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FANS AND EMBEDDINGS IN THE PLANE

LEX G. OVERSTEEGEN

We prove that every fan which is locally connected at
its vertex can be embedded in the plane. This gives a
solution to a problem raised by J. J. Charatonik and Z. Rudy.

!• Introduction and definitions* In 1963, K. Borsuk [4] con-
structed a fan which is not embeddable in the plane. Hence, the
question arises to characterize those fans which are embeddable in
the plane. In particular, in [5] it was asked whether each contractible
fan is embeddable in the plane. In an attempt to solve this problem
in the negative, J. J. Charatonik and Z. Rudy constructed a contrac-
tible fan which is locally connected at its vertex. They conjectured
([6], p. 215) that this fan is not embeddable in the plane. We show
in this paper that each fan, which is locally connected at its vertex,
is embeddable in the plane (see Theorem 5.2). We will also establish,
for fans, several equivalences between the local connectedness at the
vertex and other conditions. In a forthcoming paper [11] the author
has shown that each contractible fan is locally connected at its vertex,
and hence embeddable in the plane.

By a continuum we mean a compact connected metric space. A
dendroid is an arc-wise connected and hereditarily unicoherent con-
tinuum. By a fan we understand a dendroid which has exactly one
branch-point, and we call this branch-point the vertex of the fan.
If x, y are points in a dendroid X, then we denote by [x, y] the
unique arc in X having x and y as end-points. The weak-cut order
^ , with respect to a point p, in a dendroid X is given by

x <; y if and only if [p, x] c [p, y] .

We denote by / the unit closed interval [0, 1] of reals, and the
symbol B(x, ε) denotes the open ball of radius ε about the point x.
We use the symbol ~ to denote that two spaces are homeomorphic.
The symbol R, as used in Lemma 3.1, denotes a set of indices.

2* Embeddings in the plane* A cover U ={UU U2, •••, Un) of
a space is called an ε-chain if the nerve (see [8], p. 318) of U is an
arc and diam( [/*) < ε for i = 1, 2, , n. A continuum X is said to
be arc-like if for each ε > 0 there exists an ε-chain covering X. A
point e of an arc-like continuum X is called an end-point provided
for each ε > 0 there exists an ε-chain Ulf U2, , Un covering X such
that
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(1) eel

It is known (see [9], p. 148) that every O-dimensional compact
metric space K is homeomorphic to a subset of the Cantor ternary
set Cd [0,1], and hence K possesses a natural order ^ . We will
call this ordering the induced ordering on K. The main result of
this section is Theorem 2.2. We start with the following lemma.

LEMMA 2.1. Let X be a compact metric space and let {Ja}, ae A,
be the decomposition of X into components. Let ε > 0 and let K be
a O-dimensional compact set in X, with induced ordering ^ such
that:

(2 ) Ja is an arc-like continuum for each ae A,
( 3 ) Ja Π K = {ea}f where ea is an end-point of Ja for each aeA.

Then there exists an open cover U of X such that U is a finite union
of disjoint ε-chain Vt(i = 1, 2, •••,£), where Vt = {U(i, j)}(j = 1, 2, ,
k(i)) such that:

(4) Kd \JU U(i, 1)\UU UJiS U(i, j),
( 5) all nonadjacent elements of U have positive distance,
(6) for each i, 1 <i i ^ ί, there exist aif bteK such that:

KrιU(i,l) = {xeK\ai^x^bi} .

Proof. Denote by 0 the minimal and by 1 the maximum element
of K. Let g:X-^K be defined by g(x) = ea if xeJaf then g is a
monotone retraction. Let

(7) x0 = sup {eeK\for each ef <* e there exists an open cover

of g~\[0, e']) satisfying the conclusion of Lemma 2.1},
then xo^O. By (2) and (3) there exists an ε-chain Uu U2, U39 , Uk

in X covering g~\x0) such that

ϊπfc= 0 -
i=2

Since g"\x0) c Uy=i ϋy and i£ is O-dimensional there exists a closed and
open set HaK such that g~\H) c Ui=i^ Moreover, we can choose
H such that

for some a and δ in K. If α > 0, define xt = sup {# eUL|CC < α}, then
«! g ETΊ and α̂  < α. By (7) there exists a cover U of flΓι([0, scj) satisfy-
ing the conclusions of the lemma (if a = 0, take 17= 0) . Since
flΓ^IO, scj) is open in X we may assume that U ί7cg"1([0, scj). Hence
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is a cover of g~X[0, b]) satisfying the conclusion of the lemma. It
follows the definition of xQ that x0 = b.

