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SUPER-REGULAR SEQUENCES

JupITH D. SALLY

Let (R, m) be a local ring with associated graded ring
grR = R/m @ m/m* ® m?*/m®*® ---. This paper deals with
the problem of finding properties of R which lead to good
properties in grR. There are two main results in this paper
which give techniques for recognizing when the maximal
homogeneous ideal of grR contains regular elements. Ap-
plications of these results give examples of local Cohen-
Macaulay rings which have Cohen-Macaulay associated
graded rings.

Let (R, m) be a local ring with associated graded ring ¢grR =
Rim ©m/m* P m*m*PD ---. Information about ¢grR gives some
measure of the singularity at R since properties of grR yield data
about the Hilbert function of R and about monoidal transforms of
R. However it is often difficult to compute ¢grR and it is seldom
true that properties of R are carried over to grR. Thus, it is
important to recognize characteristics of B which lead to good pro-
perties in grR.

There are two main results in this paper which give techniques
for recognizing good properties in grR. The first shows when the
initial forms of a regular sequence in m/m* form a regular sequence
in grR; the given regular sequence is then called super-regular.
(All our applications use homogeneous regular sequences of degree
one in grR, so we have avoided some complications by primarily
considering this case. If R/m is infinite and if grm contains a
regular sequence of length ¢, it contains a homogeneous regular
sequence of degree one of length ¢.) The second result shows that
for certain local Cohen-Macaulay rings the question of whether grR
is Cohen-Macaulay can be reduced to the same question for such
Cohen-Macaulay rings of dimension one. The paper concludes with
several applications of these results. The applications give examples
of local Cohen-Macaulay rings which have Cohen-Macaulay associated
graded rings.

We begin with some definitions. For any nonzero element z in
the local ring (R, m), let ¥ denote the initial form of x in grR, i.e.,
if zem\m**, T =2 + m'* em’/m**. We will say that = has order
s and that ¥ has degree s. Let 0 be the zero element in grR. 0
has infinite order snd 0 has infinite degree. A system of elements
of R (of grR) has order s (degree s) if each element has order s
(degree s).
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466 JUDITH D. SALLY

Recall that if S is any commutative ring, a sequence of elements
%, -+, x, of S is a regular sequence if (x, ---, x,)S = S and if, for
1=1, -+, ¢t is not a zero divisor on S/(x,, ---, x,_,)S.

For the case of a local ring (R, m) it is important to know when
grm, the maximal homogeneous ideal of g¢grR, contains a regular
element. For the existence of a regular element in grm permits a
change of rings which reduces dimension. This is deseribed in the
following lemma.

LEMMA 0.1. Let (R, m) be a local ring with associated graded
ring grR. Suppose that grm, the maximal homogeneous ideal of
grR, contains a regular element. Then grm contains a homogeneous
regular element T and, if x is any element of R with initial form
%, there is an isomorphism of graded rings grR[TgrR = gr(R/xR)
induced by the natural map of local rings R — R/xR.

Proof. By [8, Ch. VII, §2], the prime ideals P, ---, P, in Ass
grR are homogeneous. By [8, pg. 286, footnote], grm & U P; implies
that there is a homogeneous element Z of positive degree s, say,
such that ¢ P, for 1 =1, ---, h. Let x be any element of R with
initial form Z. Consider the natural homomorphism yv: R — R/xR.
Since y(m™) = (m/xR)", the induced homomorphism grv: grR— gr(R/xR)
given by (grv),: m"/m"* — (m/xR)"/(m/xR)"** is a homomorphism of
graded rings, cf. [1, Ch. 3, §2, no. 4]. To show that gry is surjec-
tive with kernel ZgrR, it is enough to show that (gry), is surjec-
tive with kernel (ZgrR),. It is clear that (grv), is surjective. If
wem®/m " and (grv),w =0, then we(m"" + zR)Nm" = m"* +
(xR Nm™) for any w e w. Since Z is regular in grR, xR N m" = am™ ™',
where a nonpositive power of m is understood to be E. Thus
w =2+ 2y with zem"*" and ye m"°. Again using that ¥ is regular
in grR, we have that #j = 2y = 2z + #y = @w. This proves that w ¢
ZgrR and completes the proof of the lemma.

