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TUBULAR NEIGHBORHOODS OF HILBERT
CUBE MANIFOLDS

W. 0. NOWELL, JR. 1

Let M and N be Q-manif olds and let i be a locally flat
embedding of N into M. It is shown that if N = Q X Rn,
then i must be flat. The following version of the Kirby-
Siebenmann codimension 2 tubular neighborhood theorem is
proved. If i is locally flat of codimension 2, then the
embedded submanifold has a tubular neighborhood, and any
two such tubular neighborhoods are isotopic. Among the
tools developed is a relative version of Z-set unknotting.

1* Introduction. An open neighborhood E of N in M is said
to be a tubular neighborhood (of codimension n) if there is a retrac-
tion p:E->N such that (E, p, N) is a fiber bundle with fiber
Euclidean w-space Rn and O-section N. That is, there exists an
open covering {[/,} of B and, for each index i, a homeomorphism
φt: Ut x Rn —> p~\Ui) such that pφt(x, y) = x for all xe Ui9 and,
furthermore for any i and any x e Ui9 φt(x9 0) = x.

The following is a closely related concept. A closed embedding
i:N->M is said to be locally flat (of codimension n) if for each
xoeN there is an open neighborhood U of #0 in N and an open
embedding h: U x Rn -+ M such that A(α, 0) = i(x) for all xeU. If
£7" can be taken to be all of N9 then the embedding is said to be
flat. It is an immediate consequence of the definition that if N has
a tubular neighborhood in M, then the inclusion N' ~* M is locally
flat. Thus, for example, a wild knot in Rz cannot have a tubular
neighborhood. (For a discussion of local flatness and tameness, see
also [1].)

In case M and N are differentiable manifolds there are naturally
defined notions of tangent and normal vector bundles, and most
questions can be answered in terms of these structures. In parti-
cular, every smooth embedding is locally flat, and in the smooth
category every submanifold has a tubular neighborhood.

The problem is somewhat more difficult in the case of finite
dimensional topological manifolds. Not all locally flatly embedded
manifolds need have tubular neighborhoods, as is demonstrated by
the counterexamples by Rourke and Sanderson [18] and by Hirsch
[9]. The following results are known for M and N finite dimen-

1 These results first appeared in the author's doctoral dissertation at the University
of Kentucky under the direction of Professor T. A. Chapman. The author is grateful
to Professor Chapman for his assistance throughout the progress of the work.
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sional manifolds and N-+M locally flat of codimension n. The
collaring theorem of Brown [1] implies that if n = 1, then N has a
tubular neighborhood. Kirby and Siebenmann [12] have shown that
if n = 2 and dim N Φ 2, then N has a tubular neighborhood. Milnor
[17] proved the stable existence of tubular neighborhoods, that is,
if the integer k is sufficiently large, then N x {0} has a tubular
neighborhood in M x Rk. Stern [19] has proved a stronger result
for large codimension, namely, if n ^ dim N — j — 1 and n ^ 5 + j ,
where j = 0,1, 2, then N has a tubular neighborhood.

The purpose of this paper is to investigate similar questions
where M and N are Q-manifolds, that is, manifolds modeled on the
Hubert cube Q. Here is our first main result.

THEOREM 1. Let M be a Q-manifold and let m ^ 0. If i:Q x

Rm —» M is locally flat, then i is flat.

The case m = 0 has been proved previously by Chapman [3].
The answer to the following is not known.

Question. If "Q x Rm" is replaced by "a contractible Q-manifold
N" in the statement of Theorem 1, is the theorem still true?

Brown's theorem applies to Q-manifolds, so it is known that if
iV—> M is locally fiat of codimension 1, then N has a tubular neigh-
borhood. Our second main result is a Q-manifold version of the
Kirby-Siebenmann codimension 2 theorem.

THEOREM 2. If (M, N) is a Q-manifold pair and the inclusion
N -^ M is locally flat of codimension 2, then N has a tubular
neighborhood. Furthermore any two such tubular neighborhoods are
isotopic as normal microbundles.

The uniqueness part of this statement means that if pt: Et —• N,
i = 1, 2, define the tubular neighborhoods, then there is a home-
omorphism h:M-+M such that h = id on N, h is isotopic to id
rel N9 and there exists some open neighborhood U of N in E1 such
that h(U) c E2 and p2h = pι on [/.

We note in conclusion that Chapman [4] has recently proved
that there exists a codimension 3 locally flat embedding N ^ M of
a Q-manifold such that N has no tubular neighborhood and, more-
over, no stabilization N x {0} —> Λf x iϋfe has a tubular neighborhood.

The paper is organized as follows. Section 2 consists of pre-
liminaries including a summary of the basic results from Q-manifold
theory and bundle theory which will be used subsequently. Section



TUBULAR NEIGHBORHOODS OF HILBERT CUBE MANIFOLDS 233

3 develops some new Q-manifold results. In particular Theorem 3.2
is a relative version of the notion of Z-set unknotting, a concept
introduced by R. D. Anderson in the study of the Hubert cube and
one which has been central to the study of Q-manifolds. This
particular theorem will be used in the proof of Theorem 1.

The main technical aspects of Theorems 1 and 2 are proved in
§4. The proofs of the theorems themselves are then contained in
§§5 and 6 respectively.

2Φ Preliminaries* All spaces are locally compact, separable and
metric unless otherwise specified. We use the standard notation
Rn, Bn and S""1 to mean ^-dimensional Euclidean space, the unit
w-ball and the unit (n — l)-sphere respectively. We also use ||&|| to
denote the Euclidean norm of a point x.

If f, g: X-+ Y are maps and a is an open cover of Y, then we
say that / is a-close to g provided that for each xe X there is some
U 6 a such that both f(x) and g{x) are elements of U. We say that
a homotopy Ft: f ~ g is an a-homotopy and that / and g are a-
homotopic (denoted f ~ g) provided that for each xe X there is
some Uxea such that {Ft(x):0<,t^l}aUx. A proper map is a
map for which inverse images of compact sets are compact. Such
notions as proper homotopy and proper homotopy equivalence are
defined in anology with the corresponding notions from the ordinary
homotopy category. A proper map f:X—*Y is an a-equivalence
if there is a proper homotopy inverse g: Y-+X so that fg is a-
homotopic to idγ and gf is /~1(α)-homotopic to idx, where f~ι(a) —
{f-\U)= Uea}.