If x0 = b = 1, we are done, whence suppose x0 < 1 and let x2 =
inf {x eK\ x > xQ}. By repeating the argument above, replacing x0

by x2, one can show that g~~\[0, x2]) can be covered with a cover
satisfying the conclusion of the lemma, contrary to (7), since x2>x0.

We will call a cover U that satisfies the conclusion of Lemma
2.1 an ε-cover of X.

THEOREM 2.2. Let X be a compact metric space and K a closed
subset of X. Let {Ja}, ae A, be the decomposition of X into com-
ponents such that:

( 8 ) Ja Π K = {e}, where e is an end-point of Ja for each ae A,
( 9) Ja is an arc-like continuum for each ae A. Then there

exists an embedding h: X—> P such that h(K) = h(X) Π I, where I =
{(x, y)eP\y = 0}.

Proof. Notice that by (8) K is O-dimensional. By Lemma 2.1,
there exists for each ε > 0 an ε-cover of X. Let U1 be a 1/2-cover
of X and rj > 0 such that ΎJ is the minimum distance between two
nonintersecting elements of Ux. By induction we construct a sequence
of covers Uu U2, of X such that Un refines Un_lf Un is a (l/2)%-
cover, no sub-chain of less than nine links of Un connects two non-
intersecting elements of Un^ι.

Given a cover U of X, satisfying the conclusion of Lemma 2.1,
we label the chains Vu V2, , Vt of U such that inf {x | x e K Π Ff} <
inf {x\xeKC\ F J if i < j , and the links of the chain F^ = {U(i, 1),
U(i,2), •••, U(i,k{i))} such that K f) V, c J7(i, 1). If 17 and £7* are
both covers of X, satisfying the conclusion of Lemma 2.1, then we
say that U follows the pattern {(alf 6J, (a19 δ2), ••-, (a19 bkω), •••,
(«ί, &&(«))} ίn t^* if the i t h link of the ith chain of Z7 is contained in
the bjth. link of the α^th chain of Ϊ7*(i.e., U(ί, j)dU7)"{aί, bd).

There exist in P a sequence of open sets D19 D2, such that
Dn is a finite union of (l/2)w-chains whose elements are interiors of
rectangles, and such that Dn follows a pattern in Dn_x that Un follows
in Z7Λ_!, each element of Dn^ contains the closure of an element of
Dn, while the closure of each element of Dn lies in an element of
DΛ_! and the first link of each chain of Dn intersects I in a non-
degenerate interval, while the closure of all other elements of Dn

are contained in P\l(n = 1, 2 •)•
The existence of the open sets Dn satisfying the above follows

from an argument similar to one used by R. H. Bing (see [3], p. 654),
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the only difference being that in each cover Dn^ we insert, in the
next step, finitely many, instead of one, new chains and we require
the first link of each chain of Dn to intersect I in a nondegenerate
interval, while the closures of all other elements of Dn are contained
in Γ\l.

The latter facts can be established by dividing each chain of
JD%_! into finitely many "strips" in each of which we insert, in the
next step, a new chain in such a way that we always insert new
links on a predescribed "side" of already chosen previous links.

It follows from Theorem 11 of [2] that X is homeomorphic with
the continuum Y — Dΐ Π Df Π , where D% denotes the union of
the elements of Dn and moreover it follows from the choice of Dn

that Y satisfies the conclusion of Theorem 2.2, and the proof is
complete.

3* Fans locally connected at the vertex* A fan X has prop-
erty P1, if for each sequence of points {#J in X (i — 1, 2, ) con-
verging to the vertex v of X we have

(1) Ls[v, x,] = M .

