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FINITENESS OF LOWER SPECTRA OF A CLASS
OF HIGHER ORDER ELLIPTIC OPERATORS

W. ALLEGRETTO

Finiteness criteria are established for the lower
spectrum of a class of higher order elliptic operators. The
results are obtained by the introduction and consideration
of a suitable second order operator. Examples are given
to show that the method can yield optimal results.

Let G denote a domain of Euclidean m-space Em. We always
consider the topology of one point compactification of Em, so that
if G is unbounded, then oo is a point of dG, the boundary of G.
This note deals with the spectrum of the Friedrich's extension L
of the operation / defined on C™(G) by:

(1) su = (-ΐ)n4nu - qu .

Here we denote by An the w-times iterated Laplacian and we assume
that q is a real function defined in G.

In the case n — 1 there is a well known connection between the
spectrum S(L) of L and its oscillation properties, [1], [2], [6], [7], [8].
Basically, it is shown that, under suitable regularity conditions, the
oscillation constant of L is the least point μ of the essential spectrum
of L and that (—°°, μ) A S(L) is finite iff L — μ is nonoscillatory.
It is our purpose to obtain conditions, based on oscillation theory,
which guarantee that (—oo9 δ)ΛS(L) is a finite set, where 3 is a
constant which is assumed hereafter to be zero. We observe that,
given the monotonic dependence of the least eigenvalue as a domain
function, the same proof as in [6], for the case n = 1, shows that
if L is oscillatory then (— &o, 0) Λ S(L) is infinite. It does not
appear known, however, whether there is a higher order version of
the arguments used in [7] to show that if L is nonoscillatory then
(— °o, 0) Λ S(L) is finite. This observation is the main reason behind
our attempt to relate L to a second order operator.

Basically, our method consists in introducing a second order
expression s19 related to /, and in then obtaining finiteness conditions
for (— oo, 0) Λ S(L) by examining the nonoscillation properties of slm

It may intuitively appear that the introduction of a second order
expression implies that the results obtainable in this way are not
optimal. This indeed can happen, but we show by example that
our method may yield best possible results in the sense that the
constants appearing in the expressions can not be improved.

After some preliminary results we shall consider (1) only for
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the case n — 2, and merely indicate how the formulas are to be
modified for the cases n > 2. We do this because our method
remains unchanged in the general case, while the expressions
involved can become quite lengthy and complicated (depending on
n, m, G).

We now state our assumptions on /. We shall assume that:
( i ) qeCΐoc (i.e., q is locally Holder continuous) in a neighbor-

hood of 3G and qeL2

lo,(G);
(ii) / i s bounded below on C™(G) so that L is well defined.

Consider a real second order elliptic expression /v given by

with atj — aάι. We shall say that /; is admissible iff the following
condition is satisfied:

(iii) if (?! is any bounded smooth subdomain of G with G1(zG
and σeLco{3G^)1 then the form B(u, v) given by:

σuvB(u, v) = \ {Σa^D^DjV - quv) -f- \

on C^Gi) gives rise, by extension, to a self-adjoint operator in L2(GL)
with finite negative spectrum.

Explicit conditions on q, aτj which are sufficient in special cases
for (ii), (iii) to hold may be found in [9], [11]. We observe that
our assumptions allow the possibility that q become singular on
parts of (possibly all of) 3G.

We also recall the following definition of nonoscillation at 3G
(see [1]); The operator L (or the expression /) is nonoscillatory at
dG iff there exists a neighborhood N of dG (i.e., N is open in Em\J
{co} and dGaN) such that if F is a bounded domain in NAG then
(-<*>, 0] Λ S(L(F)) = φ. Here L{F) denotes the extension of /
defined on C™(F). The definition of L oscillatory at parts of dG is
analogous.

Finally, we shall say that G satisfies condition (A) iff: there
exists a family of nested bounded smooth closed surfaces {SJΓ=o and
associated domains {G{} (j > i) such that: G{ c Gy dG{ = SiU Sj9

j = i + i9 . . . ? co; {UjLιl-iG]}Γ=1 is a deleted neighborhood base of dG
(in the induced topology on G). Condition (A) is usually satisfied by
the regular domains considered in oscillation theory.

THEOREM 1. Assume that G satisfies condition (A) and that
there exists an admissible second order expression /x with C°° coef-
ficients such that:

( 2 ) (ώ, ( - 1 ) M » ^ ($



FINITENESS OF LOWER SPECTRA 305

for all φeC™(G). Assume further that s[ — q is nonoscillatory at
dG. Then S(L) A (— °°, 0) is a finite set.

Proof. Since /λ — q is nonoscillatory at dG, it follows from our
assumptions that there exists a positive solution v of (< — q)v = 0
in a neighborhood N of dG. A suitable form B, as given in (iii),
may then be constructed using v so that if φ e C™(G) is perpendicular
(in L2) to a finite dimensional subspace (determined by B) of L2 we
then have:

(Φ, A , Φ) - (qφ, Φ) ^ 0 .

Detailed proofs of the above statements follow by trivially modifying
the arguments given in [6 — 9]. The conclusion now follows from
inequality (2) and the spectral theorem.

We remark that if G is an exterior domain with smooth boundary
then Theorem 1 remains valid if "nonoscillatory at <>o" is substituted
for "nonoscillatory at dG". Furthermore it is now sufficient that
q e C?oc near c>o. In the definition of admissible we substitute here
for the form B of (iii) the form Br defined on {u\ue Cι(G A {\x| ^ R}),
u = 0 near dG — {°o}} by:

B'(u, v) — \ {Σ atjDiUDjV — quv} + I σuv .
J ( ? Λ { !» !<#} J\x\=R

The proof of this remark is essentially identical to that of
Theorem 1. We remark that an essential requirement is that ô be
an isolated point of dG. Analogous results are possible for problems
on bounded domains G with singularities on isolated parts of dG.

