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SPLITTING AND MODULARLY PERFECT FIELDS

JAMES K. DEVENEY AND JOHN N. MORDESON

Let K be a field of characteristic p Φ 0. A field extension
L/K is said to split when there exist intermediate fields J
and D of L/K where / is purely inseparable over K, D is
separable over K and L — J®KD. K is modularly perfect
if [K: Kp] ^ p. Every finitely generated extension of a
modularly perfect field splits. This paper develops criteria
for an arbitrary extension L/K to split and presents an
example of an extension of a modularly perfect field which
does not split. Necessary and/or sufficient conditions are
also developed for the following to hold for an extension
L/K: (a) UIK splits for every intermediate field U; (b) L'/K
is modular for every intermediate field Z/; (c) LIU splits
for every intermediate field U\ (d) HU is modular for every
intermediate field U.

Introduction. Let K be a field of characteristic p Φ 0. A field
extension L/K is said to split when there exists intermediate fields
J and D of L/K where J/K is purely inseparable, D/K is separable,
and L — J ®κ D. It is a classic result that any normal algebraic
field extension L/K must split. Recent papers have been concerned
with nonalgebraic extensions L/K. Suppose there exists an in-
termediate field J of L/K such that L/J is separable and J/K is
purely inseparable (hence J = L Γϊ Kp"°°). Under certain conditions,
namely, if L has a separating transcendence basis over J [4], or if
/ is of bounded exponent over K [5], then L/K must split. That
some conditions must be put on L/J/K is illustrated by an example
in [1].

A field extension L/K is called modular if Lpn and K are linearly
disjoint for all n. The importance of modular extensions was first
observed by Sweedler [11] who used this property to characterize
purely inseparable extensions of bounded exponent which were tensor
products of simple extensions. In [4] it was shown that if L/K is
an (arbitrary) modular extension then there must exist an interme-
diate field J such that L/J is separable and J/K is purely inseparable
modular. It follows that any finitely generated modular extension
must split. In [5], a field K such that [K: Kp] ^ p is called modularly
perfect. Such fields are characterized by the fact that any extension
L of such a field K must be modular over K. In view of the above
results, a natural question is whether every extension of a modularly
perfect field K must split. In part I we develop a number of criterion
for a field extension to split. We construct an extension L of a
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modularly perfect field K which does not split. The field L also does
not have a distinguished separable subfield [3], where D is distinguished
in L/K if and only if D/K is separable and L Q D(KP~~°°). In the
remainder of the paper we determine necessary and/or sufficient
conditions for the following to hold for an extension L/K:

(a) L'/K splits for every intermediate field I/;
(b) L'/K is modular for every intermediate field L';
(c) L/U splits for every intermediate field L';
(d) LjU is modular for every intermediate field U.

I* Let L 2 K be fields of characteristic p Φ 0. An intermediate
field D of L/K is called a distinguished separable intermediate field
[3] if D is separable over K and L Q

REMARK 1.1. The following conditions are equivalent on K.
(1) L/K splits for every finitely generated field extension L/K.
(2) [K:Kp]<ίp.
(3) L/K splits for every field extension L/K which has a dis-

tinguished separable intermediate field.

Proof. 1 —> 2: Suppose [K: Kp] > p. Let x, y be ̂ -independent
in K and let z be transcendental over K. Then L = JBL(«, SB*""1 + yp~ι)
is a finitely generated extension of K which does not split.

2->3: By [5, Theorem 6, p. 1180], L/K is modular and whence
splits [8, Corollary, p. 607].

3 —> 1: If L/K is finitely generated, then L/K has a distinguished
separable intermediate field.

In [5, Theorem 6, p. 1180] it was shown that [K: Kp] <: p if and
only if for every field extension L/K there exists a separable field
extension S of K (not necessarily in L) such that L £ S(&κ (JP~~°°n L).
Obviously S can be chosen as an intermediate field of L/K if and
only if L/K splits. We now develop criterion for an extension L/K
to split and present an example of an extension of a modularly perfect
field which does not split.

LEMMA 1.2. Let D be an intermediate field of L/K such that
L/D is purely inseparable and D/K is separable. Then D is maximal
separable if and only ifLpΓ)DQ K(DP).