THEOREM 3.1. Let X be a fan with vertex v and

(2) X= \JreR{Jr\Jr = [0, 1] for each reR and Jrιf\Jr2 = M if
r, Φ r2eR},
then the following are equivalent:

( 3 ) X has property P,
(4) for each ε > 0, there exists a connected open neighborhood

U of v such that diam( U) ^ ε and Bd( U) Π Jr is connected for every
reR,

( 5 ) X is locally connected at v.

Proof. (3) —> (4). Let ε > 0 be given and let ^ be the weak-
cut order of X with respect to v. Define V — B(v, e),

x{r) = inf {xeX\xeJrΠBd(V)} if J r n B d ( F ) ^ 0 ,

{y e Jr\y ^ x(r)} if Jr Π Bd(F) Φ 0
(0 otherwise

and Q — \JrQB Qr It follows that vtQ, since if {vj is a sequence
in Q converging to v, then vt ^ xir^ for some rt e R, and hence
Ls[v, Vi] Π Bd(F) Φ 0 , contrary to (3).

Let U — X\Q, then U is an open neighborhood of v and diam(Z7) ^

1 It follows from the definition that property P is related to the notion of a Q-
point or a P-point (cf. [1] and [7], respectively).



FANS AND EMBEDDINGS IN THE PLANE 499

diam(F) = e. We will show that U satisfies all conditions of (4).
We claim that

(7) if z 6 U and x < z, then xeU, or, equivalently, if x e Q and
z ^ x, then zeQ.

To this end, suppose that (7) is false. Hence xeQ, let {xt} be
a sequence in Q converging to x. Then xt >̂ &(?•<) eBd(F) for some
r iei2(i = l, 2, •••)• We may assume that the sequence {x(rt)} con-
verges to a point x0 e Jro Π Bd( V) for some roeR.

By ([9], p. 171), Z/sfcî , x(rt)] is a continuum and since [xi9 x(rt)] c
<3(i = 1, 2, •) we have £*[#<, a?(rt)]cQcJC\{v}. Moreover, since Xis
hereditarily unicoherent, it follows that [x, x0] c Ls[xί} x(rt)] c Q c
X\{v} and we consider two cases as follows:

Case 1. ze[x,x0]. Then zeQ.

Case 2. z ί [x, x0]. Then, since z > x, z > max {x, x0} and conse-
quently z > x0 ^ x(rQ). Hence z e Q by (6) and the definition of Q.

In both case we conclude that zeQ, contrary to the assumptions
in (7) and the proof of (7) is complete. It follows from (7) that U
is connected. In order to show that Jr Π Bd(tT') is connected for each
r 6 i?, we will show that if x, y e Jr Π Bd(Z7), say x < y, and 2 e [#, y]9

then 2; 6 J r ΠBd(C7).
Since x eJr nBά(U) = Jrf]U Π Q and 2 > x, it follows from (7)

that zeQ. Moreover, since yeϋf there exists a sequence {#<} in U
converging to y. Since Ls[v, yt] is a continuum ([9], p. 171), con-
taining both y and v and X is hereditarily unicoherent, it follows that
[ v j j c i φ j j . As ze[v,y], we may assume that there exists a
sequence fo}, where zt e [v, y^\, converging to z. By (7), zte U and
whence zeϋ. Obviously zeJr and we conclude zeJrpιUf)Q =

(4) -^ (5): Trivial.
(5) —> (3): Suppose X does not have property P. Let {a?J be a

sequence of points in X converging to v such that Ls[v, xt] = Kφ {v}.
Let ε > 0 be such that diam(i£) > 3ε and let U be a connected

neighborhood of v such that diam( U) < ε. Then there exists an
index ί> 0 such that XiβU and [v, xt] Π [X\B(v, 2ε)] =̂ 0 . But then
U and [v, Xi] are two continua in X whose intersection is not con-
nected, contradicting the fact that X is hereditarily unicoherent,
and the proof is complete.

4. Decompositions of fans* We say that a space X is a (q — c)-
space if, in X, every quasi-component is connected. In other words,
for (q — c)-spaces the quasi-components and the components coincide.
We will show that if a fan is locally connected at the vertex v of
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X, then X\{v) is a (g = c)-space.