We represent the Hubert cube Q as the countably infinite product
of closed intervals [ — 1,1]. A space M is a Q-manifold if it has a
basis consisting of elements which are homeomorphic to open subsets
of Q. Many Q-manifold results involve the [notion of a Z-set. A
closed set A in a space X is a Z-set in X if, given any open cover
a of X, there is a map /: X-+ X — A such that / is α-close to idx.
An embedding f: X-+ Y is a Z-embedding if f(X) is a Z-set in Y.

Our basic reference for Q-manifold theory is [2], which should
be consulted by a reader interested in more details. For convenience
we list some of the basic machinery which will be used frequently
in the sequel.

2.1. Z-set unknotting [2, Theorem 19.4].
2.2. Approximation by Z-embedding [2, Theorem 18.2].
2.3. Stability of Q-manifolds [2, Theorem 15.1].
2.4. Triangulation of Q-manifolds [2, Theorem 37.2].
2.5. Edwards' ANR theorem [2, Theorem 44.1].
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We will also freely use the terminology associated with fiber
bundles in standard references such as Husemoller [11] and the
notion of microbundle as defined by Milnor [16]. Related concepts
concerning microbundles may be found in [15].

If M is an m-dimensional topological manifold or a Q-manifold,
and N is a submanifold of M, then a normal microbundle for N in
M consists of an open neighborhood E of N and a retraction

p: E-+N so that N^ E —> N is a microbundle. Thus every tubular
neighborhood is a normal microbundle. As a consequence of the
Kister-Mazur theorem [13], every normal microbundle contains a
tubular neighborhood. Thus the notions are equivalent so long as
we are free to pass to a smaller neighborhood. (The versions of
the Kister-Mazur theorem proved by Kister [13] and by Kuiper-
Lashof [15] include the hypothesis that the base space is a poly-
hedron. We need the base space to be a Q-manifold. Such a result
is readily proved from Kister's result, and, in any case, the
generalized version of the theorem proved by Holm [10] is certainly
broad enough for our purposes.)

3* ^-sets in a locally flatly embedded Q-manifold* The
purpose of this section is to establish Theorem 3.2, a relative version
of Z-set unknotting. That is, we show that if N is a locally flatly
embedded submanifold of a Q-manifold M, then Z-set unknotting in
N can be extended to a homeomorphism of M which preserves N.

Lemma 3.1 is a technical tool used in the proof of Theorem 3.2.
It will also be used in its own right in the sequel.

LEMMA 3.1. Let M and N be Q-manifolds, where N is a locally
flat submanifold of codimension n, and let φ be any homeomorphism
of N onto N x /. Then there exists a homeomorphism h: (M, N) —»
(AT, N) such that kφ'\x9 1/3) = φ~\x, 2/3) for all xeN.

Furthermore, if N is compact and if W is any open neighbor-
hood of φ~\N x [1/3, 2/3]) in M, then h can be chosen so that its
support is a compact subset of W.

Proof. In order to simplify notation, we identify N and φ(N)
and thus regard N x I as a locally flat submanifold of M.

Case 1. N is compact. It follows from elementary compactness
arguments and the locally flat structure there exist open sets Ut

and Vt of N, i = 1, , m, and open intervals (α, , &, ), j — 1, , ft,
satisfying the following properties.

(1) {Z/JJLi is an open cover of N.
( 2 ) ϋidVi for each i.
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( 3 ) 0 < αx < < αfc < 2/3 a n d 1/3 < δi < • - < δfc < 1.
( 4 ) {(ajfbj)}U covers [1/3,2/3].
( 5 ) Nx (a19bk)dW.
(6) For each pair (i, j) of indices, there is an open embedding

Qij' Vt x (α y, δy) x Rn > M

with gtj(x, 0) = x for all xe Vi x (αy, δy).
We choose numbers ί0 = 1/3 < tt < < tk = 2/3 so that

y, 6,0 Π ( α i , fc -

For any fixed choice of i and for each choice of j from 1 to ί;, it
follows from a standard Tietze extension argument that there is a
homeomorphism

θ - V, x (αy, V, x (αy, δy)

which has compact support and is such that θ(x, tά_x) = (a?, ίy) for
all xeUt. The geometry is illustrated by the following picture.

•0~id here

Ί-ι

It is, moreover, clear that 0 can be extended to a homeomorphism
on gij(Vt x (αy, δy) x iϋΛ) whose support is a compact subset of W.
Thus, extending by the identity, we obtain a homeomorphism of
pairs fi}j: (M, N x I)-> (M, N x I) such that fitS(χ, t^x) = (x, td) for
all xe Ui. Therefore the homeomorphism

/* - / α ° / α - i ° o/ i f l: (Af, ΛΓ X I) > (M, N x I)

has the property that ft(x, 1/3) = (a?, 2/3) for all xe Ut.
Now we construct h by piecing together the / t . That is, we

construct a finite sequence of homeomorphisms hλ = flf h2, , hm = h
of (Λf, JSΓ x /) onto itself such that ht(x, 1/3) = (x, 2/3) for all a? 6
Ux U U Ui and such that pji^x, t) - x for all (x, t)eNxI, where
PJ. is projection on the first coordinate of N x I.

We note that ht = /x has the desired properties. The following
picture illustrates how hi+1 is constructed from ht.
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Mil)

N V,

The details of the formal construction are again routine and are
left to the reader.

