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METABELIAN REPRESENTATIONS OF
KNOT GROUPS

RICHARD HARTLEY

The question of determining which finite metabelian
groups may be the homomorphic image of a given knot
group G is considered in this paper. As a starting point,
it is shown that a homomorphism of a knot group onto a
metabelian group H such that [Hi H']—n must factor through
ZnΘAn9 where An is the homology group of the n-folά cyclic
covering space.

This is similar to a theorem of Burde [1 Satz 4], and
Reyner [5] has also proven a similar result, showing in effect
that such a homomorphism must factor through Z0 An. Now,
An can be given the structure of a module over the ring
Zζf) of L-polynomials, and the problem of determining the
metabelian factor groups of G can be reduced to determin-
ing the factor modules of An.

In this paper, then, a necessary and sufficient condition is given
(in terms of the Alexander matrix) for a knot group to have a
representation onto any given metabelian group H such that Hf

contains no cyclic subgroup of order n2 for any n. (See Theorem
1.5 and the remarks previous to Theorem 1.3.)

Such metabelian groups have a simple structure which is not
shared by arbitrary metabelian groups. We therefore limit the
scope of this paper to groups with this property. From Theorem
1.5 we deduce necessary and sufficient conditions for a knot group
to have a representation on groups of more restricted classes in
terms of the Alexander polynomial (Theorems 1.7 and 1.11).

The results obtained are similar in spirit to previous results
of Fox [2] about metacyclic representations, and Riley [6] about A4

representations, and in fact, their theorems are shown to be special
cases of the theorems of this paper (see Examples 1.12 and 1.13).

In a final section it is shown how a table of the homology
groups of the cyclic coverings may be used to determine the
possible metabelian representations. This is included because of the
ease with which one can deduce quite complete information from
such a table, which may be calculated by computer. The Alexander
matrix, of course, contains more information (in fact in a sense
complete information) about metabelian representations, but the
information therein is not so readily accessible.

I wish to thank Professor K. Murasugi for his many helpful
comments concerning this paper.
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1* Throughout this paper, if is a knot in S3, and G, or G{K),
is its knot group. G(K) can be written as a semi-direct product
Z 0 Gr where Z is generated by an element t, which is a meridian
of the knot. Any cyclic group Z or Zn will be thought of as
having a distinguished generator, t. If ψ is a homomorphism of G,
then Gφ can be written as Zφ Q G'<p. Thus, if if is a metabelian
factor group of G, then H can be written as Zn 0 £P. Note that
27 is a semi-direct product of a cyclic group and the commutator
subgroup. We make the convention that all semi-direct products
considered in this paper will be of that form. It is true that if H
is any group with H' a finitely generated abelian group, and H/H' = C
is cyclic, then H can be written as C 0 27' and C acts without fixed
points on 27. Now, since Hr is abelian, φ must factor through
Z 0 G'lG".

Given a semi-direct product Zn 0 A with A abelian, A may be
given the structure of a Z<£> module (Z(t) is the ring of integral
L-polynomials) by writing at = £-1αί, where module multiplication
is indicated by writing the multiplicand as a superscript. Thus,
module multiplication by t is an automorphism, denoted throughout
this paper by θ, of order n. Conversely, given a Z(t} module A
in which θ (i.e., multiplication by t) is of order n, one can define a
semi-direct product Zn 0 A. The following lemma is easily proven.

LEMMA 1.1. Given groups H = Zn 0 A, αwd if* = Zm 0 A*
where m divides nf and both A and A* are ahelian, then there is a
homomorphism of H onto H* which takes the distinguished gener-
ator t of Zn to the distinguished generator t* of Zm if and only if
A* is a factor module of A.

Note. By our convention, A and A* are the commutator sub-
groups of H and H*. Thus a homomorphism of H onto i ϊ* must
take A to A*. The rest follows easily.

Now, as a Z(t) module, G'\G" is simply the knot module ^&.
Thus, there is a homomorphism of G onto the metabelian group
Zn 0 A taking a meridian of the knot to t, if and only if A is a
factor module of the knot module. Since, for any a in A, atn = a,
it follows that A must be a factor module of ^/S\^//v%~\ which
latter module will be denoted by An.

