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STOCHASTIC DIFFUSION ON AN UNBOUNDED DOMAIN

ROBERT MARCUS

In this paper we study a stochastic partial equation of
the following form,

do OX

where / is a monotone nonlinear operator and a is a
"white noise" process in x and t. In a previous paper
we demonstrated the existence of a unique solution in a
generalized sense for x in a bounded domain. This solution
was decomposed into the sum of a stationary process and a
transient process. An explicit representation was found
for the stationary distribution of the stationary process.
If / is an ordinary function of u(x) then the stationary
distribution is associated with a Markov process in x. The
purpose of this paper is to remove the restriction of bounded-
ness for the bounded domain.

The motivation for this study was to establish a link between
stochastic partial differential equations and constructive quantum
field theory. The basic idea is that the stationary distributions of
certain stochastic partial differential equations will be Euclidean
Markov fields. See Nelson [3]. For an example see Appendix.

1. Definitions* The equation studied is formally

(1) ut(x, t) = -^uxx(x, t) - X2u(x, t) - f(u(x, t)) + a(x, t)

(xe(-oo, +oo), λ > 0)

and for convenience u(x, 0) = 0, a(x, t) is a "white noise" process i.e.,
E(a(x, t)a(y, s)) = δ(x - y)8(t - s).

Converting (1) to an integral equation

(2) u(x, t) = - Π+~Gi(ί - 8, x, y)f(u(y, s))dyds + W(x, t)
JoJ-oo

with

Gx(t - s, x, y) = exp (-λ2ί - (a? - yfβii - s))lV2π(t - s) .

W(x, t) is a Gaussian process with mean 0 and covariance equal to

E(W(x, t)W(y, 8)) - Γm(ί>3)Gλ(ί + 8 - 2r, α?, y)<2r
Jo

formally
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W(x, t) = 1 Gλ(t - s, x, y)a(y, s)dyds .
JoJ-co

In addition the following conditions are required on /: Rϊ-^
( i ) (f(u) - f(v))(u -v)>cι\u-vγ
( i i) \f{u)\« <c,{\u\* + 1)

with cu c2 > 0, p > 2, and q = p/(p ~ 1).

DEFINITIONS. Let Ll be the Banach space with norm
defined by

\w(x)\;k=\ exv(-k\x\)\u(x)\p

dτ with 0 < k/2 < λ .
Jo

Let Ll be the dual space with norm \ \fk.
Let Bk be the Banach space with norm | |/c satisfying

u\l = Γ \u\?kdt. Let Bt be the dual of Bk with norm
Jo

LEMMA 1. W(x, t) e 5fc almost surely.

Proof. E(W\x, t)) = ί*G2(2ί - 2r, α?, x)dr
Jo

= Γ exp (-2λV)/v/4τrr dr
Jo

exp(-2λ2r)/v/"4τrr"dr <

From the Gaussian properties of W it follows that

E A exp (-fc |α I) | TΓ(a?, ί) |p

uniformly in ί and hence E(\W\i) < ^ .

Then Chebyshev's inequality can be used to complete the proof of
the lemma.

The method of solving (2) will be to construct a sequence of
approximations uN(x, t) that converge to a solution. Let GXN(t, x, y)
satisfy

dt 2 dx2 λN

GλN(t, x,y) = 0 for \x\ ^ N or | i/ | ^ ΛΓ and G^(0, x, y) = δ(x - y).

Using the reflection method it is easy to show that

0 S Gλ(t, x, y) - GλN(t, x, y) £ Gλ(t, x, 2N - y) + Gx(t, x, -2N - y) .
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Then uN(x, t) will be the solutions of

rtr+N

(3 ) uN{x, t) - - \ I GλN(t - β, x, y)f(uN(y, s))dyds + W(x, t) .

2Φ Results*

THEOREM 1. Equation (3) feαs α unique solution uN for each N
almost surely satisfying \uN \ok ̂  c where c is independent of N.

Proof. This theorem follows from Theorem 1 of Marcus [2] and
an estimate similar to Theorem 26.6 of Vainberg [5].