THEOREM 4.1. Let X be a fan which is locally connected at the
vertex v of X and

X — UreB {JrI Jr = [0,1] for each reR and Jn Π JT2 = {v}
i/ r,Φr2eR} .

M is a (q = c)-space and {Jr\{v}}, reR, is the decomposition
of X\{v} into quasi-components.

Proof. It is sufficient to show that if r0 Φ rλ e R, then there
exists a closed and open set G c X\M such that

( i ) j r o \ M c ( ? c X V V

By Theorem 3.1 there exists for each n(n = 1, 2, •••) a neigh-
borhood Un of t; such that diam(Z7n) < 1/w, Un+1aUn and Bd(J7J n Λ
is connected for each reR. We may assume that Jro Π Bd(Uj) Φ
0 ^ J^DBdiU,). Let Jϊ, - {r eR\Bd(Un) n Λ ^ 0}(n = 1,2, •••),
then RnaRn+1 and U?=iΛΛ = Λ.

Let F be the space obtained from Bd( U^ by identifying all com-
ponents of Bd(E7i) to a point and let fiBdiU^—^Y be the natural
projection. It follows ([9], p. 148) that dimY = 0. Since

/ ( j r o n Bdiuj) Φ / (J r ι n

there exists a closed and open set H? in Y such that

/ ( j r o n Bά(Ut))cHf c r \ / ( / r i n Bd(^)) .

Let Hx = f~\Hf), then JEZΊ is a closed and open set in
Define A - {r 6ΛJ J r Π H, Φ 0} and ^ = {r 6^1 J r Π JÊ  = 0}, then
Ax Π By = 0 and ̂  U ^i = i?i Moreover, since Hx is closed and open
in BdίETi), we have that

and Q1

are disjoint and closed subsets of X\{v).
By induction we will construct sets An and Bn such that

(2 ) ^ _ x c 4., Bn_, c 5%, 4 n ΰ , = 0 and Anl)Bn = Rn

and if Pn = \Jr*An {Jr\ and Qw = \Jresn {Jr} then Pw and Qn are disjoint
and closed subsets of X\{v}(n = 1, 2, •)•

Suppose An_± and Bn^ have been constructed. Since P%_x Π
Bd(i/J and Q^iΠBdίZ/J are disjoint closed subsets of Bd(J7») and
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Jr Π Bd( Un) is connected for each r e jβ, it follows as above, replacing
Ul9 Jro n B d ( ^ ) and Jn n Bd(ϋi) by Un, Pn_± n Bd(Un) and Qn_, n Bά(Un)
respectively, that there exists a closed and open subset H% of Bd( Un)
such that

P ^ n Bd( Un) dHnd Bd( Un)\Qn^ .

Let An = {reR%\JrΓiH*Φ(d} and Bn = {reRn\JrΓ\ Hn = 0}, then
An and £„ satisfy (2).

Let A = USU -A* and £ = Uϊ=i #*> then A_U JS = i2 and A Π £ =
0 . Let G = Ure^ίe/ΛM} and Gn = Urβ^{e7Λ^}. Since ί?% is open
in X and G = \Jn=ί Gn, it follows that G is open in X Similarly
X\((? U M) = UresRΛM} is open in X. Hence G is both open and
closed in X\{v} and, since roeA1 and r±eBlf (1) is proved.

5* Property P and embeddings in the plane* The main result
of this section is Theorem 5.2 where we prove that if a fan is locally
connected at its vertex, then it can be embedded in the plane. This
result gives a solution to problem 1015 of [6].

Since every fan is hereditarily decomposable and hence 1-dimen-
sional ([9], p. 206), we can consider every fan as a subspace of P.
We start with the following lemma.

LEMMA 5.1. Let X be a fan, with vertex v and

X — UreB {Jr\Jr = [0, 1] for each reR and Jri Π JT2 = M

if τxΦτ%e R)

such that {/r\{̂ }}, r eR, is the decomposition of X\{v} into quasi-
components, then there exists an embedding f: X\{v} —> C x P such
that each quasi-component of X\{v} is contained in {c} x P for some
ceC, and

(1) /(I\W)\/(I\W)cCxW,

where Cc[0,1] denotes the Cantor ternary set.

