ¥ we try — SXS. Then S*(—SXS) — (—8SXS)S* =
W + K, XS — SXK, where K, = (1 — S*S) and K, = 1 — SS*). (The
operator K, and K, are not compact but they like to think of
themselves that way.) We next show how to approximate the term
SXK, by elements of the form [S*, V]. Let ¢ > 0 be given. Note
that

K =@ —|a;PL;
and thus HKZ — Fz” < é& for
F,=@1 - a,)LHOHO---

and m sufficiently large. Thus ||SXK, — SXF,|| < ¢||X|]| S| and
SXF, is an operator valued matrix which has at most m nonzero
columns. We next show how to approximate a single nonzero column
matrix. Assume that T.5# =0 for j +1. Fix n for moment and
set Y, = >\72i (m — 5)/n[S(S*S)~*)"*T'S*I. Then S*Y, — Y, S*

1

n

n — J18(S*S) 1 TS*

=0

3 S

_ Zl _ .7 [S(S*S)—l]jHTs*j-H

J=0 n

= T + 0 3 [S(S*8) " TS* .

We wish to estimate the term on the right and we have yet to choose
n. It is easy to see that ||[S(S*S)™'}/|| =< M for all j and of course
[|S*|| < M. Let f =3 a;f; where f;e€ 57 and ||f|| =1. Observe
that TS*/f, =0 for k+ j — 1. Thus

z [S(S*S) i Ta;,.S8%f;,,

jzz“l [S(S*S)-—l]] TS*]f

A

< 3V MI T a5 8% -

Thus ||[S*, Y] — T|| £ M?||T||n"**. Note that ||T|| = [|SXF,|| if T
is the first column of SXF,. For = sufficiently large (namely n» >
e 'mN?||SXF,||) it is clear that ||[S*, Y] — T|| <e/m. But the



ON SELF-ADJOINT DERIVATION RANGES 269

remaining columns of F, may be treated in exactly the same way.
Combining these estimates we can choose Y so that [|[S*, Y] — SXF,|| <
¢. There still remains the term K, XS to be dealt with. Choose F,
such that ||K, — F\|| < ¢ as before. Then the operator matrix K, XS
has only finitely many nonzero rows. Rather than approximating
F, XS by term [S*, Y] it is easier and clearly equivalent to approximate
S*X*F, by terms of the form [S, Y]. Since S*X*F has only finitely
many nonzero columns, we again consider the case when T has a
single nonzero column, the first. To approximate T, set

n—1 >

Z,=3 ﬁ.;.isf':ras*srls*]m i

=
Then repeating the previous argument shows that |[[S, Z,] — T|| <
n~2.|| T||M*. Thus there exists an operator Z such that ||[S*, Z] —
F,X8|| < ¢ for n sufficiently large. Combining all the estimates we
see that there exists an operator L such that ||[S*, L] — W|| <e(d+] X||)
whence #(4;5) © H(ds)~. The argument to verify the reverse inclusion
is identical to the above and thus the proof is complete.

EXAMPLE. Let {f,}7, be orthonormal basis for 5#. Set Tf, =

@pfuss for n=1,2, ---, where a, = g“l Z g(\irgn. Then T satisfies

condition 2 of Theorem 12 but T is easily seen to be not D-symmetric
by Lemma 2.

REMARK. In §3 we saw it was possible to estimate the size Y re-
quired to approximate W=AX— XA by terms of the form S*Y— YS*,
the estimate being given in terms of || X]|| and ||[[S*Y] —W]||. If S,
is a shift operator with a; = 1 for all but m of the a;’s, then it is
again possible to make such estimates. Indeed the explicit nature of
the operators Y, Y, Z,, Z in Theorem 12 reduces the estimation process
to routine bookkeeping which we will pursue no further.

COROLLARY. The ampliation of the Bergman shift is D-symmetric.

5. Normal derivations. Before proceeding to the next theorem
we will need two lemmas of a nonoperator theoretic nature.

LEMMA 13. Let E be an uncountable compact set in the plane
and let S be the unit circle. Then there exists a continuous map f
of E onto S'.

Proof. By first projecting E onto one of the coordinate axes, we
may assume F is an uncountable compact subset of the reals. If E
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contains an interval then the lemma is trivial. If not, then E is the
union of a countable set and a perfect set. Since the perfect set
contains no intervals it is a Cantor set and the result now follows
from Theorem 3-28 (page 126) of [9].