COROLLARY 1. Assume that for some function w > 0, we C°°(G)
we have (φ, ( — l)n~ιAn~ιφ) ^ (wφ, φ) for all φeC?(G), and let /[ denote
the expression: /$ — — ΣΓ=i Dk(wDkφ). If sx is admissible and A — q
is nonoscillatory at dG then S(L) A (— °°, 0) is a finite set.

COROLLARY 2. Let G be contained in an exterior domain. Then
there exists constant C, a, β (which depend on ny m) such that for
any φeC™(G) we have (φf ( — l)n~ιAn~ιφ) ^ (wφ, φ), where w =
C\x\a(/n\x\γ.

The proof of Corollary 1 is immediate from the observation:

(φ, (- l)M^) - Σ (Dkφ, (-I)*-*Δ^Drf) ^ Σ (wDkφ, Dkφ) .
k k

Corollary 2 is a summary of results found in [3], [4] where explicit,
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but often lengthy, expressions are given for suitable C, α, β in
terms of n, m.

The general operator L may now be considered by using
Corollaries 1 and 2. As mentioned above, however, we proceed by
explicitly considering only the case n = 2, and by showing that in
this case Theorem 1 can lead to optimal results. We do this by
first obtaining a lemma which gives better results than those
obtainable from Corollaries 1 and 2.

LEMMA 1. Let G be an exterior domain, m > 4 and let φ e C™(G).
It follows that:

( 3 ) ( J M ^ T

4

Proof. We adopt the procedure used in [3], [10] for similar
estimates. Let F, denote a system of complete orthonormal spherical
harmonics and let k = k(i) denote the order of Yt. For a given

Φ e Co°°((?) we set fi = \φ Y€dw where Φ is the full range of the
JΦ

angular variables and dw denotes the angular component of the
volume element in polar coordinates. It follows that:

ί W = Σ Γ
J i=o Jo

i=o Jo \ r r

and:

Σ (Dtφ)% = Σ Γ {r-3(/02 + /fr -%(fc + m
γ <=o Jo

Consequently, (3) will be satisfied if we can show that for all k:

" + (W ~ 1)/'
( 4 )

ϋ L I TO - 2)}dr ,

where we have set ft = /. We first expand and integrate by parts
the left hand side of (4) and then estimate the (/")2 term by Formula
(9) of [5, p. 83]. This procedure shows that for (4) to hold it is
sufficient that:

( 5 ) V \rm~Xf')22k(k + m - 2) + rm~δ

f2[k\k + m-2)2 + k(k + m-2)(2m-S-~Yjj ^ 0 .x
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Estimating the (/')2 term by the results of [3] reduces (5) to showing
that, for each possible value of ft, we have:

But this inequality is easily seen to be valid by direct examination,
and the result follows.

We remark that if m ^ 4 the above procedure apparently leads
to worse constants than m2/4.

To apply the lemma we first recall that, by [3], [10], the
operator L generated by

/u — Δ2u — qu

in G(zEm, m > 4, is oscillatory (resp. nonoscillatory) if 16|#|2g ^
m\m — 4)2 + δ (resp. <̂  m\m — 4)2) near infinity, where δ > 0.

COROLLARY 3. Lei w = 2, m > 4 ami iβί G be an exterior domain
with smooth boundary. Assume that — 4"1 Σ A(m 21»| ~2A^) is
admissible and that for all \x\ sufficiently large we have 161 x\*q(x) <;
m\m — 4)2. ΓAβ^ S(L) A (— °°, 0) is finite. Furthermore m\m — 4)2

is the largest possible constant.

Proof. By the remark following Theorem 1 and by Lemma 1
it is sufficient to show that the operator generated by:

- QΦ

is nonoscillatory at {co}. Since 16\x\*q(x) ^ m\m — 4)2 near oo, this
is the case by the results in [3]. Finally that m\m — 4)2 is optimal
follows from the above remarks.

As another simple example where "optimal" results are obtained,
let us consider the case where G is the 1/2 plane in E2 given by
x2 > 0 and q has singularities on a;2 Ξ 0. In this case the analogue
of Corollary 3 is:

COROLLARY 4. Let —^Dk((l/4:Xl)D^) be admissible. Assume
further that near dG we have x\q(x) ̂  9/16. Then S(L) A (— °°, 0)
is finite. Furthermore 9/16 is the optimal constant.

Proof. In this case we have (see [1])

(φ, —Δφ) I
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and it is therefore sufficient to show that the operator generated
by the expression:

-ΣDi\—ζDiΦ\ - QΦ

is nonoscillatory at dG. Again from [1] it follows that the condition
x\q(x) ̂  9/16 is sufficient for nonoscillation at dG. That this constant
is best possible follows from a separation of variables argument
which makes use of the observation that 9/16 is optimal in one
dimension (by a theorem of Leighton and Nehari [12, p. 143]).

In conclusion we remark that other second order nonoscillation
theorems (for example those involving integral and/or logarithmic
estimates, which are explicitly given in [1], [3], [4], [12]) could be
used in place of the simple criteria we employed. It is also evident
that other regions could be substituted for the exterior domains
and 1/2 plane case which we explicitly considered. By these means,
several variants of our results can easily be stated.

Finally, we note that the regularity requirement "q e Cfoc" of
condition (1) can be modified. It is also sufficient, by the spectral
theorem, that the expression /[u + qu "majorize" (in the sense of
forms) a nonoscillating second order expression with regular
coefficients.
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