Case 2. JV is locally compact. Represent N as the union of
two closed subsets A and B, where A = JjΓ=i Λ, B = UΓ=i #* and
{AJ and {Bt} are collections of pairwise disjoint compact subsets of
JV. Applying Case 1 to each of the At separately, we obtain a
homeomorphism /: (M, N x I) -> (AT, JV x /) so that /(α, 1/3) = (a?, 2/3)
for all x e A. Then we can apply the same techniques as before to
define a family of homeomorphisms gt so that gJix, 1/3) = (x, 2/3)
for all xeAuBi. Moreover, since the Bt are disjoint, the gt can
be chosen with disjoint supports, so the infinite composition is a
well defined homeomorphism g. Therefore, h = gf is the desired
homeomorphism.

THEOREM 3.2. Let M and N be Q-manifolds with the inclusion
i:N--> M a locally flat embedding, and let A and B be Z-sets in N.
Iff:A—>Bis a homeomorphism which is properly homotopic to the
identity in N, then there is a homeomorphism h: (M, N) —> (M, N)
with h\A = /.

Proof. Case 1. Af]B=φ. It is an elementary exercise to show
that there is a homeomorphism <p: N —> N x / such that φ(B) aN x
{2/3}. Note that φ(A) Π φ(B) = φ, so we can define a Z-embedding
g: <p(A) U ψ{B) -+ N x I by gφ(x) = 9>(a;) if x e £ and, if cc 6 A, ^ x ) =
(y, 1/3) where φ/(α;) = (y, 2/3). Now let F: A x I-> JV be a proper
homotopy such that Fo = icZ and JF\ = /. Note that φF is then a
proper homotopy between ψ and ^/, and, furthermore φf ~ gφ\A
by a straight line homotopy. Thus g\φ(A)~id and g\φ(B) = id,
so by Z-set unknotting in JV x / there is a homeomorphism extend-
ing g to JV x /. That is, there exists a homeomorphism ψ: N—>
N x I such that π/r(A) c JV x {1/3} and <fff-\x, 1/3) = (x, 2/3) when-
ever (x,
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Then by Lemma 3.1 there is a homeomorphism h: (Af, N) ->
(Af, N) such that hf~\x, 1/3) = ψ~\x, 2/3) for any x e N. In parti-
cular, if ye A, then ψ<2/) = (x, 1/3) and we have h(y) = ^ ( a , 2/3) =
fψ~\x, 1/3) = /(i/) as required.

Case 2. A n 5 ^ 0 . Let φ: N —> iV x / be a homeomorphism
such that <p(A U B)aN x {1/3}. Then by Lemma 3.1 there is a
homeomorphism hx\ (M, N)-+(M, N) such that φhγ(B) aN x {2/3}.
In particular A (Ί /̂ (B) = 0 . Then it follows from Case 1 that the
homeomorphism hj\ A —• /̂ CB) can be extended to h2: (Af, iV) —> (Af, iV).
Therefore h = Λf1^ *s t ^ e required homeomorphism.

REMARK. The reader may observe that our Theorem 3.2 makes
no mention of the cover control frequently associated with Z-set
unknotting. The theorem as stated is sufficient for our later use,
but a full analogy of Theorem 19.4 of [2] complete with cover
control can be proved by imitating the techniques used in Chapter
IV of [2] and slightly modifying the above proofs.

4* Two meshing lemmas. In this section we develop the main
technical results which will be used in the proofs of Therem 1 and
Theorem 2. Lemma 4.3 will be used to mesh trivial microbundles
of arbitrary codimension and Lemma 4.7 will be used to mesh
arbitrary microbundles of codimension 2.

The proofs of these lemmas will both rely on the notion of a
pinched tube. We now define this construction for a trivial tube.
A similar construction for a codimension 2 tube will be given later.

Let (ilf, JV) be a Q-manifold pair. Suppose N is homeomorphic
to Q x Rm for some m ^ 1. A trivial tubular neighborhood for such
a manifold N is then defined by a homeomorphism

/: (Q x Rm x Rn, Q x Rm x {0}) > (D, N) ,

where D is an open neighborhood of N in M. Then for any choice
of a map r: 2Bm —> (0, oo) such that

(1) r(x) ^ r(0) for all x e 2Bm,
( 2 ) r(x) = r(0) for all x e Bm, and
(3) limMxlMϊr(a0 = O,

a closed tube can be constructed as follows. Let

E = {f(q, x,y)eD:xe 2B™, \\y\\ ^ φ)} ,

let B =f(Q x 2Bm x {0}) and let p:E-^B be the retraction defined
by pf(q,x, y) =/(<?,&, 0).

We shall call (E, p, B) the pinched tube determined by the
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embedding / and the map r. We shall also refer to r as the pinch-
ing function for t h e t u b e and call A = {f(q, x, y) eE:\\y\\ = r(x)} the
boundary of the pinched tube. The following picture illustrates this
notion.

N

D

A
V V

A

1 \

/

The following observations are immediate consequences of the
definition and will be used subsequently without further comment.

PROPOSITION 4.1. Let (E, p, B) be a pinched tube constructed
from a trivial tube as described above.

(1) Given any neighborhood U of B in M, there is a choice of
pinching function r so that EaU.

(2) For any such pinched tube there is a homeomorphism
g:B x Bn —• E such that g(x, 0) = x and pg(x, y) = x for all xeB.
Moreover, g\B x Sn~x is a homeomorphism onto A.

(3) For any such pinched tube there is a radially defined

retraction p: f(Q x 2Bm x Rn) - B -> A such that pp = p on f(Q x

2J5W x Rn) - B.

We will also need the following recent result by Chapman.

THEOREM 4.2 ([5, Theorem 1]). For each open cover a of a Q-
manίfold B there is an open cover β of B so that if p: E' -> B is a
fiber bundle, with fiber a compact ANR for which τcί of each com-
ponent is free or free abelian, then any p"\β)-equivalence from a
Q-manίfold M to E is p~x(a)-homotopic to a homeomorphism.