THEOREM 1.2. There is a homomorphism of the knot group G
onto the metabelian group Zn Q A taking a meridian of G to the
distinguished generator of Zn if and only if A is a factor module
of An.
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The underlying group of Λf is the homology group of the
infinite cyclic covering space of the knot, and Θ is induced by a
covering translation. Factoring out multiples of ί* — 1 is thus
equivalent to identifying every wth leaf of the covering. It follows
that the underlying group of the module An is the homology group
of the w-fold branched cyclic covering space of the knot. Theorem
1.2 shows that Zn 0 A is a factor group of Zn Q An, which result
is very similar to Burde [1, Satz 4]. In fact, since Zn acts without
fixed points on An, it follows easily that Zn acts without fixed
points on A. Thus, any metabelian factor group of a knot group
is a semi-direct product of the type considered in his theorem.

Note. The condition that a meridian is mapped to the distin-
guished generator, t, results in no loss of generality of our results.
For, if G maps onto some group H — Zn 0 Hr, then a given meridian
is mapped to a generator ί* of some cyclic subgroup Z* such that
H= Z; 0 H'.

Convention A. When representations of a knot group G onto
a semi-direct product Zn 0 A are mentioned in future, it will
always be supposed implicitly that a meridian is mapped to the
generator t of Zn.

It has now been shown that the search for various metacyclic
factor groups of a knot group reduces to the enumeration of the
factor modules of An.

The complicated structure of An makes a complete analysis
difficult. Therefore, we limit ourselves to considering factor modules
A of An, and hence semi-direct products Zn 0 A, where the group
structure of A is just that of an elementary abelian p-group (p a
prime); A = Zp@ 0 Zp, as a group direct sum.

In this case, A must be a factor module of AJAnp (where Anp
consists of all multiples of p in An). This module will be denoted
by AntP, and it may be considered as a Zv(t) module, because every
element is of order p or 1. Since Zp(t} is a principal ideal domain
(PID), this simplifies the problem greatly.

We make two remarks before we begin to examine the structure
of An,p. Firstly, suppose that a knot group G maps onto groups
Zn 0 At', i = l, , r where At is an elementary pt group, the pί9 i —
1, ••-, r being distinct primes. Then G maps onto Zn 0 (A1φA2®
••• 0 AO To prove this, one simply observes that Zn 0 (Ax 0
@Ak) is the pull-back of the diagram Zn Q(A, 0 ©A-i) -»
Zn«- Zn 0 Ak. One proceeds by induction, using the results of § 1
of [4].
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Secondly, suppose that G maps onto Zn Q A where A is any
group. Then G maps onto Zm Q A for any multiple m of n, for
Zm S A is a pull-back of the diagram J£w -» Zn «- Zn Q A. Further-
more, any homomorphism of G onto a group Zw 0 A, where θ is of
order n < m, may be obtained in this way by lifting from Zn Q A.
For this reason, we will call a semi-direct product Zn Q A nonde-
generate if the order of θ is w.

The condition that θ be of order n has an important practical
consequence. In this case, Zn is a subgroup of Zn Q A which has
no nontrivial subgroups which are normal in 2 , 8 1 Therefore,
corresponding to Zn there is a faithful permutation representation
of Zn Q A as a group of permutations of the right cosets of Zn in
Z f t 8 l Finding a faithful permutation representation is the first
step in obtaining so called metabelian invariants of the knot.

The structure of a module over a PID is well known. Let /
be an element of Zp(t) and !(/) be the ideal it generates. Denote
by Xp(f) the Zpφ module Zp(t)/I(f).

THEOREM 1.3. If A is a Zp(t}-module then A is a direct sum
of submodules Xv(fd θ Xp(fz) θ θ Xp(Λ) where f divides fi+ι.
Any factor module of A is isomorphic to

Xpisd © -Xp(ft) © © Xp(gk) where gt divides f .

Theorem 1.3 shows that to determine the factor modules of
An,p, we need only find its direct sum decomposition.

REMARK. The module Xp{f) is most easily realised as follows.
Let 7 be a vector space of dimension deg (/) over Zp. Let θ be
the automorphism of V which is represented by a companion matrix
for / (see "Rational Canonical Form" in any text book on linear
algebra). Then V becomes a Zp(t)-modu\e by defining xι = xθ, and V
is isomorphic to Xp(f).