We will say that an element z in m, the maximal ideal of a
local ring (R, m), is super-regular if T is a regular element in grR.
A sequence of elements «,, ---, x, in B will be called a super-regular
sequence if T, ---, %, is a regular sequence in g7R.

Several properties of super-regular sequences follow easily. A
super-regular sequence z,, ---, x, is a regular sequence. For if %, is
a regular element in grm, x, is a regular element in R and, by
(0.1), gr(R/x,R) = grR/Z,grR. By induction, the images of x,, ---, =,
form a regular sequence in R/x,R so x,, ---,2, is a regular
sequence in R. A similar isomorphism shows that a sequence
2, -+, x, of elements of R is super-regular if and only if there is
some j, 1 <75 <¢, such that =, .-, z; is super-regular in R and
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the image of ;. ---, x, is super-regular in R/(x, ---, 2;)R. It is
also true that any permutation of a super-regular sequence is super-
regular.

In addition to the notation and definitions introduced above, the
following notation will be used. A(A) = Mz(A4) denotes the length of
an R-module A. If I is an ideal in a local ring (R, m), v(I) denotes
the number of generators in a minimal basis of I. w»(m) is the
embedding dimension of R. ¢ = e(R) is the multiplicity of R. We
will often use x to denote a system of elements z,, ---, x, in R.

Let z =2, - -+, z, be a regular sequence in (R, m). If we say
that f(a, -+, 2,) is a form of degree s in z, ---, 2,, we mean that
X, ---, X,) is a degree s homogeneous polynomial in the polynomial
ring R[X,, ---, X,] and f(x, ---, x,) is the image of f(X,, ---, X,) in
R under the homomorphism sending X, to «,.

We will use the notion of minimal reduction of the maximal
ideal of a local ring (R, m), cf. [3], but we wish to take a more
restrictive definition than in [3]. If (R, m) is a d-dimensional local
ring, a system z =, ---,x, of d elements of R is a minimal re-
duction of m if there is a positive integer » such that m™ = xm".
If R/m is infinite, minimal reductions exist,.as a minimal reduction
of m is the preimage in R of a degree one homogeneous system of
parameters in grR. The existence of a minimal reduction is hardly
ever a troublesome hypothesis because the change of rings R —
R(U) = R[U lugy;, U an indeterminate, is faithfully flat and mR(U)
has minimal reductions.

1. When are regular sequences super-regular? If 2« is a
regular element of order one in the local ring (R, m), it is clear
that a is super-regular if and only if (x) N m*+* = xm® for all ¢ = 0.
The assumption that « is regular cannot be dropped as the example
E[[x, ¥11/(¥%, xy), k a field, shows. An analogous characterization holds
for a regular sequence ¢ = x,, - -+, 2, of order one. It will be useful
to prove a little more. We will see that [ intersection equalities
(x)Nm 't =gm'® fori <1 means that x is super-regular “up to m'*.”

THEOREM 1.1. Let (R, m) be a local ring and let x =, -, x,
be a regular sequence of order ome. Then,

() N m™ = zm',
Jor all positive integers 1 < some positive integer | if and only if

((57_1: ) i;-i—-l): k_:) - (3_71, Y fj—l) + (g"'l’@)l

for 15t
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We first note the following.

LEMMA 1.2. Let (R, m) be a local ring and let x = x,, -+, x, be
a regular sequence of order ome. If for all positive integers 1 =
some positive integer 1, (x) N m'** = xmt, then

() N m** = (gm*,

for1<jZi+1land 1 1.

Proof. We prove the lemma by induction on j. Let j>1. Let
fi®, ---x,), a form of degree j in =z, ---, 2, be in (z)) Nm't C

