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SPACE COVERINGS BY TRANSLATES
OF CONVEX SETS

H. GROEMER

Let (Ci) be a sequence of compact convex subsets of
euclidean ^-dimensional space En. Some necessary and
sufficient conditions in order that almost all points of En

can be covered by translates of the sets C* are established.
It is shown that such a covering is possible if and only
if all points of En can be covered by congruent copies of
the sets C*.

1* Introduction* Let (C<) = (Cίf C2, •) be a sequence of convex
subsets of ^-dimensional euclidean space E*. We say that (d)
permits an isometric covering of E* if there are proper isometries
(rigid motions) σlf σ2, so that En a Uσfit. In [1], [2], [3], [4],
[5], and [6] it has been shown that in many cases those sequences
(C,) that permit isometric coverings of E% can be characterized in
terms of convergence properties of sequences involving the volumes,
diameters or other functionals associated with the sets C€. Recently
S. K. Stein has pointed out that analogous problems can be con-
sidered if instead of isometries only translations are permitted. In
fact, already Hlawka [9] has proved some results involving this
idea. A covering problem regarding translates of strips has been
considered in [7]. Generally speaking, translative problems of this
kind appear to be more difficult than the corresponding isometric
ones. However, in the present paper it will be shown that the
situation is a rather different one if, instead of translative coverings
of all En, one considers translative coverings of almost all points of
E* (with respect to Lebesgue measure). A sequence (C<) is said to
permit a translative covering of almost all points of En if there
are translates C[9 C'2, of Cu C29 so that E*\\jC't is a nullset.
First, we establish some necessary and sufficient conditions in order
that a given sequence (C4) permits such a covering of Έ% (Theorem
1 and corollaries). Then we are going to prove the rather unexpec-
ed result that a sequence of compact convex subsets of E% permits
a translative covering of almost all points of E* if and only if it
permits an isometric covering of all En (Theorem 2). Although these
two covering properties are equivalent there exists apparently no
direct procedure for obtaining the one kind of covering from the
other.

In the following section two lemmas are proved. Our theorems
together with proofs and corollaries are presented in the third
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section, n denotes always an arbitrary but fixed positive integer.

2- Two lemmas. If ScEn, TdEn we denote by S + T the
vector sum {s + t: s e S, t e T}. For x e En we write S + x instead
of S + {x}. Lebesgue measure in En is denoted by m. The closed
ball in En of radius r and with center at the origin is denoted by
U(r). Instead of Z7(l) we write simply Z7. By κ% we denote the
volume of U.

LEMMA 1. Let Mx and M2 be two measurable subsets of En such
that Mt is contained in a translate of Ufa) and M2 in a translate
of Ufa). Then, there exists a point peEn so that

m(Mt Π (Λf2 + p)) ^ — - —
fCfa + r

Proof. We can certainly assume that mMι Φ 0, mM2 Φ 0 and
M1 c Ufa), M2 c Ufa). If m is viewed as a Haar measure on the
translation group of En it is a well-known result of measure theory
(cf. Halmos [8], p. 261) that

(1) I m{Mι Π (M2 + x))dx = mMίmM2 .

The integration in (1) can obviously be restricted to those points x
that satisfy M1 Π (Λf8 + x) Φ φ9 which is equivalent to xe{p — q:
peMuqeM2}. Because of MλczUfa) and M2aU(r2) it follows that
the integration in (1) can be restricted to Ufa + r2). Using this
fact we deduce from (1) that

( 2 ) ιcnfa + r2)
n sup m{Mι Π (M2 + x)) ^ mM1mM2 .

Here, if the equality sign would hold we could infer, taking also
into account the assumption /mM1mM2 > 0, that for almost all
y e Ufa + r2)

m(M1 Π (AΓ2 + y)) = sup m(Mx Π (M2 + x)) > 0 .
X

But this relation is clearly not satisfied if y belongs to a set of
positive measure sufficiently close to the boundary of Ufa + r2).
Hence, (2) holds with strict inequality and this implies obviously
Lemma 1.

To state our second lemma we need the following concepts which
have also been used extensively in [3]. For 0 <; d ^ n we denote
by ^ d the class of compact convex subsets of Ed. For Ce^d let
D(C) be a line segment of maximal length that is contained in C.
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By N(C) we denote the orthogonal projection of C onto a (d — 1)-
flat that is orthogonal to D(C). Furthermore, if C e ^ we define

N\C) = C

N\C) = N(Nk'\C)) (k - 1, 2, , n) ,

and

D\C) = D(N\C)) (A? = 0, 1, •• ,w).