LEMMA 4.3. If f:Q x Rm x Rn-*Q x Rm x Rn is an open
embedding such that f = id on Q X Rm X {0}, then there exists a
homeomorphism h: Q x Rm x Rn —> Q x Rm x Rn such that

(1) h has compact support,
(2) h = id on Q x Rm x {0}, and
( 3 ) for some ε > 0, either fh = idorfh = idxaonQxBmx

εBn, where a is the standard orientation reversing map a(xlf x2,
•••, xn) = {~xx, x2, •••, xn).
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Proof. The proof depends on consideration of three pinched tubes.
In accordance with the notation introduced above let B = Q x 2Bm x {0}
and D = /(Q x Rm x Rn). The pinched tubes (E19 p19 B) and (EZ9 pSf B)
are determined by the identity embedding and pinching functions
rx and r8. The last pinched tube, (E2, p2, B) is determined by / and
a pinching function r2 chosen so that r2(x) < r^x) for all #e2i3w.
Moreover, the r, are chosen so that EXCLD, E2cEι and EzaE2.
Here is a picture.

Denote by Afc the boundaries of Ekf k = 1, 2, 3. Let X = Et — E2.
(X is the shaded region of the picture.) Let Π = /(Q x 2£w x i2w)
and let p:D' -* B be the natural retraction defined by pf(q, x, y) =
f(q, xf 0) = (g, a?, 0).

Assertion 1. The inclusion i: A2 ^^ X is a proper homotopy
equivalence. Moreover, if a is an open cover of B, then the pinched
tubes can be chosen so that i has a homotopy inverse u:X->A2

which is a p~1(α)-equivalence.
We prove the assertion by defining u directly. Let p: U — B-> A2

be the natural fiber preserving retraction and let σ: Eλ —>- E3 be the
natural fiber preserving homeomorphism which fixes B and which
carries Ax to A3. (See Proposition 4.1.) Then u = pσ is the desired
homotopy inverse.

Let σt:Eγ-+ Eγ be a fiber preserving homotopy such that σ0 — id
and σx — σ. Define a retraction px: E1 — B —• X by p^ — p on E2 — B
and ^ = id on E1 — E2. Note that /Ooy. id^2 ~ ui in A2 and ^oy.
ΐώx ci w in X. It is routine to show that pσt is a ί?~1(α)-homotopy
and that p1σi is a (ί?u)"1(α)-homotopy provided that the values of
the values of the pinching functions are chosen sufficiently close to
0. The deails are left to the reader.

Assertion 2. If a is any open cover of B, then the pinched
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tubes can be chosen so that there exists a homeomorphism h^ Eι —> Eι

such that
(1) h, = f-1 on E2 and
(2) ΛJL is p~1(α)-close to the identity.

Proof. In view of Assertion 1, we apply Theorem 4.2. That
is, for any open cover β of B the pinched tubes can be chosen so
that there exists a homeomorphism g:X^A2 which is p~\a)-
homotopic to the previously defined map u. It then follows from
the stability of Q-manif olds that there is a homeomorphism g: X —>
A2x I such that g is π^^-homotopic to the embedding u x 0,
where π is defined by π(x, t) = p(x).

We will now use Z-set unknotting to modify g so that g \ A2 =
id x 0. All that is needed is to recall from the proof of Assertion
1 that we may require u\A2 to be p~1(/3)-homotopic to the identity
on A2. Thus g ~ u x 0 ~ id x 0 on A2 by homotopies with arbitrarily
fine horizontal control. Therefore by controlled Z-set unknotting
there is a correcting homeomorphism having the same cover control.

Now the proof of the assertion follows quickly. The pinching
function r2 was chosen so that f~ι{E2) c Eλ. Moreover, it is clear
that the homeomorphism indicated in Proposition 4.1(2) can be used
to construct a homeomorphism ψ: f~\A^) x / —»Eγ — f~γ{E2) which
is fiber preserving (with respect to projection pt) and such that

, 0) = x. Thus we construct hλ as follows.

f~\A2) x J -JL> ^ - f~\E2) .

Now extend hγ to all of E1 by means of f~\
It is clear that we can require that phλ be α-close to p by

requiring that the cover β be sufficiently fine and that the values
of the pinching functions be chosen sufficiently small.

We are now ready to complete the proof of the lemma.
Since Eγ is naturally homeomorphic to B x Bn, hγ induces a

homeomorphism h: B x Bn -»B x Bn such that h — id on B x {0}.
Define a map φ: Sn~ι —> Sn~ι by 9>(a;) = rπ2h(b0, x) where δ0 6 B, π2 is
projection onto Bn

y and r is radial retraction. Since B is contracti-
ble, φ is a homotopy equivalence. Therefore φ is homotopic to
either the identity or the orientation reversing map on Sn~ι.

Define a map η:Bx S^1 -> B x S^1 by rj(b, x) = (π^(δ, a?), 9>(&))
where ^i is projection onto B. Clearly rj is fiber homotopic to h in
Bx(Bn — {0}). Moreover, since hγ has been chosen so that πjί is close
to π19 it follows easily from well known properties of ANRs that
πjί a πx by means of a small homotopy. Therefore either η ~ id or
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rj ~ %d x α, and, in either case, the homotopy has arbitrarily fine
horizontal control.

Since fj induces a similar map η: At —> Alf the same argument
shows that either h1\A1~id or h1\A1 ~ id x a in E1 — E2 by a
homotopy with fine horizontal control. Thus we are able to use
controlled ϋΓ-set unknotting to modify ht rel E2.

Therefore if a is an open cover of B, then the pinched tubes
can be chosen so that there is a homeomorphism h2: E1 —• Eλ such
that

(1) h2 = Z"1 on # 2,
(2) either h2 — id or h2 = id x a on -At, and
(3) h2 is p~1(α)-close to the identity.

If &2 = id on Ax, let fe = h2; otherwise let h = /&2(ic£ x α) on Ex. Thus
h — id on Ax, and if the cover α is sufficiently fine near Q x
2Sm~1 x {0}, it is clear that h extends to Q x 2Sm~1 x {0} and thus
to the rest of Q x Rm x Rn by means of the identity. If ε = r2(0),
it is trivial to check that h has the required properties.