The results of Marcus [2] are not applicable to equation (2)

because in general ueBk does not imply that

Gλ(t-s, x, y)f(u(y, s))dyds

- o o

is in Bk. However it will be shown by a series of lemmas that
the solutions of (3) converge in Bk as N~> oo to a solution of (2).

Let
G2N(t - β, x, y)f{uN{y, s))dyds + W(x, t)

- N

and

S tr+M
\ GλM{t - 8, x, y)f(uM{yy s))dyds + W(x, t)

with M> N.

(GλN(t - β, x, y)(f(uN) - f(uM))dyds

- N

ctr+N ctr+M

— \ (GλNf{uM)-GλMf(uM))dyds- \ \ GλM(t-s, x, y)f(uM)dyds
JOJ-N JO J +-ZV

GλM(t-s, x, y)f(uM)dyds.
M

Multiplying by exp (—k\x\)(f(uN) — f(uM)) and then integrating

S TC+co
I exp (-fc Ix \)(f(uN) - f(uM))(uN - uM)dxdt

0 J-oo

-

-M

x [Right hand side of (4)] dxdt.

LEMMA 2. Left hand side of (5) ̂ c\uN — uM\l for some c > 0.



146 ROBERT MARCUS

Proof.

exp (-k\x\)(f(uN) - f{uM))(uN - uM)dxdt
JoJ-co

1 exp ( — k\x\)\uN — uM\pdxdt = c \uN — uM\l .

0 J-oo

LEMMA 3. Expand the expression on the right hand side of (5)
the first term is nonpositive, i.e.,

( ( \ γ - s , x, y)(f(uN(v,
(6)

—f(uM(yy s)))dydsjdxdt ^ 0 .

Proof. Let

rtr+N

V(x, t)=\\ GλN(t - s, x, y)(f(uN(y, s)) - f(uM(y, s)))dyds .

Then Vt = (1/2)7.. - λ 2 F + f(uN(x, t)) - f(uM(x, t)) with V(x, t) = 0
if I a? I ̂  JSΓ and F(α?, 0) = 0. Rewriting the left hand side of (6)
using V and then integrating by parts, the left hand side of (6) is
equal to

\+O° exv(-k\x\)(vt-—Vxx + λ 2 " ^ ) ^ , t)dxdt

f Γ+N rrr+N

= - — exp (-k\x\)V\x, T)dx - λ2 exp (-k\x\)V\x, t)dxdt
2 J -iV J 0 J -N

-±\T[+Nexp (-k\x\)Vx

2dxdt - ±-k (V2(0, t)dt
2 JO J-N 2 Jθ

~&|^ |)F 2 (^ t)dxdt ^ 0

since fc/2 < λ by definition.
To complete the proof that \\mMtN_00\uN — nM\k = 0 it is necessary

to show that the remaining three terms on the right hand side go
to 0 as N, M —> oo. The proofs are very similar and therefore only
one will be shown in detail.

LEMMA 4. Almost surely

ί τr+co
exp (-k\x\)(f(uN)- f(uM))

Oj-oo

^ ' ^ /rtcM \

( GλM(t - s, x, y)f(uM)dyds)dxdt = 0 .x
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Proof. By repeated use of Holder's inequality, Theorem 1 and (ii)

I exp (-fc|α|)(/(tttf)-/(ttj,))( \ GλM(t-s, x, y)f(uM)dyds)dxdt

\ exp ( —jfc|α;|)ί \ \ GλM(t — s, x, y)f(uM)dyds) dxdt)

0 J -oo N M /

G TCΛ-oo Γ f * Γ f - V ^ r l1/p

I exp ( — k\x\)\ \ I G%(t — sy x, y) exp {pkλy\)dy
o J-oD LJoLJi^ J

Q M ηi/ϊ -y y/p

\f(uM)\q exp (—qktlyl) ds dxdt) .
N J J /

[If fcx is chosen so that k > pkt > 0 then almost surely]