(Y™ N ' = g Tm I fixy, -, @) = g5.(R, -0, %), Where g5
is a form of degree j — 1 in z,, ---, x, with coefficients in m***~7+,
Sinee (%, +--, ®,) " Y(®, ---, x,) is free over R/(x, ---,x, )R, the

coefficients of ¢, ;, are in (z) N Mt 7+ = gm***~7, so fi(w, -+, )€
(z)ym+9,

Proof of Theorem 1.1. Assume that (z) N m‘+ = gm® for + < L.
We will prove that (&, ---, %;_1): %) & (&, - -, T;_y) + (grm)* for
1 <47 <t by induction on ¢. The proof for ¢ =1 is immediate so
we will assume that ¢ > 1. First, we show that (0: Z,) < (¢grm), i.e.,
that zz e m'*" implies that zem® for 1 < 1. If zzem? then zz =
xa, + -+ + xa, with a,, ---,a,em. Thus z —a,e(®, -+, 2,) and
zem. We claim that the following relation holds:

") (m*: @) 0 (@)m S (@)m ™7 + (2 " m

for2<i1=<1land 0 <j<+t¢— 2. Suppose (*) has been proved. Let
z2,€m't for 1= 2. Then, with 7 =0 in (*), we get z,em® + azm.
2o = t; + 2, with g, em’ and z, € (m*™: 2,) N am. Now we apply (*)
with j =1 and continue in this way until we have 2z, = f; + 2,_,
with Z; e m’ and z,_,€ (m***: 2,) N (2)*m. Finally, we apply (*) with
Jj=1—2, to get z,,e(x)"’m*® + (2)""'m & m".

Now we prove (*). Let j =0. Let zzem' with 1 =2. zze
m N (x) = zm’, so 2,2 =a, %, + -+ + ax, with a,, ---, a,em’. 2z —
a;, €(xy, -+, x,) since ,, - - -, x, is a regular sequence. In fact, z —a, €
(T =+, T)M.  For (2 —a)w, € (2, - -+, z)2, NM T () N M = (2)'m'™
by (1.2).

Assume that 7 > 0. Let ze(m*':x)N (z)ym. z=g;x, ---,x,)
is a homogeneous polynomial in z,, - - -, x, of degree 7 with coefficients
in m. zx,em™ N(z)* = (2)"m by (1.2), so

** 2Ly = g{(%yy * v, X)X = hjps (T -0, X,)

with h;;, a homogeneous polynomial in x,, ---, z, of degree j +1
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and coefficients in m't'"', Equating coefficients of like monomials
of degree j + 1 in (**), we see that the coefficients of g¢;(x, ---, =,)
are in m‘ ™77 + (). Thus g, -+, @) =& + fin(®, -+, 2,) with
ge(xym ™7 and fi (2, <o, o) €(x). But a()Nmit S(z) N
m*+ = (z)P*m 7 by (1.2). Consequently, (g9,(x,, ---, %) — &%, =
Sina(@y, « o, 2w € () Pm 7 and  fi(x, -0, ®) €(2)'m.  Thus
g%, + -, x,) € (@)Y m*7 + (z)*'m. This completes the proof that
0:7,) < (grm)'.

Pass to (R, #) = (R/x,R, m/v,R). The images %, ---, # form a
regular sequence in R and @*'n (&, ---, F)R = (&, ---, ®)m* for
i <1l. By induction on ¢, we have that (&, ---, &;_):%;) <
By -+ +y &) +(grm) =(&,, Ty - -+, T;-1)97RIT,gr R+ ((grm)', T,)grR[T.gTR.
Thus, (&, -+, %) %;) S @, + -+, T;) + (grm)".

For the converse we assume that x,, ---, 2, is a regular sequence
in R with (@, -+, %;_):%;) S &y, +++, %) + (grm) for 1< 5 <t
and again use induction on ¢. We have (0: 7,) S (grm)’ so (x,) N m'** =
zm’ for 1 < 1. The proof is finished if ¢ = 1 so we take ¢t > 1. We
have (¢9rR/Z.9rR); = (9gr(R/x,R)); for j =0, ---, 1 + 1 since

(9rR[Z,97rR); = m’/x,;m’ ™ + m+

and (gr(R/x.R)); = (m?, )/(m?*, ©,) = m?/m’* + (x,)Nm’. This means
that the required hypotheses are satisfied by %, :--, #,, the images
of x, -+, x, in (R, M) = (R/x,R, m/x,R). By induction on ¢ we have

(%‘2, ct Yy ﬁit) N ﬁi+1 = (5‘;‘2, R} ﬁt)ﬁj for < é l: so that (xly Tty xt) N
(m**, ») = (x,, -, r)m' + x.R. Let we(w, ---, %) n_mHl- w =
ax, + pady + - + pa, with g, -+ -, g, em’. Then ax, € m'+ so a € m’
and we(x, -, x,)m".