Proof. Assume D is maximal and let b e L\D. If bp e D\K(DP),
then D(b)/K is separable as follows: Let G be a p-basis for K. Then
G is ^-independent in D. Since bp e D\K(DP), G U {bp} is ̂ -independent
in D. Hence there does not exist ceG such that ce Dp(bp, G\{c}).
Thus G is p-independent in D(b) and D(b)/K is separable. However
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this contradicts the maximality of D. Thus bp e K(DP) and L p n D £

Conversely, assume Lp Π DQK(DP). If L = D, then D is maximal.
Suppose L z> D and let δ e L\D be such that bp e D. Then δ* e Lp Π
Z> £ K{DP) so beD®κ Kp~~\ Thus D(6)/JSΓ is not separable and hence
D is maximal.

THEOREM 1.3. Suppose L 2 iP~°° and L/LpO° has a separating
transcendence basis. Then L/K splits.

Proof. Since L 2 Kp~°°, LpCO 2 Kp~°°. Let ΰ be a maximal se-
parable extension of K in Lp0°. We first show Dp~ι Π Lpco Q D{KP~°°).
If δ 6 Dp~ι Π I/pO°, then bp e K(DP) by the previous lemma. Hence
δ 6 D(Kp~ι) c D(XP~O°), as desired. Now LpO°/^ is purely inseparable,
and hence L^/DiK9"00) is also purely inseparable. We prove LpO° =
D(KP~°°) by showing that each element δ 6 LpCO of exponent one over
D(KP~~°°) is actually in D(KP~°°). For such δ, δ* = Σdtet where d, 6 D
and et e Kp~°°. Hence δ = Σdp~xeP~ι where each d\~ι e LpO° is of exponent
one over D. As noted above, each dfι e D(KP~°°) and thus δ 6 D(KP~°°)
and LpO° = DφκK

p~°°. Now L/LpO° has a separating trancendence
basis and LpCO/Ό is purely inseparable. Hence there exists an inter-
mediate field .D* of L/D such that D*/D is separable and L =
D*®DLpCO [4, Proposition 1, p. 2]. Thus L = D* ®D (D ®κ Kp~°°) =
D*φκK

p~°°. Since 2>*/Z) and D/ϋΓ are separable, Z?*/JK" is sepa-
rable.

COROLLARY 1.4. (1) If [K: Kp] ^ p, then L/K splits for every
field extension L/K such that L/Lp°° has a separating transcendence
basis.

( 2 ) Conversely, suppose K/KpO° has a separating transcendence
basis. If L/K splits for every field extension L/K such that L/LpO°
has a separating transcendence basis, then [K: Kp] <£ p.

Proof. (1) If L 2 JΓP"°°, then L/K splits by 1.3. If L £ Kp~°°,
then (L Π Kp~°°)/K has bounded exponent. Since [K: Kp] <; p, L/K is
modular [5, Theorem 1, p. 1177] and hence splits [5, Theorem 3, p.
1178].

( 2 ) Suppose [K: Kp] > p. Let T be a separating transcendence
basis for K/Kp~. Then T is a p-basis for K and | T\ > 1. Let {x, y} £
T and set L = K(z, zxp~γ + yp~ι) where z is transcendental over K.
If we show L/LpO° has a separating transcendence basis, we have a
contradiction since L/K does not split. Now T\{y} U {#, zxp~ι-\-yp~1} is a
p-basis for L. LpCO £ Π?°=i W ) = K, so L^00 - KpCO. K/LP~(T) is
separable algebraic so L/LpO0(T\{y}, z, zxp~ι + T/2'"1) is separable algebraic
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since y eLpCO(T\{y], z, zxp~ι + yp~ι). Thus L/LpO° has a separating
transcendence basis.

PROPOSITION 1.5. // L/K splits for every field extension L/K
such that L/L Π Kp"°° is separable, then [K: Kp] < °o.

Proof. Suppose [K: Kp] = oo and let {xlf •••,£»,•••} be a p-
independent subset of K. Let J = K{xf\ xf\ •) and L=J(z, zp~ι +
xf\ , zp~n + xfn~ι + + xl~n~\ •) where z is transcendental
over J. Since L is the union of a chain of simple transcendental
extensions of J, L/J is separable and L (Ί Kp~°° = J. The proof that
L/Jί does not split is completely analogous to the proof in [1].