LEMMA 14. Let M = {2, ---, 2,} be a set of distinct points in the
unit disc D. Let multiplicities n,, +-+, n, be preassigned where 1 <
n; < W, for 7=1,---, k. Assume that n; =¥, for j=1,---,p
where p=3 and further that the convexr hull of {z, ---, z,} contains
a meighborhood of 0. Then there exists a sequence {{;} such that

(1) FEach ;e M.

(2) There are precisely n; of the (.’s equal to z;.

(3) 125 Gl=2for N=1,2,---.

Proof. Since the lemma is intuitively obvious we present only
a sketch of the proof.

1. We can choose either three or four points from the set
{2, +++,2,} so that the convex hull of these three or four points
contains a neighborhood of 0. Call these points guide points.

2. Note that, beginning with any point ¢ in D we can choose
a finite sequence of guide points A, - -+, A, such that [¢ + 37 N | =Z 2
for ¢ =1, ---,m and (¢ + 3", \,) is in any preassigned quadrant.
(If there are only 3 guide points this requires a certain amount of
pulling and hauling, but it is all elementary.)

3. Let {#} be any sequence of points which satisfies conditions
(1) and (2) in the conclusion of the lemma.

4. Now to define the {’s. Start with {, = z,. Next select a
sequence of guide points A, ---, A, as in 2, so that (g + 371, \,) is
in the quadrant opposite p,. Set , ---, (., equal to Ay +-e) Ny
Set {1, = .. Next select a set of guide points which move the point

mi+2 my

;Ci: <ﬂ1 +;>"i + #2)
into the quadrant opposite ft, and continue on in this manner, thus
achieving the desired goal.

THEOREM 15. Let A be a normal operator with no point spectrum,
and let N be an arbitrary normal operator. Then W*NWe 2 (4,)~
for some unitary W if and only if 0 W, (N)(=Nxexr WN + K)).

Proof. Assume that Ne.c#(4,)~. Choose a A€ C and an ortho-
normal sequence {f,} such that || (4 — \,)f, || — 0. By slightly modifying
the argument given in [21], we can show that (Nf,,, f,,) = 0asn; —0
for some subsequence {f,;}. This proves that 0¢ X,(N).
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Now assume that 0e W,(N). Since A has no point spectrum,
0(A) must be uncountable. Using Lemma 13, choose a continuous
function h: 0(A) — C such that h(c(A)) = S' (the unit circle). Then
h(A) =V is unitary. Hence V =U + K where U is the bilateral shift
and K is compact by the Berg-von Neumann theorem. Note that
RB(4,)” D H(4y)” by [10] page 118 or [1]. Since . (4,)~ also contains
¢ by [23] corollary to Theorem 38, it follows that .<2(4,) > .H#(4,)".
Thus it suffices to show that .Z(4,)~ contains a unitary copy of N.
Let ¢ > 0 be given. Since 0e W,(N), we can choose normal operator
N, such that

(1) |IN—-NJl<e

(2) N, =250« Ni(o, PP
where the \;’s take on only finitely many values.

(3) W,(N, contains a neighborhood of 0.

Since we are only looking for a unitary copy of N,, we may assume
U is defined by Up, = @, for k=0, =1, ---. We now set

XP, = a1 Piy
where
a, = ;V‘;,:k, for k=1
a, =0
and

G =~ for k<0,
=

Then (XU —UX)®, = (@psy — 0)Pe = NP, for k=0, =1, ---. The
“operator” X just defined does precisely what we want but it is not
clear that X is bounded. However, if we first rearrange the \;’s
(we are only interested in a unitary copy of N,) along the lines
of Lemma 14 (treating the forward half and the backward half
separately and adjusting multiplicities) then in fact || X]|| < 2]| N,||.
The proof is complete.

COROLLARY 1. Let A be a normal operator with 6,(A) = @. Let
T be a pure isometry. Then F(4,)~ contains an operator unitarily
equivalent to T.

Proof. We know that #(4,)” D .Z#(4,)~ where U is the bilateral
shift. We will show that .Z#(4,) contains a unitary copy of V,
where V is the unilateral shift. The general case is then obvious.
First we set
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%% O’
U

“F Vv

where F' is a one dimensional operator. By modifying the techniques
of the theorem it is easy to see that .#(4,)” contains a unitary copy
of V (let B = diag (1/2, —1/2,1/2, ---) and consider VB — BV) and
F(4,+)~ contains a unitary operator W. Since #(4,)” D 2 by [23],
and VW is unitarily equivalent V mod .2 (see [5]) it follows that
P (4y)” contains V, from whence the general case follows.