^ Ciίl e x p ( - φ | )
\Jθ J-co

Γ f ί / Γ ^ \l/3> Π2> \l/P

\ \ I \ G*!v(t — s, x, y)exp (pk^yfidy ds dxdt
LJoVJiv ' / J /

S -foo

X

)1/P ~]2> \Vί>

\
θ J-o

x [Ύ exp ( - pλ2 (t - s)) Γ ί exp ( - p22/2(ί - s))/(2π(t - β))
LJo LJiV-a;

] VP ~\P \ l/j>

\ exp (—k\x\+pktx) \\ exp ( — pX2(t — s))
o J-oo LJo

xΓ sup exp (~pz2mt-s))l(2π(t ~ s))pμΎP

L z>N-x J

• (\ exp ( — pz2IA(t — s))K2τc(t — s)p/i exp (pk^dz)1''9)ds dxdt)

« rr+oo rrt

I exp( — &|̂ | + ̂ &î ) I exp ( — p\2(t — s))
0 J-oo LJo

xΓ sup exp (-zy4(t-s))/(2π(t - s))1/4l

• [exp ((t-s)pkΐ)l(2π(t - s)y^2i'i]ί/pdsj



148 ROBERT MARCUS

/(2π(t-s)y-1)/ip sup exp (-«»/4(ί-β))d[βT<tedί
z>N-x A

G TΓ+co r-rt

I ί̂ YT^ i «* KY* • I Tllf Ύ*\ 1 Δ V T \ ( ff\\ ^(~t o^ 1 (ί o^ l/*^\

0 J-oo LJo

. [ sup (exp (-pz2/4t))]dxdt)
z>N~x /

\ exp ( — klxl + pk^) sup (exp (—pz2/U))dxdt )
0 J-oo z>N-x /

where c8 depends on T and W.
Since sup^^* (exp ( — pz2/At)) <̂  1 and k > p/^ the Lebesgue domi-

nated convergence theorem can be used to show

S
r r+oo

\ exp( — k\x\ + pkjx) sup (exp ( — pz2/U))dxdt
0 J-oo z>N-x

S
T r+oo

1 exp ( — k\x + pkjx) lim sup (exp (—pz2IU))dxdt = 0 .

LEMMA 5. Almost surely

lim
jl/\2V-»oo JO J - o

x (\ \ GiM(f - s, x, y)f(uM)dyds )dxdt = 0 .
\JOJ-Jf /

Proof. The proof is almost identical to Lemma 4.

LEMMA 6. Almost surely

S T r-oo

I exp (-fcH)(/(^) - f(uM))
0 J—oo

x (\ \ (Gi.v(ί - s, a;, #) - GΛjf'(ί - s, x, y))f{uM)dyds )dxdt = 0 .

Proof. The proof is similar to that of Lemma 4. However
the estimate GλN(t — s, a?, y) — G^M(ί — s, x, y) <Ξ: Gλ(ί — s, x, 2N — y) +
Gj(ί — s, x, — 2N — y) + Gλ(t — 8, x, 2M — y) + Gλ(t — s, x, —2M — y)
from the reflection method is used to complete the proof.

THEOREM 2. L i π v ^ uN exists in Bk almost surely. Also if
u ΞΞ lim r̂ _>0O uN then |u( , t)\υk < c almost surely for almost all t.

Proof. From (5) using Lemmas 2,3,4,5,6 \uN — uM\l is less
than or equal to the sum of expressions whose limit as N, M —> oo
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is 0. Hence uN is a Cauchy sequence in Bk. Since \uN( , t)\ok < c
almost surely by Theorem 1 the same bound applies to u for almost
all ί.