Suppose K is a modularly perfect field, i.e., [K: Kp] <; p. Then
for any field L which contains K, L is separable over L (Ί Kp~°°. If
L Π Kp~°° =£ iP~°°, then L/K must split. We now present an example
where LZDKP~°° and yet L/K does not split. This example indicates
that the result presented in [5, Theorem 6, p. 1180] is in some sense
the best possible.

EXAMPLE 1.6. Let P be a perfect field and let x, y, w0 be alge-
braically independent indeterminates over P. Set K = P(y) and L —
Kp~°°(x, w0, wf\ , wΓ", •) where wf~L = xp~ι + yp~zwfι and wΓ% =
αj'^ + i/^^^wJIΓ. Then [if: K*] = p and P " w c L . We show that L/^
does not split. Assume L = S ®^ Kp~°° where S is separable over
K. Consider S' = S(α, wo) Since S' is finitely generated over S, S'/K
has bounded exponent and hence splits since K is modularly perfect
[5, Theorem 6, p. 1180]. Let S' = S * ® * W ) , and hence L =

K*"00. Now by construction, K(yp~\ x, wQ) = KtQ S' and
v-t)Kp~°° = i*?~~°°(£, w0). The fields which lie between if2>~O0(x, w0)

and L are chained and each is a purely inseparable extension of ex-
ponent one of the previous one. Hence the same is true for the
fields which lie between Kt and S'. Since Kp~°°(xf wo)/Kt is also
modular, it follows that L/Kt is modular, and in fact [Kf~n Π
L: Kt] = p2n for all n. Since any finitely generated extension of Kt

in L is contained in Kf~n ΓΊ L for some n, and Kf~n Π L is modular
over Kt with two elements in any subbase, we conclude that any
finitely generated extension of Kt in L must be modular over Kt

[9, Proposition 2.5, p. 76].
We now show that there is a field M which lies between L and

Kt which is not modular over Kt. Since wζ~n = xp~ι + yp~{2%+1)wζZΐ9

for large n, wp~n will not be of exponent n over Kt. Thus assume
wtT~ι) is of exponent n — 1 over !£< and w£~% is not of exponent n.
It follows that (y*-{**+ι))*u = ̂ ~(%+1) is not an element of #,. Let M =
Kt(yp~{2n+1), wp~n). If we show every higher derivation on M over iΓ,
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maps yv-{n+ι) to 0, M/Kt is not modular [11, Theorem 1, p. 403].
Recall that a higher derivation of M over Kt is a sequence of Kt-
linear maps Dis) = {D0 = I, Du , Ds} of M into itself such that DJbc) =
Σ^oAfδ)])^^) for all 6, e e l , m = 0, . ,s. We shall need the
direct corollary to [13, p. 436] that Dm(bpr) = 0 if j ) r | m and Dn(bpr) =
( I W C W if P r |m. We follow the method of Sweedler [11, Example
1.1, p. 405]. Assume there exists Ds such that Ds(yp~{n+ί)) φ 0. Then

Hence

which is an element of Mp%.
Thus wjl* 6 Λf and hence xv~ι e M, a contradiction since a^"1 is

not in L.
In the previous example, L is of transcendence degree two over

K. The next result illustrates that this is the least degree possible
for an extension which does not split.

PROPOSITION 1.7. [K: Kp] ^ p if and only if L/K splits for every
field extension L/K of transcendence degree one.

Proof. Suppose [K: Kp] <i p. As usual it suffices to consider the
case where L^K*~°°. If L = Lp, then L = Lp°° and L/K splits by 1.4.
If L D L P , we show L has a separating transcendence basis over LpCO.
Since L~DKP~™, L/LpC" has transcendence degree 1. Let B b e a p-basis
for L. Since B is algebraically independent over LpCO, B consists of
exactly one element and L/LpO°(B) is algebraic. Since L/LpOO(B) is
separable, B is a separating transcendence basis for L/LpCO and 1.3
applies.

Conversely, suppose [K: Kp] > p. Let x, y be ^-independent in
K and let z be transcendental over K. Then L/K does not split
where L = K(z, zxp~ι + τ/p~1).

As Example 1.6 illustrates, not every extension L/Koί a modularly
perfect field need split. The following result gives several criteria
for such an extension to split.