The proof of our next main lemma depends upon a similar
program using pinched tubes constructed from arbitrary codimension
2 tubular neighborhoods.

While regarding tubular neighborhoods as fiber bundles, we
have not emphasized the role of the structure group of the bundle
and have implicitly assumed that it is the group of all homeomor-
phisms on Rn which fix the origin. It follows, however, from a
noted result of Kneser [14] that if an i?2-bundle admits this structure
group, then it also admits as structure group the orthogonal group
0(2). Our use of this result is confined to noting that, for any
i22-bundle p: E—> B with 0-section, there exists a family of coordinate
charts <pt such that if xeE and <Pi(p(x), y) — x, then \\y\\ depends
only on x and not on the particular choice of index i. We will
denote this value by HccH,.

This observation is the key to the construction of codimension
2 pinched tubes. Let C be a compact Q-manifold, let D be a tubular
neighborhood of C x R with retraction p: D—> C x R, and let B =
C x ( — 2, 2). Then for any choice of a pinching function r: ( — 2, 2) —•
(0, oo) (having the properties listed earlier), we construct a pinched
tube (E, p\E,B) by defining

E = {x e D: p(x) = (y, t)eB a n d \\x\\p ^ r ( ί ) } .

In an analogous fashion we define the boundary of E to be A =
{xeE:\\x\\p = r(t)}.

The following is the analogue to Proposition 4.1.
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PROPOSITION 4.4. Let (E,p\E,B) be a pinched tube constructed
from a codίmension 2 tube as described above.

(1) Given any neighborhood U of B in D, there is a choice of
pinching function r so that EdU.

(2) Any two such tubes, (Eίf p\El9 B) and (E2, p\E2, B), con-
structed from the same fiber bundle are isomorphic D2-bundles, and
(Alf p\A19 B) and (A2, p\A2, B) are isomorphic S^bundles.

(3) There exists a fiber preserving retraction p: p~ι(B) — B —> A.

Conclusions (1) and (2) are immediate consequences of the defini-
tions. Conclusion (3) can be proved by a routine Tietze extension
proof using the orthogonality of the structure group. The details
are left to the reader.

We will also need the corollary to the following lemma. The
lemma itself is well known in bundle theory.

LEMMA 4.5. Let B be a locally finite polyhedron. If px: Ex-+B
and p2: E2 —> B are S^bundles and if f: Eι —» E2 is a fiber homotopy
equivalence, then f is fiber homotopic to a homeomorphism.

COROLLARY 4.6. Let B be a Q-manifold. Then the conclusion
of 4.6 holds.

Proof. Triangulate B as P x Q where P is a locally finite poly-
hedron. Let Et = pτ\P x {0}), i = 1, 2, and let r: B -* P x {0} be a
deformation retraction. It follows readily from the homotopy
properties of bundles (see Chapter 4 of [11], especially Theorem 9.9)
that pi. Et —> B is isomorphic to the induced bundle r*(p<): r*(Et) -> B,
where r*(Et) = {(x, b)eE{x B: pt(x) = r(b)} and r*(p<)(», &) = b. Note
moreover that any fiber preserving map g: E1 -* Eλ induces a fiber
preserving map r*(g): r*(£1) —> r*{E^ defined by r*(g)(x, b) = (g(x), b).
Now apply Lemma 4.5 to f\E1:E1-^E2.

We are now ready to prove our second main meshing lemma.

LEMMA 4.7. Let M be a compact Q-manifold and let p: D —>
M x R and p': D' —> M x R be R2-bundles such that fl'cfl and such
that M x R^> D and M x R<=-> Dr are 0-sections. Then there exists
a homeomorphism h: D -» D such that

(a) h has compact support,
(b) h = id on M x R, and
(c) h is a microbundle isomorphism over M x [—1, 1] (that is,

there is a neighborhood U of M x [ — 1,1] in D such that h(U)aD'
and p'h = p on U).
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Proof. Let B = M x (—2, 2). In a manner analogous to the
proof of Lemma 4.3 we construct pinched tubes (Elf pίf B) and
(E3, p3, B) from p: D—> M x R and a pinched tube (E2, p2, B) from
pf\ Π->Mx R such that E, c Z7, # 2 C Eίf and J&3 c 4*. As before,
let Ak be the boundary of Ek and let X—Ex — E2. It is routine to
verify that the Ek, the Ak and X are all Q-manifolds.

By Proposition 4.4 (3) there is a fiber preserving retraction
p: (p'Y\B) - B->A2. It follows from Proposition 4.4 (2) that there
is a natural fiber preserving homeomorphism σ: E± —> £?3 which
preserves JB and maps Ax to A3. Moreover, it is clear that there is a
fiber preserving isotopy σt:E1-^ Eλ such that σ0 = id and σ1 = σ. Let
u ^z pa. Finally, in an analogue to the proof of Lemma 4.3, define
a retraction pλ\ Ex — B —• X by pλ = p on E2 — B and ft = id on

Assertion 1. The inclusion i: A2

 CL> X is a proper homotopy
equivalence and u:X~~> A2 is a homotopy inverse for i. Moreover,
if β is an open cover of B, then the pinched tubes can be chosen
so that u is a

Proof. The proof is the same as that for Assertion 1 in Lemma
4.3 once the appropriate functions have been defined as above.

Again we use Proposition 4.4 (3) and let τ: p~\B) — B ~> A3 be
fiber preserving retraction.

a

Assertion 2. τ\A2:A2—> A$ is a proper homotopy equivalence.
Moreover, if β is an open cover of B, then the pinched tubes can
be chosen so that τ is a p-1(/9)-equivalence.

Proof. We show that p | Az: A3 —> A2 is a proper homotopy
inverse. Define τx\ Ex — B -> Ex — Ez by τx = τ on Ez — B and τL = id
on E1—E3. Then ^r^JAf. A2—>A2 is a proper homotopy in A2 between
ι<9r and the identity and τp^^lA^ A3-^ A3 is a proper homotopy in
A3 between τp and the identity. Proof of the cover control is
routine.