COROLLARY 2. Let W be a pure isometry. Let N be a normal
operator. Then H(4,)” contains a unitary copy of N if and only
if 0e W, (N). Moreover #(4y)" contains a unitary copy of every
pure 1sometry.

Proof. Observe that {W} contains no trace class operators and
hence . (4y)” D .27 by [23]. The rest of the proof follows as above
and we omit it.

REMARK. Let A be normal. The first part of the proof of the
theorem can be modified to show that if Te &7 (2#) and W,(T) +
{0}, then #(4,)" does not contain the set

(W*TW:W unitary} .

In particular, if N is a noncompact normal operator, then .Z2(4,)”
does not contain all unitarily equivalent copies of N for any A normal.

In Theorem 15, the condition ¢,(A) = &, implies that the spectrum
of A is uncountable. This hypothesis is not completely gratuitous as
the next example shows.

ExaMpL. Let E= |3 0| on 57 @5 (ie., E is a projection).

Let N = [‘g‘ *‘l)l. Then 0e W,(N) but we claim W*NW ¢ .Z#(4,)- for

any unitary W. Indeed #(4;) is closed and if Ac .2Z(4,) then A =

9 c‘ If we assume A is self adjoint then A = ]O B et U=
B 0|’ J =1Bo | =
2-1/2 % _H Then U*AU = ‘OD——B{’ whence 0(4) = —g(A4). Since N

does not enjoy this last property we conclude that W*NW ¢ .2 (4,).

6. Irreducible D-symmetric operators. An operator T'e <2(5F)
is essentially normal if T*T — TT* is compact. Joel Anderson has
shown that the unilateral shift of infinite multiplicity is D-symmetric
and this seems to be the only known example of a D-symmetric operator
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which is not essentially normal. Of course it is far from reducible.
(The shifts in Theorem 12 are also examples but they are mildly
disguised versions of Anderson’s example.) In this section we wish
to present an example of an irreducible D-symmetric operator which
is nmot essentially normal, the first such to the best of our knowledge.
Before getting to the example itself we will need one lemma.

LeMMA 16. Let T;e Z(57) for j=1,+-+,n. Assume that ||T;||<
M for each j. Assume also that there exist mutually orthogonal
subspace 57, +++, 57, C S such that T;|o7* =0 for j=1,.--, n.
If T=3>",T; then ||T|| £ n'*M.

Proof. Let fe 57 where ||f||=1. Then f =g D Dt a;f;
where f;e€ 5% and ||f;|| = 1. Thus

VTF 1 = | 3 @t
AP

=n"M.

ExampLE 17. Let {e,);-, be an orthonormal basis for 5# and
define S as follows

{Zen+1 for n=2¢ =12 ---
Se, =

o-wEk-ng  for 2k < g < 26,

The operator S is reminescent of the operators in §4; it is a shift
operator and 27'|| f|| < ||S*f|| < 2| f|| for all feSZ and k =1, 2, ---.
Thus S is similar to the unilateral shift, which ensures its irreducibility.
It is easy to see S is not essentially normal. It is clear that S does
not commute with a trace class operator and hence R(d4s)" O .2 by
[23]. It remains to show S is D-symmetric. Let SX — XS =W
and let ¢ > 0 be given. Without loss of generality assume || X||=1.
We wish to find a Y such that ||[S*, Y] —W]| <e. We start with
—SXS. Thus

[S*, —SXS] =W + (1 — S*S)XS — SX(1 — SS*%) .
We next show that SX(1 — SS*)e R(4s)~. Note that (1 — SS*)e, =
a.e, where

1 for n=20
a, ={—38 for n=24+0 k=12,---
1 — 2-@2%-D for 2" +1<m< 26,
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It is easy to see that |1 — 22| <2.27%, Fix m = 2% (to be chosen
later) and set

K = projection on {e, ---, e,}
P = projection on {e,:m = 2* + 1,k = k,}

and
E=1—-(K+ P).