THEOREM 1.8. Assume [K: Kp] = p and L^KP~°°. The following
are equivalent.
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(1) L/K splits.
(2 ) There exists a maximal separable extension D of K in L

such that L is modular over D.
( 3) There exists a maximal separable extension D of K in L

such that some relative p-basis for D over K remains p-independent
in L.

(4 ) There exists a proper intermediate field D of L/K such
that L = D(KP~°°).

Proof. Assume L = D(&KKP~". Then D satisfies properties (2),
(3), and (4). Assume (2). Since D is a maximal separable extension
of K in L, L/D is purely inseparable. Since D((D(KP~°°))P) = D(KP~°°),
D(KP~~~) is pure in L/D [12, Definition, p. 41]. We claim Dp~ιΓiL =
Dp~ιr\{D{Kp~co)). Let b e (D»~ι Π L)\D. Then D{b) and Kp~ι are not
linearly disjoint over K since D(b) is not separable over K. Since
[K*~ι: K] = p, K'^QDφ) and hence D(b) - D(Kp~ι). Thus b e D(KP~°°)
and the claim is established. By [12, Proposition 2.7, p. 44], D(KP~°°) =
D®κ Kp~°° — L and (1) holds. Assume (3). A relative p-basis B for
D over K is a p-basis for D(KP~°°). Since this p-basis remains p-
p-independent in L, L/D(KP~C<>) is separable. Since L/D, whence
L/D(KP~°°) is also purely inseparable, L = D®KKP~°° and (1) holds.
Assume (4). Since D is proper, D g Kp~°° and hence D/K splits, say
D = D' ®κ K

p~n. Then L = D'®κ Kp~~.

II* In this section we determine necessary and/or sufficient
conditions for the following to hold for an arbitrary extension L/K;

(a) Lf/K splits for any intermediate field I/;
(b) L'/K is modular for any intermediate field U.
We will need the following result.

LEMMA 2.1. Suppose L/K splits and the intermediate fields of
(L Π ULp"°°)/iί appear in a chain. If V is an intermediate field of
L/K, then L'/(L' Π Kp~°°) is separable.

Proof. We first note that L Π Kp~°° and U are linearly disjoint
over 1/ n Kp~™. This follows since L ίi Kp~°°ILr Γ) Kp'°° is purely
inseparable and the intermediate fields are chained. Now since L/K
splits, L/L Π Kp~°° is separable and hence (L f] KP~°°)(L') is separable
over L Π Kv'°°. By [6, Corollary 6, p. 266], we conclude Lf/Kp~°° Π
Lr is separable.

THEOREM 2.2. Suppose L/K is inseparable but not purely inse-
parable. Then each condition in the following list implies the
succeeding one.
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(1) L/K splits and (L Π Kp~°°)/K is simple.
(2 ) L'/K splits for every intermediate field U.
(3) L/K splits and the intermediate fields of (L Π Kp~°°)/K

appear in a chain.

Proof. (1) implies (2): Let U be an intermediate field. By 2.1,
L'/{L' Π Kp~°°) is separable. Since (L n Kp~~)/K is simple, (U Π Kp~°°)/K
is of bounded exponent and so L'/K splits [5, Theorem 4, p. 1178].

(2) implies (3): Suppose the intermediate fields of (L f] Kp~m)/K
do not appear in a chain. Then there exist b, c in L Π Kp~°° such
that b £ K(c), c £ K(b), and both b and c have some positive exponent
i over K. Let 2 e L\K be such that K{z)/K is separable. Let 1/ =
K(z, zb + c). Now K(z) is a distinguish maximal separable interme-
diate field of L'/K. Since L'/K splits, L' = K(z)®κ /by [8, Lemma,
p. 607] where J = L' Π î ~°°. Let ^ be a linear basis of l£(z)/#
with 1, 26 ^ Now zί> + c = Σ χjd3 where xά e ^2^ and dό e J. Thus

( * ) zpibpi + cpi = Σ f̂rff, df e Jpί n iί .

Since K(z)/K is separable, ^ * * is linearly independent over K. Hence
by equating coefficients in (*) we have bp\cp'eJp\ Thus b,ceJ.
Hence [J: K] > p% and [I/: !£(£)] > P\ & contradiction. Hence the
intermediate fields of (L (Ί Kp~°°)/K appear in a chain.