Proof. We may assume that XaP. By ([9], p. 148), there exists
a continuous function g: X\{v} —> C such that the quasi-components
of X\{v} coincide with the point-inverses of g. Then the function
/: X\{v}~^C x P defined by f(x) = (g(x), x) is an embedding. Only
(1) remains to be shown. Let

(2) (co,α;o)6/(X\M)\/(X\M),

and let {(ci9 xt)}(i = 1, 2, ) be a sequence of points in f(X\{v})
converging to (c0, a?0). We may assume that the sequence {#J in X,
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where xt — f\(cif xt)), converges to a point y e X. We consider two
cases as follows:

Case 1. y φ v. Then the sequence {/(#*)}, where /(a?,) = (c<, a:,),
converges to /(^/). Hence f(y) = (c0, x0), contrary to (2).

Case 2. y = v. Then #0 = # and whence (1) holds.

These two cases complete the proof of the lemma.

THEOREM 5.2. Let X be a* fan which is locally connected at the
vertex v of X, then X is embeddable in the plane.

Proof. Let

X - U {Jr\Jr = [0,1] for each r 6 R and Jri n Jr2 = M

if rx Φ r2eR}.

It follows from 4.1 that {Jr\M}> reR, is the decomposition of X\{v}
into quasi-components. Hence by Lemma 5.1 there exists an embedding
/: X\{v} —>CxP such that each quasi-component of X\{v} is contained
in {c} x Γ for some c e C and

f(X\^})\f(X\{v})czCx{v}.

It follows that f(X\{v}) satisfies all conditions of Theorem 2.2, where
K = f(X\{v}) ίl(Cx M). Hence there exists an embedding h: f(X\{v}) ->
Γ such that Λ(ί) = h(f(X\{v}))nϊ, where ϊ - {(a?, y)eΓ\y = 0}. Let
π: 72 —> JP/Z be the natural projection. It follows (see [9], p. 533)
that P ~ J2/ϊ and whence the mapping g: X-+Pβ defined by

(πohof(χ) if x Φ v ,

U
is the required embedding.

REMARK. J. J. Charatonik and Z. Rudy constructed a fan X
which is locally connected at its vertex (see [6], p. 215). They
conjectured that this fan is not embeddable in the plane. The above
theorem disproves their conjecture and gives a solution to problem
1015 of [6].

ACKNOWLEDGMENTS. The author wishes to thank Prof. A.
Lelek for some valuable suggestions. This research was supported
by a Graduate Fellowship from Wayne State University.



FANS AND EMBEDDINGS IN THE PLANE 503

REFERENCES

1. Ralph B. Bennett, On some classes of non-contractible dendroids, Institute of the
Polish Academy of Sciences, Mimeographed Paper (1972) (unpublished).
2. R. H. Bing, A homogeneous indecomposable plane continuum, Duke J. of Math.,
15 (1948), 729-742.
3. , Snake-like continua, ibidem 18 (1950), 653-663.
4. K. Borsuk, A countable broom which cannot be imbedded in the plane, Colloq. Math.,
10 (1963), 233-236.
5. J. J. Charatonik and C. A. Eberhart, On contractible dendroids, Colloq. Math., 25
(1972), 89-98.
6. J. J. Charatonik and Z. Rudy, Remarks on non-planable dendroids, Colloq. Math.,
37 (1977), 205-216.
7. B. G. Graham, On contractible fans, Doctoral dissertation, University of California,
Riverside, California (1977).
8. K. Kuratowski, Topology Vol. I, Academic Press (1966).
9. , Topology Vol. II, ibidem, 1968.
10. Lex G. Oversteegen, Properties of contractible fans, Doctoral dissertation, Wayne
State University, Detroit, Michigan, 1978.
11. 1 Every contractible fan is locally connected at its vertex, Trans. Amer.
Math. Soc, (to appear).

Received June 12, 1978 and in revised form January 8, 1979. This paper is part of the
author's doctoral dissertation, completed at Wayne State University, Detroit, Michigan.

UNIVERSITY OF HOUSTON

HOUSTON, TX 77004