COROLLARY 1.3. Let x =, -+, %, be a regular sequence in a
local ring (R, m) such that (x,, ---, ) N m™* = (o, ---, x,)m’ for
1 <1. Then (xy, -, z,)Nm* = (2, -+, xz)m* for 1<s=<t and
0l

COROLLARY 1.4.' Let (R, m) be a local ring and let x = x,, ---, ,
be a regular sequence. x,, ---, %, 18 super-regular if and only if

() N m*** = zm* for all © = 0.
Proof. If (z) N m*** = zm'® for all 7 = 0, then, by (1.1),
((Ely Tty Ea’—l): ia) - lr_Jo (:Elr ) Ea‘—l) + (9"’@"/)’ = (%1, ) Ej—l) .

The converse also follows immediately from (1.1).

L Added in proof. Corollary 1.4 is a special case of Corollary 2.7 of the paper
“Form rings and regular sequences” by P. Valabrega and G. Valla which recently ap-
peared in Nagaya Math. J., 72 (1978), 93-101.
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COROLLARY 1.5. Let (R, m) be a d-dimensional local Cohen-
Macaulay ring. grR 1is Cohen-Macaulay if there is a minimal
reduction x = x,, - - -, &, of m such that () N m*+* = zm® for all 1 = 0.

Proof. By (1.4), %, -+, %, is a homogeneous system of para-
meters which is a regular sequence. By [2], grR is Cohen-Macaulay.

REMARK. (1.5) is similar to a special case of Theorem 4.4 in [2].

We take a moment to note the connection between super-
regularity and the notion of analytic independence in m. Recall,
[3], that a system of elements x = «,, ---, , in a local ring (R, m)
is analytically independent in m if given f,(X,, ---, X,), a homogene-
ous polynomial in R[X,, ---, X,] of (arbitrary) degree s, such that
fo(@y, -+, 2,) em*™* then all the coefficients of f, are in m. Stated
differently, z =x,, ---, 2, is analytically independent in m if
(T, -,z Nm* = (x, ---, x,)'m for all positive integers s. Note
also that if a regular sequence x =12z, ---,x, in (R, m) satisfies
() N m*+* = gm® for ¢ <1 and if f,(X, ---, X)) is a form of degree
s in R[X,, ---, X,] with f,(x, ---, 2,)em* for ¢ <[, then all one
can say about the coefficients of f, is that they are in
(m**~, x, -+, x,) as the example f(X,, X,) = 2, X, — 2, X, shows.

Next we give a direct proof that intersection equalities as in
(L.1) give information about minimal bases for powers of m. This
can also be done using the Hibert sum transform as in [7]. The
idea is that (z)Nm'™ = xm® for 7 < | implies that multiplication of
m'/m** by each Z;, for x; in the regular sequence z, is a monomor-
phism for ¢ < 1.

We introduce some notation. Let z ==, ---, 2, be a regular
sequence in the local ring (R, m). Let 97(z) denote the set of
monomials of degree 4 in x,, ---, z,. If J is a set of elements of R,

97(x)J denotes the set of products {55 | e o#(x), jeJ}.

THEOREM 1.6. Let (R, m) be a local ring and let x =, -+, x,
be a regular sequemce such that x,, - -, &,y 41, ***, %, 18 @& Minimal
basis for m. Suppose that (x) N mi** = am’ for 1 <1. Then, for
each 1 =1, the set o7 (x) U o7 ()% U --- U2Z4(x) %5, 18 a subset
of ¢ minimal basis for m’, where Z; is the set of momnomials in
Zir1, vy %, needed to complete the set o75(x) U --- SF4(x) %5 to a
minimal basis of m’.

