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COMMUTATION WITH SKEW ELEMENTS IN
RINGS WITH INVOLUTION

CHARLES LANSKI

This paper describes the structure of additive subgroups
and of subrings which are invariant under Lie commutation
with higher commutators of the skew-symmetric elements in
2-torsion free rings with involution. Except for cases arising
when the subring is central, or when the ring satisfies a
polynomial identity of small degree, the invariant subring
must contain an ideal of the ring. With the same exceptions,
the invariant subgroup must contain either the derived Lie
ring of the set of skew-symmetric elements in some ideal,
or the Lie product of the set of skew-symmetric elements
in the ideal with the set of symmetric elements in the ideal.
Furthermore, the appropriate one of these Lie products is
not Lie solvable.

The first general results of this kind were obtained for simple
rings by Her stein [4], who characterized the Lie ideals of K, the
set of skew-symmetric elements, and then by Baxter [2], who did
the same for the Lie ideals of [K, K], the derived ring of K. Their
work has been extended in several ways. For prime rings, the Lie
ideals of both K and [K, JKΓ] were studied by Erickson [3], and an
investigation of additive subgroups of K invariant under commutation
with [K, K] in semi-prime rings was made in [7]. This was followed
by a description of arbitrary additive subgroups invariant under
commutation with [Kf K] [9], and of subgroups of K invariant under
commutation with higher commutators of K [10]. Returning to
simple rings, Herstein [5] showed that no noncentral proper subring
could be invariant under commutation with K, except in certain
small dimensional cases. This work was extended to semi-prime rings
and commutation with [K, K] in [8]. Our purpose here is to complete
this chain of results by describing the structure of additive subgroups
and of subrings invariant under commutation with higher commutators
of K.

Throughout the paper, R will denote a 2-torsion free ring with
involution, *; S(R) = S = {r e jffjr* — r}, the symmetric elements of
R; K(R) = K = {r e R\r* = —r}, the skew-symmetric elements of R;
and Z{R) = Z, the center of R. The Lie product [A, B] of subsets
A and B of R is the additive subgroup generated by all commutators
[α, 6] = ab — ba for a 6 A and 6 6 B. A higher commutator of K is
a Lie product of K with itself, some fixed number of times in a
given association. For example, [[K, K], K] = V is a higher commu-
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tator of K, as is Ka) = [K, K] or [V, K{1)]. In general, write Kιi+1) =

The goal of the theorems mentioned above is to show that
Lie invariant additive subgroups of K contain [K(J), K] for J a
nonzero *-ideal of R, and that invariant subrings contain a nonzero
*-ideal. Even for simple rings, one encounters two exceptions; when
the invariant object is central, and when R is no more than sixteen
dimensional over its center. These exceptions exist for R a prime
ring also, and the second must include the possibility that R is an
order in such a simple ring, in which case we say that R satisfies
S8. As one would expect for semi-prime rings, one of the three
possibilities should hold in each prime image. In fact, a stronger
result can be proved. In [10] it is shown that an invariant subgroup
of K contains [K(J), K], which is "very" noncommutative or R de-
composes as a direct product of the two kinds of exceptions. To
make these notions precise, we recall two definitions from [10].

DEFINITION. Let R be a 2-torsion free semi-prime ring and set
X = {P\P is a *-prime ideal of R with 2R <£ P). Let

Q1 = n {PeX\R/P does not satisfy Ss}

and Q2= f] {PeX\R/P satisfies S8}. If for some subset TaR, T +
Q, c Z{RIQX)9 then (Qu Q2) is called a splitting of R for T.

When A is an additive subgroup of K invariant under commutation
with some higher commutator of K, then to say that there is a
splitting of R for A is clearly the same as being able to "construct"
R from the two kinds of exceptions discussed above. If no such
splitting exists, one associates to A a *-ideal of R with the property
described in our next definition.

DEFINITION. Let R be a 2-torsion free semi-prime ring, A a sub-
set of R, and J a *-ideal of R. Then J is called a controlling ideal
for A if for each PeX satisfying K(ί)(J)aP, either R/P satisfies S8

or A + PaZ(R/P).
The existence of a controlling ideal for A gives information about

A with respect to every PeX. For example, if there were no
splitting of R for A, but Az)K{1)(T) for some *-ideal T of R with
K{i)(T)Φθ, one might have TaP for some PeX with neither
A + Pa Z(R/P) nor R/P satisfying SB. Even if KW(I + P) c A + P
for a *-ideal I + P of R/P, there is no obvious way to lift this ideal
back to some /in R with Kw(I)aA, or to do this simultaneously for
many primes. However, an ideal J controlling A with A D K{1\J),
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uniformly satisfies A + Pz>K{ι)(J+P) for every P e X and K(i)(J+P) Φ
0 unless RjP is one of the two exceptional cases.