Suppose R is a commutative ring with identity, and Fm(R) is
a free module with basis {ejί=i, ,w. Let / be an ideal of Fm(R)
generated by k elements, rό = ΣΓ=i a^et, and A = Fm(R)jI, then the
matrix \\aH\\ is called a relation matrix for A over R. A relation
matrix for the knot module is the Alexander matrix, My of the
knot (according to the terminology of Rolf sen [7]). Thus, a relation

matrix for An is of the form ( γn) where W is a diagonal matrix

with diagonal entries tn — 1. Let moάp: Z-* Zp be the natural
projection. Then mod^ can be extended to a homomorphism, also
called mod^ from Z(t) to Zp(t), and further, mod^ can be applied
entry by entry to a matrix over Z(t). Then it is easily seen that
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the matrix ΓT^J mod^ is a relation matrix for An>p over Zp(t). Con-
sider the matrix M mod .̂ Since Zp(t) is a PID, this may be put
in the form of a diagonal matrix, V, with entries δ^t), δ2(t), , δk(t)
where δt(t) divides δί+1(t). These δt will be called the mod p elemen-
tary divisors of M. They are elements of Zp(t) whose product is
equal to Ap(t), the mod p reduction of the Alexander polynomial,
A(t). They are, of course, knot invariants.

The relation matrix for An>p over Zp(t} is thus of the form

( TTH, and this is equivalent to the diagonal matrix with diagonal

entries g.c.d. (δt(t)9 t
n — 1). We have proven:

THEOREM 1.4. The Zp(t}-module An,p is a direct sum of modules
An,p = XP{ΊX) 0 XP(Ύ2) 0 .. Θ Xp(?k) where yt(t) = g.c.d (δt(t), t« - 1),
and the δi are the mod p elementary divisors of M.

Note that t — 1 does not divide δt for any i, for otherwise £ —1
divides Δp{t), the mod p Alexander polynomial. This means that
Ail) ΞΞ O(modp) which is of course impossible, since J(l) = ± l . This
provides a proof that θ acts without fixed points on AnfP.

THEOREM 1.5. Let H be an elementary abelian p-group. Then
a knot group G maps onto Zn 0 H if and only if as a Zp(t)-module,
H = Xp(gι) Θ 0 XP(gk) where g^ divides gi+ι for all i, and g{

divides 7* for all i.

Note. Convention A applies. Of course, gi may equal 1 for
some i, in which case Xp{gϊ) is just the zero module.

We deduce a simple consequence of the symmetry property of
the Alexander matrix. It was shown by Torres and Fox [8] that
the Alexander matrix, M, is equivalent to Mτ where Mτ means the
transpose of ikf, and a bar denotes conjugation. Conjugation is the
map from Z(t) to Z(t) taking t to t~\ As a consequence, the mod
p elementary divisors of M are symmetric. That is, δify—u-δiit"1)
where u is a unit of Zp(t). We write δt ~ Sit It follows that 7*~
7i. If we factorise yt in Zp(t}, we see that if / is a factor of yi9

then so is /. Thus we have:

PROPOSITION 1.6. Let H = Xp{g^ φ φ XP(gk) and 3=
XpQΐi) φ φ Xpiΰk)- Then a knot group maps onto ZnQ H if and
only if it maps onto Zn Q H.

It is easily seen that if / is of odd degree then either t + 1
divides / or /V /. Now, if n is odd, then t + 1 does not divide
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Ύif since if p = 2, then t + 1 does not divide δi9 and if p > 2, then
£ + 1 does not divide tn — 1. Therefore if / is a divisor of τ έ of
odd degree then / is also a divisor and / Φ f, so the representations
of G onto Zn 0 Xp(f) and onto j£n 0 Xp(f) are distinct.

If n is odd, it follows from the above that each yt is
of even degree. This is to be expected in view of the result of
Plans [4] that when n is odd, An is a direct double, that is, a
direct sum of two identical abelian groups.

Theorem 1.5 allows us to find explicitly all possible metabelian
groups with commutator subgroup an elementary abelian p-group
which are factor groups of a given knot group by calculating the
Alexander matrix and the mod p elementary divisors. This may be
a little tedious however, so the following theorem allows us to find
certain factor modules of An>p directly from the Alexander polyno-
mial. The proof is easy, so it is omitted.