LEMMA 7. u(x91) = - 1 1 Gλ(t - s, x, y)f(u)dyds + W(x, t).
JoJ-oo

rtr+N
Proof. Since uN — — I 1 GΛΛr(ί — s, x, y)f{uN)dyds + W(#, ί) i t is

JoJ-.v

only necessary to show that
I rtr+N rίr+oo

Km GiN(t — 8, x, y)f(uN)dyd8—\ Gλ(t-s, x, y)f(u)dyds = 0 .

a +N rtr+co

GλN(t - s, x, y)f(uN)dyd8 - Gλ(t ~ s, x, y)f(u)dyds
-N JoJ-oo

rtr+N

= Gw(t - s, x, y)(J(uN) - f(u))dyds
JQJ-N
rtr+N

+ 1 1 {GλN{t - s, a?, ?/) - G/£ - 8, x, y))f(u)dyds
JOJ-N

I Gλ(ί - s, x, y)f(u)dyds - 1 1 GλN{t - s, a;, y)f(u)dyds .
OJN JoJ-oo

As N-* ^ the limit of each term on the right hand side of (8)
can be shown to be 0. The limit for the first term follows from
Theorem 2. The second term requires an estimate identical to
Lemma 6. Finally the last two terms can be shown to have limit
0 by the methods of Lemmas 4 and 5.

LEMMA 8. u is the unique solution of (2) in Bk.

Proof. Let v be another solution of (2). Then

v = - [[""Gx(fi - 8, x, y)f(v)dyds + W(x, t) .
JoJ-oo

Hence

u - v - - Π Gλ{t - 8, x, y){f(u) - f(v))dyds
JθJ-c»

and

J^% (-k\x\)(f(u) - /(v))(u

x ( - [ J Γ G ; ί ( ί ~ s ' x> ̂ ^ ( t t ) ~ f(V))dydsjdxdt
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Using estimates similar to those in the proof of Lemmas 2 and
3 it follows that \u — v\l ̂  0 or u — v.

In order to investigate the stationary distribution of tt as ί^oo
a sequence of approximations ϋN must be constructed. Let WN(x, t)
be the Gaussian processes with mean 0 and covariance

E{WN(x,t)WM{y9s))

S m i n (ί,s) C+N

GλN(t - r, x, z)GλM(s - r, y, z)dzdτ{M ^ N) .
0 J-JV

Also

E{WN{x,t)W(y,s))

ί
m i n (t,s) Γ+N

\ GλN{t - r, x, z)Gλ(s - r, y, z)dzdr .
0 J-iV

Formally
rtr+N

WN(xf t) = 1 I GλN(t - s, x, y)a(y, s)dyds .
JOJ-N

Note limΛr->001 WN(x, t) — W(x, t)\k — 0 almost surely follows from the
convergence of covariance for Gaussian processes.

LEMMA 9. The equation

GλN(t - 8, x, y)f(uN)dyds + WN(x, t)

-N

has a unique solution with \uN\ok <c.

Proof. The proof is identical to Theorem 1.

LEMMA 10. lim^^^ \uN —-^1^ = 0 almost surely. Hence lim^^ uN —
almost surely.

Proof.

rtr+N

uN - uN = \\ Gλ{t-s, x, y)(f(uN)-f{ύN))dyds+ W(x, t)-WN{x, t).

Then it follows

S Tr+co
\ exp (-k\x\)(f(uN) - f(uN))(uN - uN)dxdt

0 J-co

= Π + " e x p {-k\x\){f{nN) - f{uN))
JO J-oo

ΰ +N
Gx{t-~s, x, y){f(uN) - f{uN))dyds

Λ0 - f(uN)){W{x, t) - WAx, t))dxdt .
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Once again using the methods of Lemma 2 and Lemma 3 it
follows that

lim Π exp (-k\x\)(f(uN)-f(uN))(W(x, ί ) - WN(%, t))dxdt=O
N~+co JO J-oo

almost surely which implies lim^ ̂  uN = lim^^ uN — u completing
the proof.

Using the methods of Lemma 2 through Lemma 9 of Marcus
[2] it can be shown that ύN(x, t) = RN(x, t) + VN(x, t) where RN is
a stationary process on Bk and VN satisfies

E(\+ V$r(x, t)exv(-k\x\)dx) ^ ^

where cu c2 > 0 are independent of N.

LEMMA 11. R = lim^^oo RN exists in Bk and is a stationary
process on Lp

k.

Proof. The proof is identical to that of Lemma 8 of Marcus
[2]. Define V =u - R.

LEMMA 12.

lim E(T°° exp (-Jc\x\)V2(x, t)dx) = 0 .