Next we make two easy observations to which we shall refer
several times. Henceforth, we assume that for PeX, the involution
on R/P is given by(r + P)* = r* + P.

LEMMA 1. Let R be a semi-prime ring and A an additive sub-
group of R satisfying [A, K(ί)] c A. Then for each PeX, K{1)(R/P) c
K(R) + P, and so, [A + P, K{i+l\R/P)]dA + P.

Proof Clearly, it suffices to show that Ka)(R/P)czK(R) + P. But
if χ + p9y+ PeK(R/P), then (xy - yx) + P = (xy - y*x*) + Pe
K(R) + P.

LEMMA 2. Let R be a semi-prime ring and J a "-ideal of R.
If for some PeX, K{ί)(J)aP, then either JaP or R/P satisfies S8.

Proof If J qL P, J + P is a nonzero *-ideal of R/P with
K{i)(J + P) = 0. It can be shown that this condition forces J + P
to satisfy S4, although one can get directly that J + P satisfies S8

by using Lemma 1, applying [10; Lemma 3], and then applying [7;
Lemma 2, p. 735]. It follows that R/P must satisfy S8 since it has
an ideal which does.

Before our first main result, which extends [9; Theorem 1, p.
77] to higher commutators, note that if V is any higher commutator
of K, then VaK and [ V, K] c V. An essential ingredient in our
arguments is [10; Theorem 1] applied to higher commutators of K,
which we state as

THEOREM A. Let R be a semi-prime ring and V a higher com-
mutator of K. There exists an ideal I* = I of R which is a controlling
ideal for V, and which satisfies VZD[K(I), K] and VZDI, where V is
the subring generated by V.

With the preliminaries done, we can now prove our first main
result, about invariant additive subgroups of S.

THEOREM 1. Let R be a semi-prime ring, A an additive subgroup
of S, and V a higher commutator of K so that [A, V] c A. Then
either there is a splitting of R for A, or there exists a *-ideal I of
R controlling A with A z> [K(I), S(I)] = Y and Y(i) Φ 0 for any i.

Proof By Theorem A, Vz> [K(J), K] for J* - J, an ideal of R
controlling V. Let B = J f] A, and observe that [B, K{ι)(J)]aB, and
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that J is a semi-prime ring. Using [9; Theorem 1, p. 77] we may-
conclude that either there is a splitting of J for JB, or that there
exists an ideal T* = ToΐJ with Bz>[S(T), K(T)]. The last paragraph
of the proof of [9; Theorem 1, p. 81] shows that for any PeX(J)
with TcP, either J/P satisfies S8 or B + PaZ{J/P). This together
with Lemma 2, shows that T is a controlling ideal for B.

Assume first that there is a splitting of J for B. It follows
that there is a splitting of R for B [10; Theorem 2]. Hence, for
each PeX either R/P satisfies S8 or (A Π J) + Pa Z(R/P). Since
[A, K{1)(J)]aAf)J, one obtains [A, iΓ2 )(J)]cP, if #/P does not satisfy
S8. Should K{i)(J)aP, then because J is a controlling ideal for
V, V + P c Z(R/P). An easy induction argument shows that i f ω c F
for some i, so that Kij+1)aP. The fact that P is a proper ideal of
R and Lemma 2 give that R/P must satisfy S8. On the other hand,
if K(ί){J) <£ P, then Km(J) + P is not commutative and [K\J) + P,
K{1)(R/P)]aK^(J) + P by Lemma 1, so [8; Theorem 2, p. 90] may
be used to conclude that the subring generated by K{2)(J) + P contains
a nonzero *-ideal of R/P, unless R/P satisfies S8. Thus the condition
[A, K\J)]aP forces either R/P to satisfy S8 or A + PaZ(R/P).
Consequently, a splitting of J for B gives rise to a splitting of R
for A.

Next, assume that A z> Bz) [S(T), K(T)], for T an ideal of J
controlling B. Set / = JTJ, a *-ideal of R. Clearly, A =) [S(J), ίΓ(J)]
and we claim that J is a controlling ideal for A. Let PeX and
suppose that Kίi](I)c:P. By Lemma 2, either ϋί/P satisfies S8 or
Id P. Assuming that R/P does not satisfy <S8, the *-primeness of
P, together with the facts that J is a *-ideal of R, and T* = Γ c J,
gives Γ c P n / . li JςLP then P n J e X ( J ) , so T c P n J means
that J/P Π J satisfies S8 or 5 + (P n J) c ^(J/P Π J), since Γ is a
controlling ideal for B. The first possibility is equivalent to the
nonzero ideal J + P of i?/P satisfying S8, which would force R/P to
satisfy S8. In the second case, (A Π J) + Pa Z{R/P) and our argument
in the last paragraph shows that A + Pa Z(R/P) if R/P does not
satisfy S8. The same argument shows that R/P must satisfy S8

when JaP. By definition, / is a controlling ideal for A.