Proof. We prove the theorem by induction on 4 and ¢. We
may assume ¢ > 1. Let ¢ =1. If

ax; + bxi e, + - -+ X iny_, em'
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where £, 1<p=1—1, 1 <q <mn, are the monomials 2,4, ---, 2,
completing the basis for m?, then x,(axi™ + b, + -+ + ¢fi1u, ) €

m'+. Thus, axi™ + bai™ %, + -+ + ¢£,_1.,_, € m’ s0, by induction on ¢,
the coefficients a,b,---, ¢ are in m. Assume that¢>1. Let Z,-.-, %,
Zip1, *°, %, be the images of =, ---, &, 2y, -, %, in (R, W) =

(R/x,R, m/x,R). Note that for 7 <7 we have that
~VZ§(%2, R it) U <'7Z§'»1(§2, Y %t);{/; U---u 59/‘1(9?2, ] 5&5:/;_1 U /CE/J

is a2 minimal basis for #‘. This set is the image in B of all the
monomials in the chosen minimal basis for m’ which do not contain
2. It is clear that this set is a generating set for @m/. It is
minimal because

dimpm B/ = dimpm m’/m’™ + x,m’™
= dimgm m/m — dimgy» 2,m " + mmi

and dimgmx,m ™ + m’*/m’* is the number of monomials in the
chosen basis for m’ which contain x,.
Suppose that

(*) o IR v SR R Y S 7 T R Cxtfz_mi_leflﬂ/””

is a relation mod m'** among the elements of the set 27(x) U
(@)U - USA@) %, By passing to R and using induction
we get that all the coefficients of monomials in (*) which do not
contain x, are in m. So we have a relation

) axt - @ e DR B e e, € mtT
with z, appearing in each monomial. Thus,

xl(axfl*l e xf‘t + e bxf]“1 N foEu + o+ sz—mi_L) emi—H .

By (1.3), () N m*" = zm’ for 1 <1, so
e AR S SERIPS Y ARIEITIRNE 7S SRR €&icin;, € m' .
By induction, all the coefficients a, b, - -+, ¢ are in m.

ExampPLE. We illustrate (1.6) with an example. Let R be the
ring K[[t7, t°, t%, t¥]] with k a field. m = (', ¢, t°, ). (E)Nm' ™ =t'm’
fori=1,2,83but (t") N m’ 2 t'm* as t* = ¢"-t"(¢*)* is in m® but ()
is not in m*. We can apply (1.6) to get that ¢{t’, t°, ¢, ¢} is part

of a minimal basis for m?* = (t'm, t°) and ¢"{t*, t°, ¢¥, t*, ¢} is part
of a minimal basis for m*® = ('m? t*).

2. Reduction to lower dimension. Let (R, m) be a d-dimen-
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sional local Cohen-Macaulay ring of multiplicity ¢ and embedding
dimension v. If v=d, d+1 or e+d —1 then grR is Cohen-
Macaulay, cf. [4]. The property &7, for a local Cohen-Macaulay ring
to have embedding dimension ¢ +~ d — k is preserved under passage
to R(U) = R[Ulwgy, U an indeterminate, and is preserved under
reduction modulo the ideal generated by any element of minimal
reduction of m. Given a local Cohen-Macaulay ring with a property
Z which is preserved under both types of change of rings mentioned
above, (2.4) below shows that if every l-dimensional local Cohen-
Macaulay ring with & has Cohen-Macaulay associated graded ring
then so does every d-dimensional local Cohen-Macaulay ring with
P

Thus to show that Cohen-Macaulay local rings of embedding
dimension d, d -1 or e +d — 1 have Cohen-Macaulay associated
graded rings, it sufficient to show that 1-dimensional local Cohen-
Macaulay rings of embedding dimension 1, 2 or e have Cohen-Macaulay
associated graded rings. (However, the usual proof for embedding
dimension d or d + 1 is more direct.) Another application of (2.4)
follows in §3.

As the techniques in the proof of (2.4) have other uses, we put
this result in a more general setting. In §1 we saw that “super-
regularity” can be expressed in terms of certain intersection
equalities. What we need are conditions which allow intersection
equalities in dimension d — 1 to be lifted to dimension d.

PROPOSITION 2.1. Let (R, m) be a local ring and x =, -+, &,
be a regular sequence. The following statements are equivalent.

1. () N m'* = xm* for 1 < some positive integer .