Here Nj(C) has to be viewed as a subset of an i£%~Λ By a trun-
cated k-cylinder we mean a set of form K + Iλ + I2 + + JΛ_fc

where ίΓ is a compact convex subset of a Λ-flat H, and J^ /2, , In_k

are mutually orthogonal compact line segments contained in an
(n — &)-flat HL that is orthogonal to H. The analogously defined
set K + Lt + L2 + - + Ln_k where Llf , Ln-k are mutually
orthogonal lines in H1 will be simply referred to as a k-cylinder.
K is called the base of the ^-cylinder. Every truncated ά-cylinder
is compact and convex, every fc-cyUnder is closed and convex.

LEMMA 2. Let k be one of the integers 0,1, , n and C e %?n.
If Z is the truncated (n — k)-cylinder defined by

Z = Z~kNk(C) + 3-ιD°(C) + Z~2D\C) + + %~kDk-\C)

(Z = C if k = 0) then there is a translate ZΫ of Z so that

( 3) Z ' c C .

Proof. We prove the lemma by induction with respect to k.
The case k — 0 is trivial. If (3) is true for a given k (and every n)
it can be applied to N(C) and we find that there is a translation
vector x so that

3~kNk+1(C) + 2Γ"D\G) + • • + 3-*£>fe(C) + a? c

This implies obviously

3-\D°(C) + Z~*

o

Hence (3) holds for & + 1 if it can be shown that a translate of
lβ(N{C) + D\C)) is contained in C. However, this fact has been
proved in [3] (Lemma 1).

3* Theorems* First we prove a theorem whose analogue for
isometric coverings has been proved in [4]. The volume, considered
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as a functional on ^ , will be denoted by vd. But instead of vn

we write often simply v; hence v = m (the Lebesgue measure) on

THEOREM 1. Z/e£ (C<) be a sequence of compact convex subsets of
En such that the sequence of the diameters of the sets Ct is bounded.
Then, (Ci) permits a translative covering of almost all points of En

if and only if

( 4 ) Σ t>(C,) = - .

Proof. Since (4) is obviously a necessary condition we have
only to show that it is also sufficient. Moreover, it suffices to show
that almost all points of the unit ball U can be covered by trans-
lates of the sets C*. The validity of this remark follows from the
fact that En can be written as a union of countably many unit balls,
and that it is possible to partition the positive integers into infinitely
many subsequences so that (4) holds for each corresponding subse-
quence of (Ct) (for more details on this matter see the proof of
Theorem 2 in [3]).

To prove that almost all points of U can be covered we note
first that there exists a number r so that each C4 is contained in
some sphere of radius r. We show now inductively that there exist
translates C[, C[, of Cl9 C2, so that for every positive integer
k

( 5 ) m(u\u C'λ ^ tcn Π (1 - cmCx)

where c = l/(/c.(l + r)n). An application of Lemma 1 to the case
Mx = U, M2 = C19 rx = 1, r2 = r yields a set C[ — C1 + p so that

m(UΓ\C[) ^ cmUmC, .

This shows that

which is (5) for k = 1. If C[, C2, - ,C'k have already been constructed
so that (5) holds we apply again Lemma 1, this time with Mι ~

CΛUίfc=i Cz> M* — C*+i> r i = 1» r2 = r τ l i e n w e obtain a set C£+1 =
Ck+1 + p so that

m( ((u\u c 0 n c'k+i) - cm(u\ύ σ

It follows that
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Because of (5) this shows that

/ \ fc+l \ fc + l

m(D'\uCί)^ic.Π(l-
\ \i=l / i=l

which is (5) with k replaced by k + 1. Due to the fact that m(U\C[)
is finite and m( U\\Jΐ=1 Q), considered as a sequence in k, is decreasing
it follows from (5) that

( 6 ) m(u\Q Cλ £ κn Π (1 - cmC<) .
\ \i=l / i=l

Since (4) implies ΠΓ=i (1 — cmCi) = 0 we obtain from (6)
m(ί7\UΓ=iC ) = 0, which is the desired result.

Theorem 1 can be generalized if one considers for a given
k = 1, 2, , n a sequence of A -cylinders J2Γ4 = 2^ + if* where each
JBi is a compact convex subset of some k-Άat Gt in En, and iί* is
an (n — &)-flat orthogonal to Gt. The fc-flats G£ are not assumed to
be parallel. If Q* is a unit cube in Hi and if we define Zf = Bt + Qt

then v(Z*) = vh(B^). Therefore, if the sequence of the diameters of
Bi is bounded the condition Σ^ vk(B^ — °° is sufficient in order that
(Zf), and consequently (ϋΓJ, permits a translative covering of almost
all points of En. Conversely if such a covering, say (Z[), exists
then m(U(r) ΓΊ \JiZ[) = /cnr

n. But it is easily proved (see [3], Lemma
2) that for k = 1, 2, , w

( 7 ) m( C/(r) Π Z{) ^

(ic0 = 1). Hence,

i = l

If we let r tend to infinity this implies ΣΠ=i ̂ (BJ = oo. Thus, we
can state the following corollary.