Finally, assume that Γ(ί) = 0 for Y = [S(I), K(I)]. We claim that
this gives a splitting of R for A. Let PeX and note that Γ(ΐ) + P c P ,
Y(1)+PaK(R/P), and by Lemma 2 [Γ ( 1 )+P, ίC(1)(i?/P)]c Γ ( 1 )+P. From
[10; Lemma 3] we have either Γ(1) + PaZ(R/P) or that R/P satisfies
S8. In the first case, a result of Amitsur [1; Theorem 1, p. 63] shows
that (I + P)/P satisfies a polynomial identity, and so, R/P satisfies
the same identity. Of course, if laP we would be finished by our
earlier arguments. Consequently, localizing R/P at its central sym-
metric elements gives a semi-simple finite dimensional algebra Q [6].
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Since in this localization, I + P becomes Q, S(I) + P localizes to S(Q),
and K(I) + P localizes to K(Q), it follows that in Q, [[S, K], [S, K]] c
Z(Q). A consideration of the possible cases shows that Q is at most
four dimensional over its center. Very briefly, if Q is not simple,
or has an involution of the second kind, then Ql3) = 0, and otherwise
one can split Q to obtain matrices over a field, where straightforward
computations give the result. Consequently, R/P must satisfy S8 (in
fact, SA) so Y{ί) = 0 forces a splitting of R for A, completing the
proof of the theorem.

Combining Theorem 1 with [10; Theorem 4] gives the version
of [9; Theorem 2, p. 82] for higher commutators of K.

THEOREM 2. Let R be a semi-prime ring, V a higher commutator
of K, and A an additive subgroup of R satisfying [A, V]a A. Then
one of the following holds:

( i ) 4 D [K(I), K] = L for I* = I an ideal of R controlling
AΠK, and L( i) Φ 0;

(ii) Ai)[K(I), S(I)] =Y for I* — I an ideal of R controlling
AΠS, and Y{i) Φ 0;

(iii) there is a splitting of R for A f] S + A Π K.
If in addition, A* — A, then (iii) can be replaced by: (iii)' there is
a splitting of R for A.

In trying to improve Theorem 2 (iii) to (iii)', the same counter-
example and considerations as in [9] show that some additional
assumption is required. Before discussing the nature of the involution
on Rf we point out that if in Theorem 2 (iii), for each PeX with R/P
not satisfying S89 P is not a prime ideal of R, then in fact A + Pa
Z(R/P). To prove this, note first that if P is not a prime ideal of
R, then P - Q f] Q* for a Q prime ideal of R. Now Q + Q* is a
nonzero ideal of i2/Q* and q + Q* - (q - q*) + Q*, so Q + Q* c K + Q*.
If the higher commutator V in Theorem 2 contains K(i), then [A, Q{ί)] +
Q* c [A, K{ί)] + Q* c A + Q*, so [A, Q{ί)] + <3* c (A n Q) + Q* c
(A Π if) + Q* c Z(R/Q*). Since Q(ΐ) + Q* is a Lie ideal in R/Q*, it
follows that either A + Q*aZ(R/Q*), or Q(ί) + Q*c^(i2/Q*), unless Λ/Q*
satisfies S4 [11; Lemma 8, p. 120]. The possibility Q{i) + Q* c Z(R/Q*)
and repeated use of [11; Lemma 7, p. 120] force Q + Q* c Z(R/Q*),
which in turn means that R/Q* is commutative. Repeating the
whole argument with Q and Q* interchanged shows that A + Pa
Z(R/P) unless R/P satisfies S4. We isolate one special case of Theorem
2 to which our observation applies.

COROLLARY. // in Theorem 2, R is a ""-prime ring which is
not prime, then ApiS + AΓ\KczZ forces A c Z unless R satisfies S8.
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As in [9], the obstruction to showing that a splitting of R for
A Π S + A Π K forces a splitting of R for A occurs in prime rings
whose extended centroid has an induced involution of the second
kind [13; Theorem 4.1, p. 511]. When this involution is of the first
kind, we can prove the result corresponding to [9; Theorem 7, p. 93]
for higher commutators.

THEOREM 3. Let R be a prime ring with extended centroid C,
and assume that the involution induced on C is the identity map.
If V is a higher commutator of K and A is an additive subgroup
of R satisfying [A, F] c A, then Af)S + AΓ\K(zZ implies that
either A c Z or R satisfies S8.