Proof. The proof is identical to Lemma 9 of Marcus [2].

THEOREM 3. The unique solution of

u(x, ί) = - Γ Γ Gλ(t - 8, x, y)f(u(y, s))ds + W(x, t)
JoJ-oo

can be represented as u{x, t) = R(x, t) + V(x, t) where R(xf t) is a
stationary process on Lv

k and

-fcl^DF 2^, t)dx) = 0 .

Proof. This follows immediately from Lemmas 10, 11, and 12.

The next problem is to obtain information about the stationary

distribution of R using RN. Let F(u) = Vf(v)dv. Note 0 ̂  F(u) <
Jo

c(\u\p + \u\) follows easily from properties (i) and (ii) of /.
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LEMMA 13. The stationary distributions of RN have a Radon-
Nikodym derivative proportional to exp ί — I F(uON)dx) with re-
spect to the Gaussian measure on u0N e Lfe with mean 0 and

GχN(2sy x, y)ds.
0

Proof. This result is proved in Lemma 10 of Marcus [2].

LEMMA 14. Let uoeL% be a Gaussian random variable with
mean 0 and convariance

E(uo(x)uo(y)) = Γ f f * ( 2 ί , x , y ) d t = i - e x p ( — λ . | α ? - y\) .
Jo A

Let g be a bounded continuous function on L\. Then

E(g(R)) = lim E(g(u)) = lim
ί->oo N->oo

that the covariance ofu0(x) is equal to limt.^ E(W(x, t)W(y91)) =
imt^lim^E(WN(x, t)WN{y, t)) = \ιmN

Proof. Since lim^^Rj^ = i? and l i m ^ |w — J2| = 0 in mean
square, it follows from the bounded convergence theorem that

E(g{R)) = lim E(g(u)) = lim E(g(u0N) exp ( - \+" F(uON)dxj)

= Hm E{g{RN)) .

Since as random processes on [—JV, +iV] and also in Ll, u0N

converge weakly to u0 then by bounded convergence using the
growth condition on F it is possible to show that (see [1])

lim El g{u0N) exp - I F(u0N) dx )) E exp ~ F(uON)dx))

= lim J&(flr(Wo) exp ( - ^Fiu^dx^jJE ( exp ( - ^F(uQ)dx^j

which completes the proof.

In conclusion it is interesting to note that the stationary distri-
bution of R is never absolutely continuous with respect to the sta-
tionary distribution of W(x, t) since lim^o E( exp ( — I F(uo)dxj) = O.
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APPENDIX. Let f(u) = ud. Then conditions (i) and (ii) are
satisfied with p = 4. The results of this paper can then be applied
to the equation:

(9) <^{x, t) =λpL(Xyt)- X*u(x, t) - u\x, t) + a(x, t)
uZ A OX

(_ co < x < co and u(x, 0) = 0) .

a(x, t) is a "white noise" process i.e., a generalized Gaussian random
process satisfying formally E(a(x, t)) = 0 and E(a(x, t)a(y, s)) =
δ(x - y)δ(t - β).

From Theorem 2, Lemma 7 and Lemma 8, equation (9) has a
unique generalized solution u(x, t) satisfying

\
0 J-o

exp ( — k\x\)u\x, t)dxdt <

almost surely for some k > 0. From Theorem 3 and Lemmas 10, 11,
12 u(x, t) — R(x, t) + V(x, t) where R(x, t) is a stationary process in

t and lim^oo E([+C° exp (-k\x\)V\x, t)dx\ = 0. From Lemmas 13

and 14 if g is a bounded continuous function then liτat^0OE(g(u)) =

E(g(R))

flr(w0) exp ( — I u4

0(x)dx )) El expί — I u4

Q(x)dx

\ J-JV / / / \ \ J-iV / /

where uQ is a Gaussian process on the real line with expectation 0
and covariance E(uo(x)uo(y)) = exp(—X\x — y\). The stationary
distribution of R corresponds to the measure associated with (φi)ι

in constructive quantum field theory. See Rosen and Simon [4].
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