THEOREM 1.7. Suppose fp e Zp(t) is a factor of tn — 1 which is
not divisible by the square of any polynomial in Zp(t). Then G
maps onto the group Zn 0 Xp(fP) if and only if fp divides Ap{t).
Convention A applies.

Note. ( i ) If p does not divide n, then the condition that fp

is not divisible by a square is automatically fulfilled, since then
tn — 1 is a product of distinct irreducible factors in Zp(t). (See
below)

(ii) Zn 0 Xp(fp) is nondegenerate if and only if fp does not
divide tk — 1 for any k < n.

We now turn aside to consider the factorization of the polyno-
mial t - 1 in Zp(t}.

Firstly, if p divides n and n = mpa with g.c.d. (m, p) = 1, then
tn — 1 = (tm — ΐ)p0C, thus we are reduced to the case where p does
not divide m. Now tm — 1 is a product of cyclotomic polynomials.
tm — 1 = ILim^i where a€ is the ΐth cyclotomic polynomial, that is,
the polynomial whose roots are the primitive ith roots of unity.
An explicit formula for σt(f) is

**(«) = Π (tί/d - lY{d)

d\i

where μ{d) — 0 if d is divisible by an integral square, and otherwise
μ(d) equals + 1 or — 1 depending on whether d is a product of an
even or odd number of distinct primes, μ is called the Mobius
function. See [9] p. 139.
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As for the factoring of the cyclotomic polynomials we have:

LEMMA 1.8. If p does not divide i then at factors in Zp(t)
into Φ(i)/s distinct factors of length s, where s is the least positive
integer such that ps — 1 (mod i), and Φ is the Euler function.

See Theorem III 12 E in [9].

Now we examine more closely the conditions that fp divides
Δv{t) in zχty.

LEMMA 1.9. Let R be an integral domain and let g{t) be a
polynomial in R[t], If S is a matrix over R with characteristic
polynomial f, then

Π g(ξi) = det g(S) where ξlf - , ξr

are the roots of f in some extension of R.

Proof. In a suitable extension of R, the matrix may be put in
Jordan form, in which case, the diagonal elements of S are simply
the ξt. Then the diagonal elements of g(S) are g(ξi)f i — 1, « , r ,
and g(S) is upper triangular. The result follows.

LEMMA 1.10. Let f be a monic polynomial in Z[t] and Δ(t) e
Z[t] be the Alexander polynomial of a knot K. Let fp and Δp{t) be
the corresponding polynomials in Zp[t]. Then some factor of fp

divides Δp if and only if p divides Πl=i ^(&) where ξlt * ,fr are
the roots of f in the complex number field.

Proof. Let S be an integral matrix with characteristic poly-
nomial equal to /. Then if mod-p is the natural projection of Z onto
Zp, and Sp = S mod^, then Sp has characteristic polynomial fp, and
(det Δ{Sj) modj, = det ΔP{SP). Now some divisor of fp divides Δp if
and only if Πί=i Λ0?*) = ° where the ηt are the roots of fp. That
is, iff det ΔP(SP) = 0, that is, iff p divides det Δ(S) = Πi=i^(ίi).

Of course, the fact that Δ(t) is the Alexander polynomial played
no part in the above proof. Combining this theorem with Theorem
1.7 we obtain

THEOREM 1.11. // Δ(t) is the Alexander polynomial of a knot
K, then G(K) maps onto Zn 0 Xp(fp) for some irreducible factor fp

of σn in Zp(t), if and only if p divides Πl=i^(fΐ) where ξlf ••-,<->
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are the primitive nth. roots of unity. Z% Q XP(fP) is nondegenerate
if and only if p does not divide n.

EXAMPLE 1.12. Let n = p-l. Then ί n - l factors as ( ί- l )( ί-2)
• -(ί — (p — 1)) over Zp. Therefore G maps onto Zp_x Q Xp(ί — α) =
<s, t; tp~\ sp, t~ιst = sα> with a meridian mapping to ί, if and only
it t — a divides Δ9(t). That is, if and only if p\Δ(a). This is a
theorem of Fox [2].

EXAMPLE 1.13. If we take n — 3 and p = 2, then we see that
G{K) maps onto Zz Q (#2 0 ϋΓ2) = A, if and only if 2 divides 4(α>)
Δ(co2) where co is a primitive cube root of unity. This was previ-
ously stated but not proved by Riley [6].