Proof, Let / be the controlling ideal for V given by Theorem
A. Then /is a prime ring and Ka)(I) c Vimplies that [An/, Kw(I)]a
AΠ/. We wish to apply [9; Theorem 7, p. 93] to / and A n / , but
first we must verify that the involution on CI9 the extended centroid
of /, is the identity map. This follows from work of Martindale
since the extended centroid is the center of a certain quotient ring
and these quotient rings coincide for R and for / [12; Theorem 1,
p. 440]. A proof of this result, using the definitions in [13] follows
easily from the fact that any ideal T of / contains the ideal ITI of
R and an ideal N of R contains the ideal NI of /. This observation
and [13; proof of Theorem 4.1, p. 511-512] show that C and Cz have
the same kind of involution. Applying [9; Theorem 7, p. 93] gives
either A fϊ la Z(I) or / satisfies S8. Since / satisfying S8 forces R
to satisfy S8, assume that i f i ί c Z(I). Thus A f i ί c Z{R), and in
particular [A, K{ι\I)]<zZ, forcing [A, K{2)(I)] = 0. As in the first
part of the proof of Theorem 1, we must have A a Z unless R
satisfies S8t completing the proof of the theorem.

Using the same ideas as above, we can obtain the higher com-
mutator version of [8; Theorem 3, p. 92] for invariant subrings.
Note that for subrings, the nature of the involution is immaterial.

THEOREM 4. Let R be a semi-prime ring, V a higher commutator
of K, and A a subring of R satisfying [A, V]aA. Then either
A ZD M* = M, a noncommutative ideal of R controlling A, or there
is a splitting of R for A.

Proof. By Theorem A, Vz>[K(J), K] for I* = J an ideal of R
controlling V. Clearly, B = A{M satisfies [B, K[ι) (/)] a B, so [8;
Theorem 3, p. 92] applies to the subring B of / to yield a splitting
of / for B, or that B D Γ = T, a noncommutative ideal of /. We
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observe that the proof of [8; Theorem 3, p. 92] actually shows that
T is a controlling ideal for B, since T can be chosen to be a con-
trolling ideal for B f] K by [10; Theorem 1], which is all that is
necessary. If BZDT holds, then AZDBZDITI = M. The fact that
M is a controlling ideal for A follows exactly as in the proof of
Theorem 1. Should M be commutative, the semi-primeness of R
would force MaZ(R). In particular, TaZ(T) and Z(T)2TaZ(T).
Thus 0 - [Z(T)2T, T] = Z{Tf[T, Γ], so Z(T)[1, Γ] = 0 from the fact
that T is a semi-prime ring. But now T[T, T] = 0 so that (Γ[Γ, T])2 =
0. forcing T[T, T] = 0. Hence [T, T] c T n Ann(T) - 0, contradicting
the assumption that T is not commutative. To complete the proof
of the theorem, it suffices to treat the case when there is splitting
of I for B. As in the proof of Theorem 1, such a splitting gives
a splitting of R for B [10; Theorem 2], and the fact that Bz)
[A, K{1\I)] for I a controlling ideal of R for V yields a splitting of
R for A.

REFERENCES

1. S. A. Amitsur, Identities in rings with involutions, Israel J. Math., 7 (1969), 63-68.
2. W. Baxter, Lie simplicity of a special class of associative rings II, Trans. Amer.
Math. Soc., 87 (1958), 63-75.
3. T. Erickson, The Lie structure in prime rings with involution, J. of Algebra, 21
(1972), 523-534.
4. I. N. Herstein, Lie and Jordan systems in simple rings with involution, Amer. J.
Math., 78 (1956), 629-649.
5# , Certain submodules of simple rings with involution, II, Canad. J. Math.,
27 (1975), 629-635.
6. N. Jacobson, PI-Algebras, Lecture Notes in Mathematics No. 441, Springer-Verlag,
New York, 1975.
7. C. Lanski, Lie structure in semi-prime rings with involution, Comm. in Algebra,
4 (1976), 731-746.
g# . f Invariant subrings in rings with involution, Canad. J. Math., 30 (1978),
85-94.
9# . 1 Invariant submodules in semi-prime rings with involution, Comm. in
Algebra, 6 (1978), 75-96.
10. • , Lie structure in semi-prime rings with involution, II, Comm. in Algebra,
6 (1978), 1755-1775.
11. C. Lanski and S. Montgomery, Lie structure of prime rings of characteristic 2,
Pacific J. Math., 4 2 (1972), 117-136.
12. W. S. Martindale, 3rd, Lie isomorphisms of prime rings, Trans. Amer. Math.
Soc, 142 (1969), 437-455.
13. , Prime rings with involution and generalized polynomial identities, J.
of Algebra, 2 2 (1972), 502-516.

Received December 4, 1978 and in revised form March 5, 1979. This work was sup-
ported by NSF Grant MCS 78-01491.

UNIVERSITY OF SOUTHERN CALIFORNIA

Los ANGELES, CA 90007