2. (a) (m/x,R)*™ N @y + -, %t)R/aHR = (By, - ‘y Et)(m/%R)z for
1 = I, where ~ denotes image in R/x.R;

(b) If f, is a homogeneous polynomial in the polynomial ring
R[X,, -+, Xi] of (arbitrary) degree s with some coefficient a unit such
that rf(x, - -+, 2,) € m'** for some rc R and any 1 <1, then rem ™.

3. (a) (m/xR)y* N (&, -, ¥)R/2.R = (&,, - - -, T,)(m/2,R)" for
1 = 1, where ~ denotes image in R/x.R;

() (x)Nm*t =xm’ for 1 <.

EXAMPLE. Let k be a field and let R = k[[X, Y, Z])/(Y® — XZ) =
kl[z, ¥, 2]] with m = (x, ¥, 2). R is Cohen-Macaulay and =, z is a
regular sequence. In R/xR = K[[Y, Z]]/(Y?®), we have (m/xR)‘*'N
2R/xR = z(m/xR)* for ¢ = 0. Similarly, in B/2R we have (m/zR)"" N
ZR/zR = x(m/zR)* for 1=0. But m*N (x, 2) = (x, 2)m® as xzem’.
Thus the image of z is super-regular in R/xR, the image of z is
super-regular in R/zR but neither x nor z is super-regular in R.
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Proof of 2.1. Suppose (1) holds. (2) (a) follows immediately.
We prove (2) (b) by induction on ¢t and on 4 + 1 — s. There is no
difficulty if ¢t = 1 so we assume ¢ > 1 and we may assume also that
1+ 1—8>0. Let f, and » be as in (2) (b). Let

(*) fs(xl’ ...,xt):axfl...x?t_}_ e _l_cxi'l...xp’

with a a unit. We may assume that 7 is not a multiple of any ;.
If a, =0 in (*), by passing to R/x,R where all the hypotheses of (1)
hold for the images of z,, ---, x,, we get re(m**™*, ). r=p+ r'x,
with gem®™ and »'z,f,(x, ---, x,) € m*'. Since z,f, has degree s+ 1
and 1 +1—(s+1)<i+1—s, #em! =6+ and remi+t*. Thus we
may assume that x, appears in each monomial with unit coefficient
in (*). Pass to the ring R(U) = R[Uluzwr U an indeterminate and
let ; = «, + Ux,. Since R — R(U) is faithfully flat, xi, ,, ---, , is
a regular sequence in R(U) and (1,2, -+, 2,) N (MR(U))+ =
(@1, oy -+, 2)(MR(U))* for 1 < 1. We have

Sy, <o, x) = alxy — Uny)® - - 28t + -+ + ez, — Umy)n - - xit,
with »f,(z, ---, z,) e (mRBR(U))***. We have

s fs(xl, cee xt)Zax;oﬂ cee gt ..
) — qUaggtee oo g2t o oo — cUngrtre ... gl

Since f, has terms with z; missing, we want to consider f, as a
form in zj, ---, #, and apply the same argument as above. However,
there may be some collapsing in (**) so we have to collect terms
and write f, as a sum of distinet monominals of degree s in
®y, +++, . If all the other monomials in (**) are distinet from
xyitee ... gft then, by passing to R(U)/x:R(U) and using the same
reasoning as above, we see that 7f,e (mR(U))* implies that re
(mRU))*"*NR=m'*. So we assume there is some collapsing and
let a, a,, -, a;, be unit coefficients in (*) such that the monomials
gttt L g%t in (**) having coefficients a,,U* are equal to 57 =
o oL g, Note that xfia¥*i2 ... xf4* = 5% implies that a, 8=
Qs -0y Oy =0, and @, + @ = a; + @, Thus a;; # @, since the
monomials in (*) are distinet. Let b be the coefficient (in m and
possibly zero) of 54 in (*). The new (collected) coefficient of o7 is

Ay = —aU" - a, U — -+ —q, U + 0.