In Theorem 1.11, there is nothing to tell us which of the groups
Zn 0 XP(f) the knot group G maps onto, in other words, which
irreducible factor / occurs. However as we will show right now,
this is not critical, for if f% and /2 are different irreducible factors
of σnf then Zn Q XP{fd and Zn Q XP(f2) are isomorphic. The isomor-
phism does not send the distinguished generator of Zn to distin-
guished generator and so we lose track of where a meridian is
mapped. First we prove a preliminary result.

LEMMA 1.14. Let m be an integer not divisible by p and let ft

be one of the irreducible factors of σm over Zv. Let V be a vector
space over Zv and let Θ be an automorphism of V with minimal
polynomial f[. If f2 is another irreducible factor of σm, then there
exists an integer s coprime with m such that fl is the minimal
polynomial of θ\

Proof. Since an irreducible factor of σm has no repeated roots,
we may split fl in some splitting field to obtain fr = [(t — ft) •
(* - ίfe)]r τ h e n i f s ^° t h e minimal polynomial of θ8 is Π*=i (£-£i)r.
Now, since /x = ΠjU (* — ζs) ̂ a s coefficients in Z9, so does ΠjU (ί —f}).
Also, if g.c.d. (s, m) = 1, then £} is a primitive mth root of unity,
since ξs is a primitive mth root of unity. Thus ΠJU (* — £}) must
be one of the irreducible factors, ft of σm. Clearly, for different
choices of s, one obtains all the possible ft.

As an immediate consequence we obtain

THEOREM 1.15. // σr

m divides tn — 1, and f and f2 are two
different irreducible factors of σm over Zp, then Zn Q XP{fl) is
isomorphic to Zn S Xp(f2

r).
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2* Calculation from a table of homology groups* Theorems
1.7 and 1.11 togther with the remarks about nondegenerate semi-
direct products allow a systematic enumeration of all the metabelian
factor groups of G of the form Zn Q XP(f) where / is irreducible.
By pull-back techniques, one can furthermore show that if G maps
onto Zn S Xp(fί) and Zn 0 Xp(f2), where ft and /2 have no common
factor over Zp, then it maps onto Zn S Xp(fxf2). Thus, we can deter-
mine, from the Alexander polynomial alone, all metabelian factor
groups of the form Zn Q XP(f) where / does not contain a repeated
factor. (This condition is automatically fulfilled if p\n.)

If more general factor groups are desired, one must calculate
the structure of An>p. This can be done by calculating the mod p
elementary divisors (a separate calculation for each p). An alterna-
tive method is to use a table of homology groups of the cyclic
covering spaces.

If hι and h2 are elements of Zp(t} and g.c.d. (hlf h2) — 1, then
Xp(hh2) = Xp(hύ®Xp(hά. It follows that a module over Zp(t) can
be broken up into a direct sum of submodules of the form Xp(fa)
where / is irreducible.

DEFINITION 2.1. Let An,p be written as a direct
where the ft are irreducible. Let / be in Zp(t). Denote by HntP(f)
the direct sum of just those Xp(fiή such that ft divides /.

Let n = qm where q = pa and g.c.d. (m, p) = 1. Then, any
irreducible factor of ί* — 1 in Zp(t) must divide exactly one σk

where &|m. It follows that AntP = 0 f c i m Hn,p(σk). However it can
be deduced from Theorem 1.4 that Hn,p(σk) = Hkq,p(σk). Thus:

(2.2) A*,, = ® Hkq,p(σk) .
k\m

We consider two cases.

Case 1. p does not divide n .