COROLLARY 2.3. Suppose L/K has finite inseparability exponent.
Then the following conditions are equivalent.

(1) L'/K is modular for every intermediate field Lr.
(2 ) L/K is modular and (L Π Kp~°°)/K is simple.
( 3) U/K splits for every intermediate field U.
( 4 ) L/K splits and (L Π Kp~°°)/K is simple.

Proof. A modular field extension with finite inseparability ex-
ponent splits. Also a field extension which splits and whose maximal
purely inseparable subfield is simple is necessarily modular.

COROLLARY 2.4. Suppose L/K is inseparable and L/{L Π Kp~°°)
has a finite separating transcendence basis. Then the following
conditions are equivalent.

(1) U/K is modular for every intermediate field Lr.
(2 ) L'/K splits for every intermediate field Lr.
( 3 ) The intermediate fields of (L Π Kp~°°)/K appear in a chain.

Proof. Assume (1). Let L' be an intermediate field of L/K. If
L'2iίΊiΓ p"°°, then L'/LΠK^™ has a finite separating transcendence



52 JAMES K. DEVENEY AND JOHN N. MORDESON

basis [10, Theorem 1, p. 418] so L'/K splits by [4, Proposition 1, p.
2]. If L' =£ L Π Kp~°°, then L' Π Kp~°°/K is a simple extension since
the intermediate fields of L Π Kp~°°/K must be chained. For if they
are not chained, choose b, c, z as in the proof of 2.2 and K{z, zb + c)
is not modular over K. Now we have (1/ Π Kp"°°)/K simple of
bounded exponent, L'/L' Π Kp~°° separable since L'/K is assumed
modular, and hence L'/K splits by [5, Theorem 4, p. 1178].

That (2) implies (3) is part of 2.2. Assume (3). Since L/L Π Kp~°°
has a finite separating transcendence basis, L/K splits. By 2.1, if
U is an intermediate field of L/K, then L'/L' Π K*~°° is separable.
Since V Π Kp~°°/K is modular, L'/iί is modular by [11, Lemma 5(3),
p. 407].

COROLLARY 2.5. Suppose L/K is inseparable but not purely
inseparable. Then each statement in the following list implies the
succeeding one.

(1) L/K is modular and (L Γ) Kp~°°)/K is simple.
(2) L'/K is modular for every intermediate field U.
( 3 ) L/K is modular and the intermediate fields of (L Π Kp~°°)/K

appear in a chain.

Proof. Straightforward.

Ill* We now determine necessary and sufficient conditions for
the following to hold;

(a) L/L' splits for any intermediate field V.
(b) L/L' is modular for any intermediate field I/.

THEOREM 3.1. (1) Suppose L g> Kp~°°. Then L/L' splits for
every intermediate field L' of L/K if and only if L/K is algebraic
and L/K splits.

( 2 ) Suppose L 2 Kp°°. Then L/L' splits for every intermediate
field L' of L/K if and only if L = IΛ

Proof. (1) Suppose L/L' splits for every intermediate field L'.
Let J = L Π Kp~°° and let b e J\JP. Theh bp~' $ L. Assume L/J is
not algebraic and let ze T, where T is a transcendence basis for L/J.
Let J = J(T\{z}) [and w = -2 2 p 0 p + 6)"1. Then z2p + wzp + w& = 0.
The polynomial X2p + wXp + w& is irreducible over J(w) by Eisenstein's
criterion. However L/J(w) does not split else wp~\ wp~ιbp~ι eL by
[9, Lemma 3.7, p. 102] and so bp~ιeL. Thus L/K is algebraic.
Clearly L/K splits. Conversely, suppose L/K is algebraic and splits,
say L = S ®JC J where S/K is separable algebraic. Then L =
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SU®L,JU for every intermediate field U of L/K.
( 2 ) Suppose L/U splits for every U. If L/K is algebraic, then

L is separable algebraic over the perfect field Kp~°°, and is thus
perfect. Suppose L/K is not algebraic and L Φ ZΛ Let b e L\LP.
Then L/J(w) does not split, a contradiction, where J(w) is the field
defined in (1) above. Hence L = ZΛ Conversely, suppose L = ZΛ
Let U be an intermediate field of L/K. Since L = Lp, ZΛ"00 £ L.
Hence L/U splits by 1.3.