Concider now the Sx-bundles (A2, p'\A2, B) and (A3, p|A3, J5).

Assertion 3. The pinched tubes can be chosen so that τ\A2 is
properly homotopic to a fiber preserving homeomorphism /: A2 ~> A%.
Moreover, if a is an open cover of B, the pinched tubes can be
chosen so that the homotopy is a p~1(α)-homotopy.
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Proof. The bundle projections p and pf agree on B and are
thus close as maps near B. Therefore it follows from an elementary
continuity argument and well known properties of ANRs that, so
long as the values of the pinching function are chosen sufficiently

small, we can require that p ^ pf on E2. Let Ft: A2->B be an a-
homotopy with Fo = p and Fλ — p'. Since pτ = p, by the covering
homotopy property Ft lifts to a p~1(α)-homotopy Ht: A2 —> A3 with
HQ = τ and pHλ = JF\ = #>'. Since τ\A2 is a homotopy equivalence,
Hι is also a homotopy equivalence; moreover Ht is fiber preserving.
According to [6, Theorem 6.1] such a fiber preserving homotopy
equivalence is in fact a fiber homotopy equivalence. Thus by
Corollary 4.6, Hx is fiber homotopic to the desired homeomorphism /.

Let /: E2 —> E3 be the natural extension of / from a fiber
preserving homeomorphism between S^bundles to a fiber preserving
homeomorphism between the associated D2-bundles.

Assertion 4. If a is any open cover of B, then the pinched
tubes can be chosen so that there is a homeomorphism hλ: Eλ —> Et

such that
(1) hx I Aλ: Aι —> Ax is fiber preserving homeomorphism,
(2) h, = f on E2, and
( 3 ) hλ is 3)"1(α)-close to the identity.

Proof. The proof is virtually the same as the proof of Assertion
2 in Lemma 4.3, so we indicate only the necessary modifications.

In order to obtain conditions (2) and (3), the only modifications
are to replace, of course, f~x with / and to redefine ψ to be the
natural homeomorphism ψ: A3 x J—> E1 — E3.

In order to obtain condition (1), we incorporate the following
into the Z-set unknotting. We choose as before the homeomorphism
g: X—> A2 x / so that g\A2 ~ u x 0 and g\Ax ~ u x 1. Now since
r ^ / o n A2f f~xτ ^ ΐc£ on A2. Furthermore, recall that σ{Ax) — A3,
where σ is the previously defined fiber preserving homeomorphism,
and that τp ~ id on Az. Therefore

g I Ax ~ pσ x 1 ^ f~xτpσ x 1 ^ f-γo x 1 .

Moreover, all of these homotopies have been shown to have arbitrari-
ly fine horizontal control. Therefore, the controlled Z-set unknotting
yields a modified g so that g\A2 — id x 0 and g\Aγ — f~ισ x 1. All
other details are as before.

Now we complete the proof of the lemma. Let h2:E1-^E1 be
the natural fiber preserving (with respect to px) extension of h^A^
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Define h: Έ-+Έ by h = hτιht. Then h = id on Ax and pΛ, is arbitrari-
ly close to p. Thus /& can be extended continuously by the identity
to all of D. It is easy to verify that h is the desired homeomor-
phism.

We conclude this section with the statement of an alternate
version of the second meshing lemma. This version will be used
in proving the uniqueness part of Theorem 2. The proof, including
the preliminary constructions, is the same as the proof of Lemma
4.7 with the following exception. The base space for the pinched
tubes is taken to be an arbitrary Q-manifold. Consequently, the
closure of the pinched tubes in the total space of the given bundle
need not be compact, so the conclusion that h have compact support
is removed.

LEMMA 4.8. Let B be a Q-manifold and let pk:Ek->B, k = l, 2,
be R2-bundles such that E2 c Eλ and such that β ^ Ek is a 0-sectίon.
Let a be an open cover of B and let U be a neighborhood of B in
Ex. Then there exists a homeomorphism h: E1—^ Eγ such that

(a) h is supported in U,
(b) h is pzι(a)-close to the identityf

(c) h = id on B, and
(d) h is a microbundle isomorphism over B.

5. Proof of Theorem 1* Let i : Q x Λ m - > M b e a locally flat
embedding. Since N — i(Q x Rm) is homeomorphic to Q x Rm x /,
we simplify notation by identifying N and Q x Rm x I.

Since the inclusion N ^ M is locally flat, there exists a neighbor-
hood U of (0, 0, 0) e N and an open embedding φ: U x Rn —> M such
that φeid on Ux {0}. The first step in the proof is to enlarge
U so as to engulf Q x Bm x {0}.

Since {(0, 0, 0)} is a Z-set in JV, we can use 2.2 to conclude that
there is a ^-embedding /: Q x Bm x {0} -> N such that /(0, 0, 0) =
(0, 0, 0) and f(Q x Bm x {0}) c U. Since Q x Bm is contractible, both
/ and the inclusion Q x Bm x {0} ^ N are proper homotopic to the
constant map to (0,0,0). Thus it follows from relative ^-set
unknotting (Theorem 3.2) that there exists a homeomorphism g:
(ikf, JV) -> (AT, N) such that g = / on Q x Bm x {0}.

Then U = g~\U) is an open neighborhood of Q x Bm x {0}, and
an open embedding φ: ϋ x Rn —> M can be defined by 9(#, V) =
g~ιφ(g{x), y). Note further that φ ~ id on U x {0}.

Our next step is to show that the embedding is flat over a
neighborhood of Q x {0} x / in JV. Choose ε > 0 so that Q x Bm x
[0, ε] c Ϊ7. By Lemma 3.1 there is a homeomorphism Λ: (M, N) —•
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(Λf, N) such that h(x, ε) = (x, 3/4) for each x e Q x Rm. Define an
open embedding

Γ. Q x Bm x Γo, A

by

i(a?, *, 1/) = hψ{h'\x, t), y) .