Note that E, K, P are orthogonal and ||(1 — SS*)E|| < 2m™. Set R =

(1 — SS*)XS. Then R = RK + RE + RP. The term RK is compact,

hence in R(4s.)"; || RE|| £ 4m™* so this term can be ignored. It remains

to show RPe R(4s)~. Choose m so large that 8n'? < ¢ and fix m > n.
Set

Y, =S 2= I [8(5*8) P RPS* .

§=0 n

Then

[S*, Yi] = RP + n* 3 [S(S*S)"F'RPS* .
Note that [|[S(S*S)™'})/|]] £ 4 for all j. We wish to estimate the term
on the right. It can not be handled as in Theorem 12, since every

summand has an infinite number of nonzero columns. Observe how.
ever that PS*e, = 0 for ¢ = 2* + 1 — 5. Thus we set

G =splest=2"+1—7 for kz=k}
and
T; = [S(S*S)"PRPS*i for j=1,2,+-+,n.

It is easy to see that T;|o#* =0 and || T;|| <8. The 5#’s are
orthogonal since [2% — 2%| > n for k, k, > k, by our choice of k,.
Thus it follows from Lemma 10 that

H gi [S(S*S)'VRPS*/|| < 8n'”

whence ||[S*, Y,] — RP|| < 8n'? < e. This shows that SX(1 — SS8*)e
R(45)~. The term (1 — S*S)XS can be handled in the same way (see
the proof of Theorem 12 for additional details). This completes the
proof that We R(4s)~ whence R(4s)™ C R(ds.)~. The reverse inequality
is proved in exactly the same way.

REMARK. Let {e,}3-. be an orthonormal basis for 57 and define
T as follows
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26,4, for 'n=2k,k=1, 2, 09

Te, =
¢ {e,m for 2F < n < 2%,

Then T is a somewhat more presentable version of S. Since T does
not commute with a trace class operator, R(4,)~ D 2% by [23]. Clearly
T — Se 2#. Thus R(4,)~ = R(4s)~ and hence is D-symmetric. One
might wonder why we did not start with 7 in the first place since
it is the more attractive candidate. Unfortunately T is not power
bounded and hence the proof above can not be applied directly.

APPENDIX. We wish to define decomposable operator and to do
so we must first define spectral maximal subspace. However we never
use the special property of spectral maximal subspaces as opposed
to those of ordinary subspaces so the reader may skip this if he
desires.

DEFINITION. A subspace 27 of 57 is a spectral maximal subspace
for T if )

(1) = is invariant for T
and

(2) If %z is any other invariant subspace for T with o(T|2/) C
o(T|2). Then zrcC &

DEFINITION. An operator T ¢ &7 (5#) is decomposable if for every
open cover {G;}r of o(T) there exist spectral maximal subspaces 27

such that
oT\Z)cG, for 1=1,---,m

and >, 25 = S~
Further information on decomposable operators may be found in
[6]. I am grateful to M. Radjabalipour for a suggestion concerning

the next

THEOREM. Let A be a decomposable operator and T an arbitrary
operator in L (7). Assume there exists am open cover {G,} of
o(A) N p(T) where G, o(A) N (T) for each a, and maximal spectral
subspaces 25 such that o(T| 2 C G, and V2, = 57 Then the
equation YA = TY has only the solution Y = 0.

Proof. Assume YA = TY and fix an 25. Thuso(4|25) = FC
G.co(T). Letue 2, Set f(\) =Y(A — \)'u for » € F” and observe
that f is analytic on F’. Set g(\) = (T — \)"'Yu and observe that
g is analytic for € o(T).
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Claim. f and g coincide on F" N o(T). For Le F' N o(T) note
that (T — OIf Q) — 9Ol =[(T - OYJA — O™'w — Yu = Yu — Yu = 0.
Since (e p(T) it follows that f({) = ¢g({). Thus ¢ has a bounded
analytic extension to the entire plane. Since g vanishes at o, g must
be identically zero whence Yu = 0. Since @ was arbitrary, and V.25 =
&7 it follows that Y = 0.

ExAaMPLE. Note that in the context of the previous theorem it
does not suffice to merely assume that o,(T) N o(4) = @. Let {f;}".
be an orthonormal basis for .22 Let A be the bilateral shift; thus
Af; = f;4, for all 5. Let

7, = | 7=0
Jinn 21
and
x5, - |, 7=0
fi J=1.

Then AX = XT although the point spectrum of T (and T'*) does not
overlap o(A).
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