THEOREM 3.2. (1) Suppose L =£ Kp~°°. Then L/U is modular
for every intermediate field U of L/K if and only if L/K is algebraic
splits and L/U is modular for every intermediate field U of L/S
where S is the maximal separable intermediate field of L/K.

( 2 ) Suppose L 2 KpO°. Then L/U is modular for every inter-

mediate field U of L/K if and only if L = ZΛ

Proof. (1) Suppose L/U is modular for every U. If L/K is
not algebraic, then we can construct the field J{w) of 3.1. Since
L/J(w) is algebraic, L/J(w) cannot be modular else it would split.
Thus L/K is algebraic. Since L/K is also modular, L/K splits.
Conversely, suppose L/K is algebraic and splits and L/U is modular
for every intermediate field U of L/S. Then L/U is modular for
every intermediate field U of L/K by [7, Lemma 4, p. 340] since
L/U necessarily splits.

(2) Suppose L/U is modular for every U. If L/K is algebraic,
then L is separable algebraic over the perfect field Kp~°° and is
thus perfect. Suppose L/K is not algebraic and L Φ ZΛ Let
6eL\ZΛ Then L/J(w) is not modular, a contradiction, where J(w)
is the field defined in 3.1. Hence L — Lp. Conversely, suppose L —
Lp. Let U be an intermediate of L/K. By 3.1(2), L/U splits, say
L = D (g)L, L'p"00 where D is separable over U. Since Ltp~°°IU is
modular, L/U is modular.

COROLLARY 3.3. Let L be a perfect field. Then L splits over
every sub field.

Proof. Zf°° = ZPQL and L = ZΛ

COROLLARY 3.4. Consider the following statements:
(a) L/U and U/K split for every intermediate field U.
(b) L/U and U/K are modular for every intermediate field U.
(c) L/K is algebraic and splits and the intermediate fields of

(L ΓΊ Kp~~°°)/K appear in chain.
(d) L = Lp and [K: Kp] ^ p.
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Then; (1) Suppose L g Kp~~. Then (a) «=> (b) <=> (c).
( 2 ) Suppose L 2 Kp~°°. Then (a) — (b) ~ (d).

Proof. Straightforward.

REFERENCES

1. J. Deveney, A counterexample concerning inseparable field extensions, Proc. Amer.
Math. Soc, 55 (1976), 33-34.
2. J. Deveney and J. Mordeson, Sub fields and invariants of inseparable field exten-
sions, preprint.
3. J. Dieudonne, Sur les extensions transcendantes separables, Summa Brasil. Math.,
2 (1947), 1-20.
4. N. Heerema and D. Tucker, Modular field extensions, Proc. Amer. Math. Soc, 53
(1975), 1-6.
5. H. Kreimer and N. Heerema, Modularity vs. separability for field extensions, Canad.
J. Math., 27 (1975), 1176-1182.
6. S. Lang, Algebra, Addison-Wesley, Reading, Mass., 1967.
7. J. Mordeson, On a Galois theory for inseparable field extensions, Trans. Amer. Math.
Soc, 214 (1975), 337-347.
8. , Splitting of field extensions, Arch. Math., 26 (1975), 606-610.
9. J. Mordeson and B. Vinograde, Structure of arbitrary purely inseparable field ex-
tensions, Lecture Notes in Math., Vol. 73, Springer-Verlag, Berlin and New York (1970).
10. , Separating p-bases and transcendental field extensions, Proc Amer, Math.
Soc, 31 (1972), 417-422.
11. M. E. Sweedler, Structure of inseparable extensions, Ann. of Math., (2) 87 (1968),
401-410.
12. W. Waterhouse, The structure of inseparable field extensions, Trans. Amer. Math.
Soc, 211 (1975), 39-56.
13. M. Weisfeld, Purely inseparable extensions and higher derivations, Trans. Amer.
Math. Soc, 116 (1965), 435-449.

Received October 27, 1973. Supported by the Grants-in-Aid Program for Faculty
of Virginia Commonwealth University.

VIRGINIA COMMONWEALTH UNIVESRITY

RICHMOND, VA 23284
AND

CREIGHTON UNIVERSITY

OMAHA, NB 68131