Note that ^(α, t, 0) = (a?, ί, 0). Now a similar construction gives us
an open embedding

2: Q x Bm x x M

such that ψ2(x, t, 0) = (x, t, 0). Here is a picture illustrating the
idea.

image i//

We will use Lemma 4.3 to piece these embeddings together.
Without loss of generality we can require that

ψ2(Q x B™ x [i-, A] x Rή af {Q XB-X (L, A) x Rή .

It is then easy to show that there is an open embedding

σ: f2(Q x B™ x (-1, A ) x Rή > ^ (Q x B x (i-, A)x

such that σ = id on Q x ^ x (1/4, 3/4) x {0} and on f 2(Q x Bm x
[1/3, 2/3] x Rn). Therefore we define θ = ψ Γ 1 ^ and obtain an open
embedding

θ: Q x Bm x (1 9

\4 9

4 4
4 4

such that 6> = id on Q x Bm x (1/4, 3/4) x {0} and θ = ^ r 1 ^ on Q x
έ w x [1/3, 2/3] x R\ Since (Bw x (1/4, 3/4), 1/2 β x [1/3, 2/3]) is natu-
rally homeomorphic to (Rm+\ Bm+1), it follows from Lemma 4.3 that
there is a homeomorphism
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h:Qx Bm x (-ί, A ) x R* > Q x Bm x f-ί, A ) x #»
\4 4 / \ 4 4 /

such that
(1) A has compact support,

(2) h = id on Q x B"1 x (1/4, 3/4) x {0}, and
( 3 ) for some choice of ε, 0 < ε < 1, either hθ = id or hθ = id x a

on Q x 1/2 Bm x [1/3, 2/3] x εJ3\

Define a homeomorphism h: M-> M by £ = ψjiψz1 on ^(Q x 2?m x
(1/4, 3/4) x Rn) and h = id elsewhere.

Define an embedding

—, l Ίx Rn >M

as follows. In case hθ = id on Q x l/2JSm x [1/3, 2/3] x eBn, let ψ2 =
fc^/r2. In case hθ = id x a when so restricted, let ψ2 = hψ2(id x a).
Let |θ: i2Λ —> eBn be a radially defined homeomorphism. We can there-
fore define an open embedding

η:Q X λ-βm x [0, 1] x Rn > M

by η(x, t, y) = ^{x, t, p(y)) if 0 ^ t ^ 2/3 and 37(0?, ί, ») = f t(x, t, p{y))
if 1/3 ^ ί ^ 1. The construction guarantees that η is well defined
and that η = id on Q x 1/2JSm x [0,1] x {0}. Also, without loss of
generality we may assume that η(x, t, y)&N if y Φ 0.

This completes the second step in the proof.

The proof will be complete once we extend the product embedd-
ing over the Rm factor. This is obtained by a sequence of engulfings.

Choose a sequence {rd} of positive real numbers such that 1/4 <
r1 < < Tj' and lim,-^ r, = 1/2. A piecewise linear homeomor-
phism U [1/4, 2] -• [0,1] such that f^r,) = 1/3 and /x(l) = 2/3 induces
an obvious homeomorphism

gi: Q x (zBm - — B m λ x I > (Q x S^"1 x /) x [0,1] .

Let ZTΊ be an open set of M such that

Q x (Bm - n£ m ) x IdU.nNczQ x (2Bm - — Bm\ .

By Lemma 3.1 there is a homeomorphism

h,: (M, Q x (2Bm - —BΛ x ϊ) > (M, Q X (2Bm - —5m) x
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whose support is a compact subset of U1 and such that htfzXx, 1/3) =
gT\x,2β). Thus

h,(Q x rfi™-1 x I) = Q x Sm~ι x I.

Clearly we also have hλ(Q x r^™"1 x / ) c Q x (2ΰ m - Bm) x J . Thus

we can proceed in like m a n n e r to define a sequence of homeomor-

phisms

hs: (M, Q x ((j + l )£ w - (i - l)£m) x I)
x /) , i = 2, 3,

such that the following conditions are satisfied.
(1) The support of h3- is a compact subset of an open set U3

of M such that the intersection of U3 and the support of hk is empty
whenever j ^ 3 and & ̂  j — 2.

(2) fcA -i &ι(Q x r^S""1 x ί ) = Q x iS^-1 x J.
Now define fc: (M, Q x l/2JSm x /) -> (ΛΓ, iV) by h(x) = lim^TO Λy . ^(x).
The supports of the h3- were chosen so that for each xe M, there
exists some integer m such that h(y) — hm h^y) for all y in a
neighborhood of x. Therefore h is a well defined homeomorphism.
Property (2) above and the choice of the ro guarantee that h\Q x
l/2Bm x J is a homeomorphism onto N.

Therefore the desired open embedding 7: N x Rn -> Λί is defined
by 7(α, 1/) = hr]{h~\x\ y).

6. Proof of Theorem 2* The proof of Theorem 2 is broken
into three parts. Theorem 6.1 is a special case of the existence
portion of the theorem, Theorem 6.2 is the general existence theorem,
and Theorem 6.4 is the uniqueness part of the theorem.

THEOREM 6.1. Let M be a Q-manifold and let K be a finite
dimensional polyhedron. If i: K x Q —> Mis a locally flat embedding
of codimension 2, then N = i(K x Q) has a tubular neighborhood in
M.

Proof. We identify N with KxQ and argue inductively on the
dimension of K.

In case dim K = 0, N is the disjoint union of copies of Q. Thus
each component of N consists of a locally flat embedding of Q in M,
which, by Theorem 1, is flat. That is, each component of N has a
neighborhood in M homeomorphic to Q x R2, and, since it is clear
that these neighborhoods can be chosen to be disjoint, the inclusion
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Nc=^M is therefore flat. This disposes of the case for which
dim K = 0.

For the inductive step, assume the theorem to be true for any
polyhedron L such that dim L = n and consider a specific case in
which dim K = n + 1. Without loss of generality we assume K =
jζn (j jn+i w h e r e jζ» i s the space of the ^-skeleton of K and An+ι is
a single (n + l)-simplex.