In this case, (2.2) becomes

(2.3) An,p - 0 Hk,9(σk) .
k\n

Thus, our goal is to determine Hk>p(σk) for each k dividing n. Since
Zp is a field, a module A over Zp(t} can be considered simply as a
vector space over Zp. Define the dimension of A, dim (A) to be
its dimension as a vector space. As a group, then, A is a direct
sum of dim (A) copies of Zp. It follows from 2.3 by an easy
induction that for any n not divisible by p,
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(2.4) dim Hn,p(σJ = Σ dim (A,,,) • μ(n/i)

where μ is the Mobius function defined previously.
dim (AifP) is easily read from a table of cyclic homology groups,

being the largest integer b such that there is a group homomorphism
of Ai onto a direct sum of b copies of Zp. If σn is irreducible over
Zp, then Hn,p(σn) = Xp{σn) φ φ XP{on) is completely determined
by its dimension. Otherwise σn factors into Φ(n)/s = r factors
flf , / r of degree s. Then

H..M = XP(fh) Θ X,(fH) θ θ X,(/<2r)

The following considerations are often enough to determine the
structure exactly

( i ) JVβ = dim(JBΓ.,,(σ.)).
(ii) Xp(fi) occurs at least once in this direct sum if and only

if fd divides Ap(t) (over Zp).
(iii) If Xp(fj) occurs c times in this direct sum, then // divides

Δ9(t)9 and the Alexander matrix has dimension at least c x c.

Case 2. p divides m .

In this case, using (2.2) it can be shown by induction that

(2.5) dim Hkq,p(σk) - Σ dim (Ajq,p). μ(k/j) .

If σk is irreducible over Zp, then

Hkq,p{σk) - X,{&S)

with α4. ̂  α ί + 1 for all i, and aN ^ g. The following conditions are
often sufficient to determine the α£.

( i ) dim Hkq,p(σk) = deg (<j4) Σf=i ^
(ii) iV-deg (ak) = dim Hk,p(σk).

The second condition follows from the fact that if Hkq,p(σk) is of
the form given above, the HkiP(σk) is a direct sum of N copies of
Xp(σk). Thus, using (2.4) we may determine N. The case where
σm is not reducible may be considered using a combination of the
above methods. Details are omitted.

As an example we consider the knot 940, which is a 3-bridged
knot with Alexander polynomial 1 - 7ί + 18£2 - 23ί8 + 18ί4 - 7ί5 + tβ

and whose cyclic covering spaces are as follows
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Degree
2

3

4

5

6

Torsion
5

4

3

11

0

15

4

3

11

0

8

3

11

4

8

15

11

4

15

40 40

In explanation, the last line means that the 6 fold cyclic homology
group is 2 θ ^ φ ^ φ 2 4 e ^ o φ Z 4 O .

The following is a list of modules HkqiP(σk)

H2,δ(σ2) = X5(<72) 0 X5(σ2); H2,z(σ2) = Xz(σ2)

(σ4); i?4,5(σ4) = 0

JΓβ,n(<0 = -ΣiiCί - 5) 0 Xn(t - 5) 0 Xn(t - 9) 0 Xu(t - 9)

H6)2(σ3) = X2(σ3) 0 X2(σ3

2); ϋ6,3(<72) = XM)

£Γ6>5(<76) = X5(σ6) .

For p ^ 7, iϊ6>p(σ6) = X > 6 ) and for p s 1 mod 6, Xp(σ6) = X,(t-a)@
X.p(t — β) where a and β are the two roots of σ6 in Zp.

EXPLANATION. In the case of Hΰtll(σ6) we see that σδ factors
over Zn into (ί - 4)(ί - 5)(ί - 9)(ί - 3), of which only t - 5 and
ί — 9 divide Δp(t). This explains the structure of ίiΓ5)11(σ5). As for
HBΛ(σ9), we see that dim (H6f2(σ3)) = 6 whereas dim (H3Λ(σs)) = 4, so
£Γ6,2(σ3) must be I2(σ3) θ ί W . H6>3(σ2) is treated similarly. All
the others follow directly from evaluating the dimension.

Finally it seems appropriate to indicate how a given metabelian
representation of a knot group is to be found. Suppose that G has
a representation on Zn Q A, where A is a Zp(t)-modxύe of linear
dimension d. Elements of A can be written as eZ-tuples of elements
of Zp, and θ can be represented by a d x d matrix S over Zp. In
particular, if A = Xp(f) then S is a companion matrix for /. One
seeks to label the overcrossings (corresponding to Wirtinger gener-
ators) of a knot diagram with elements of Zp(i.e., d-tuples) in such
way that at a crossing point with labels as shown,

the labels obey (u — v)S + v — w = 0. Then one verifies that if a
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Wirtinger generator corresponding to an overcrossing marked u is
mapped to the element t u of Zn Q A, then this is a homomorphism
of the knot group.
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