COROLLARY 1. Let k denote one of the integers 1, 2, , n, and
let (Zi) be a sequence of k-cylίnders Zt in En whose bases Bt have
volume vk(Bt). Moreover, it is assumed that the sequence of the
diameters of the sets Bi is bounded. Then, {Zz) permits a transla-
tive covering of almost all points of En if and only if

( 8 )
i=l

In the case of 1-cylinders Zt = Bi + Hi each set Zt is a strip
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(or "slab") consisting of all points between two parallel hyperplanes
of distance v^B^. Again, for different subscripts i the segments
Bi are not assumed to be parallel. We call v^B^ the width of Zt

and denote it by wt. The condition of Corollary 1 that the sequence
of the diameters of 2?< be bounded is of no importance for strips.
In the proof of the necessity of condition (8) the boundedness was
not used. On the other hand, if (8) is satisfied there are two
possibilities. If wt > 1 for only finitely many strips one can remove
these strips from the given sequence without changing the validity
of (8). But if Wi > 1 for infinitely many strips, each of these strips
Zi can be replaced by a strip contained in Zt and of width equal
to 1, again without disturbing (8). Hence, Corollary 1 yields the
following result:

COROLLARY 2. If {Yd is a sequence of strips of widths wif then
(Yi) permits a translative covering of almost all points of En if
and only if Σwi— °°

The problem regarding translative coverings of all En by strips
is much more difficult. In [7] it has been shown that for n = 2 the
condition Σ w\/% = oo is sufficient.

We can now prove our main theorem concerning the relationship
between isometric coverings of all En and translative coverings of
almost all points of En.

THEOREM 2. A sequence (Ct) of compact convex subsets of En

permits a translative covering of almost all points of En if and
only if it permits an isometric covering of En.

Proof. It can be assumed that Ct Φ φ for all C*. We use the
projections N\C) and the diameter sets Dk(C) that have been used
in Lemma 2. Moreover, for k = 0, 1, , n we denote for any non-
empty Ce<tfn the diameter of N\C) by d\C), and define v\C) = 1,

V\C) = vn_k(N\C)) (fc = 0, 1, , n - 1). As in [3] we introduce also
classes Sk consisting of sets Gt by

Sk = {C<: d\C<) £ 1, d*-ι(C<) > 1} (k - 1, 2, ., n) .

It has been shown in [3] (Theorem 2) that (C%) permits an isometric
covering of En if and only if there is an integer k (0 ̂  k ^ n) so
that

(9) Σ ^ * ( C < ) = - .
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Hence, our theorem is proved if we can show that (C<) permits a
translative covering of almost all points of E* if and only if (9)
holds.

Let us first assume that (9) is satisfied. It follows from Lemma
2 that each Gt e Sk contains a truncated (n — &)-cylinder Zt that is
a translate of Z^N^C,) + ^DXC,) + - + a-kDk-\Ct). Because of
Ct 6 Sk we have dk~\C^ ^ 1 and this implies that the length of each
of the segments J9°(C,), DXCJ, , Dk'\Ct) is at least 1. It follows
that every Ct e Sk contains a translate of a truncated (n — &)-cylinder
Tt of the form T, - %-χNXCt) + Q<) where Qt is a λ -dimensional
unit cube. Since CieSk implies also that the diameter of each
Nk(Ci) is not greater than 1 it follows that the sequence of the
diameters of the cylinders Tt is bounded. Taking into account that
the volume of Tt is Z~~knv\Ct) we deduce from (9) and Theorem 1
that the sets Ct from Sk permit a translative covering of almost all
points of En.

Let us now suppose that (C<) permits a translative covering of
almost all points of En. We may assume that the sets Ct have
already been so translated that

(10) mCE^UQ = 0 .

If k = 0, 1, , n - 1 and C< e Sk we note that C« is contained in
an (n — &)-cylinder of the form Xt = Nk(Ci) + L where L is a Zs-flat
orthogonal to Nk(Ct). To each X̂  with CiGSk we may apply (7)
(replacing the fc-cylinders Z\ by the (n — &)-cylinders Xt) which
yields

m(U(r) n X,) ^ ^κkv\Ct) (k = 0, 1, , % - 1) .

From this and (10) we can deduce that

ιcnr* = m(u(r) Γl ( U ** U U

S Σ rkκk Σ , v\Ct) + Σ »(C4) .

For r —> ĉo it follows that (9) holds for some k — 0, 1, , w — 1 or
that Σ^e^^Ci) = oo. In the latter case the class S% must be
infinite and this implies ^c^s* vn(Ci) = °° Hence, (9) holds for some
k = 0,1, , n9 and we have obtained the desired conclusion.

As a consequence of Theorem 2 we can transfer all the necessary
and sufficient conditions stated in [3] to translative coverings. We
mention only the following result:

A sequence (CJ with Ct 6
 (^?n permits a translative covering of

almost all points of En if and only if
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