Let A be the interior of Δn+ι and let Λίi. be any open submanif old
of M so that A x Q is closed in Mx. Since the inclusion K x Q <=-» ikf
is locally flat, it is clear that the inclusion Ax Qc-*M1 is locally
flat, and, since A is homeomorphic to Rn+1, by Theorem 1 the inclu-
sion is flat. That is, there is an open embedding φ: {A x Q) x R2—>
M1dM such that φ(x, 0) = x.

Now identify Jn+1 with Bn+1 U (S x /) so that A is identified
with Bn+1 U (S* x [0,1)). Let L = Kn U (Sn x [0,1]). It is geometri-
cally obvious that Kn expands to L by an elementary expansion so
the inclusion Kn ^ L is a simple homotopy equivalence. (See Chapter
VIII of [2] for an explanation of the terminology.) Therefore, by
a theorem of West [2, Theorem 29.4], L x Q is homeomorphic to
Kn x Q. Let M2 = M- φ(Bn+1 x Q x B2). The trivial tube structure
implies that M2 is a Q-manifold. Moreover, the inclusion L x Q c ^ M2

is locally flat, so by the induction hypothesis there is a tubular
neighborhood E of L x Q in M2. Let p: E -* L x Q be the associat-
ed retraction.

We wish to use our second meshing lemma to mesh the trivial
tube over A with E. Let B = Sn x (0,1) x Q c (A x Q) Π (L x Q).
Since

B =—> p- 1 ^) n 9>(£ x R2) — #

is isomorphic as a normal microbundle to the restriction of p~\B),
we may assume without loss of generality that p~\B)czφ(B x R2).
Then by Lemma 4.7 there is a homeomorphism h: φ(B x R2) —>
φ(B x R2) such that

(1) h has compact support,
( 2) h = id on Bf and
(3) there is a neighborhood U of (Sn x [1/3, 2/3]) x Q cB such

that if <p(x, y) e £7, then phφ(x, y) — x.
Because of (1) h extends by the identity to all of M. Choose

ε > 0 so that

φίsn x Γ—, — Ί x Q x sB2) a U ,

and let 7: R2 —> sB2 be a radially defined homeomorphism. Then
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φ = hφ(id x 7): (A x Q) x i?2 • ilί

is an open embedding. Let E = E1{j E2 w h e r e

x andE, = p-ι((κ* U (S x (|-, l ) ) )

E2 = <?((V+1 U (S* x (θ, |- ) ) ) x Q x i22)

and define p: E -> K x Q by

p = p on Ĵ i and

, Q9 V)) = (», (?) 6 E2 .

Here is a picture.

I t is easy to check t h a t p is well defined and t h a t K x Q<=^ E ^>
i f x Q is a normal microbundle. Therefore, by t h e Kister-Mazur
theorem, E contains a t u b u l a r neighborbood of K x Q.

THEOREM 6.2. Let (M, N) be a Q-manifold pair. If N^M is
a locally flat embedding of codimension 2, then N a tubular neighbor-
hood in M.

Proof. Triangulate N as K x Q where K is a locally finite
polyhedron. The following decomposition of K is routine.

There exists a sequence Al9 A2, of open subsets of K such
that

( l ) κ=\jr=1Ai,_
( 2 ) for each ί, A% is a compact subset of Ai+1, and
( 3 ) the boundary of At is collared in Aί+1 — A*, that is, there

is an open embedding ut: Bd At x [0,1) —> A<+1 — A, so that %<(&, 0) = sc
for each xe A{.

Now define J3* = (At - A^) U %<(Bd At x [0,1)). It clearly follows
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from Theorem 6.1 that each Btx Q has a tubular neighborhood Et

in M.
For each i, Et and Ei+1 can be meshed to form a normal micro-

bundle for {Bt U Bi+ί) x Q by a procedure similar to that used in
the proof of Theorem 6.1. Moreover, it is clear that the meshing
homeomorphisms can be chosen so as to have disjoint supports.
Therefore, the Et can be meshed to form a normal microbundle and
hence a tubular neighborhood for all of K x Q.

In order to prove uniqueness we need the following relative
version of the local contractibility of the homeomorphism group of
a Q-manifold. It follows from the Fathi-Visetti deformation theorem
[8] in the same way that the corresponding finite dimensional result
follows from the Edwards-Kirby deformation theorem (see [7, Remark
7.2]).

LEMMA 6.3. Let (AT, N) be a Q-manifold pair such that N<=^ M
is locally flat. If h: M—> M is a homeomorphism such that h = id
on N and if h is sufficiently close to idM then there exists an isotopy
ht: h aid such that ht = id on N for all tel.

THEOREM 6.4. Let (M, N) be a Q-manifold pair such that N
has a codimension 2 tubular neighborhood. Then any two normal
microbundles of N are isotopic.

Proof. Let jv. E1->N and p2: E2-^N determine tubular neighbor-
hoods for N. Lemma 4.8 provides a microbundle isomorphism h
between the tubes. We wish to use Lemma 6.3 to conclude that h
is isotopic to the identity modulo N. It is thus necessary to show
that h can be chosen orbitrarily close to the identity.

Since N has neighborhoods which are locally products of open
sets of N with R2, a map is close to the identity near N if it is
close to the identity with respect to this product structure. A map
is in turn close to the identity in the Rz factor if it is the identity
at the origin and is supported on a sufficiently small neighborhood
of the origin. The following is the precise statement we need. Its
proof is a routine continuity argument.

Let a be an open cover of M. Then there exists a neighborhood
U of N in M and there exists an open cover β of N so that a map

f:M—>M is α-close to id whenever the following conditions are
satisfied.

(1) / = id on N.
(2) / i s supported on U.
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( 3 ) P i / is /9-close p1 on Et.

But this is exactly the control available from Lemma 4.8. The
result therefore follows immediately from a combination of Lemma
4.8 and Lemma 6.3.
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