Since the powers of U are distinct, A, is a unit. Thus f, may be
written as a form of degree s in «i, x,, - - -, 2, with coefficient of the
monomial 57 a unit. Since x; is missing from 2% we apply the
same argument as above to show that »em't'™*. This concludes
the proof that (1) = (2).
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Clearly (2) = (3). Suppose (8) holds. If ¢ =1, then 7 =1 and
(1) holds. Assume ¢t>1. Let w =ax, + g, ---, 2,) € () N M+
With ~ denoting images in R/x,R, we have §(&,, -+, F,) € @, -+, T,) N
(mfx,R)* = (&, - -+, T)(m/x,R)'. Thus g, ---, x,) = h(®, +--, &) +
x,r where h(x, -, x,)€ (X, ---, x,)m'. We have w = ax, + 7z, +
h(z, -, ) em* so (@ + )z, e m' N (x) = xm’. Since x, is a non-
zero divisor; ¢ + rem' and w € zm’.

(2.2) below is the technical result needed to reduce dimension.
To eliminate excess notation, homomorphic images of the regular

sequence x = x,, - -+, &, will be denoted by the same letters, and if
U, ---, U, are indeterminates, we denote
R(Uly ) UP) = R[Uh ) UP]'r_nR[Ul,-",Up]
by R(U).
THEOREM 2.2. Let (R, m) be a local ring and let x = x,, -+ -, &,

be a regular sequence with t > 1. Suppose that
(m/z,R)* N (2, - -+, z)R[2. R = (2, - -, x,)(m/2.R)

for i < some positive integer . Suppose that for any finite set of

indeterminates U, ---, U,, there are elements ;, - -, €; €{%y, -, 2}
and a linear polynomial g(U, ---,U,) =2 + o, U + --- +2,U,
such that

@y, -+, 2 )B(U)/9R(U)) N (mR(U)/gR(U )"
= (@, -+, ®)mRU)/gRU))*, for i=1.

Then,

(xlr Tty xt) n_”_@iﬂ = (xly ) xt)ml ’ fO’I’ t_S_ l.

Proof. We prove that (2)(b) of (2.1) holds for any local ring
with a regular sequence satisfying the hypotheses of the theorem
by induction on ¢ + 1 — s, where s, f, and 7 are as in the statement
of (2)(b). We may assume that 7+ +1 — s> 0. Let

(") fi=axf - xft+ -« +cxlt---2t, with o a unit.

If a, = 0, pass to R/xz,R. By (2.1) (1) = (2)(b), we can conclude that
re(mi*°, x,). r=p+ 'z, with gem** . But then 7'z, f, € m**
and x,f, has degree s + 1. By induction, we have 7’ € m *'~¢*" and
rem . Thus we may assume that x, appears in each monomial
in (*) with unit coefficient. By hypothesis, for the indeterminate
U, there is an element, say «, in {x,, ---, z,} such that
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(@, -+, 2 )R/ R(U)) N (mR(U)[eR(U))™
= (@ « -+, 2)MB(O)[x:R(U))"

for ¢ <1, where x; = 2, + Ux,.

We have f, = a(w; — Uz --- 2t + -+« + e(w; — Uy - - - xje.
The same argument as in the proof of (2.1) (1) = (2)(b) shows that
f. can be written as a homogeneous polynomial, in the regular
sequence &, &, - -, &,, of degree s, having a monomial with unit
coefficient in which x; does not appear: f, = A(U)xl> -z}t + --- +
B(U)x; w32 - - - xit, with A(U) a unit in R(U). rf,e (mR(U))"**. By
passing to R(U)/xR(U) and applying (2.1) (1) = (2)(b), we get r¢€
(mR(U))+°, x)) so » = ¢ + v’z with e (mR(U))*+* and +' € R(U).
Now R(U) and the regular sequence i, «,, ---, «, satisfy the hypo-
theses of the theorem. Since »'z;f, e (mR(U))* andi +1— (s +1) <
t+1—s, we have by induction that »'e(mR(U))** ¢+, Thus
re(mBRU))*™ N R = m' .

We will say that a property .&° of a local ring (R, m) is firm
if .7 is preserved under the change of rings R — R(U), U an in-
determinate. We will say that a firm property .%° of a d-dimensional
local Cohen-Macaulay ring (R, m) is stable for the minimal reduction
¢ =, -+, 2, of m if for any finite set of indeterminates U,, ---, U,,
7 is preserved under reduction of R(U, ---, U,) modulo the ideal
generated by any subset of generators of (x, ---, 2)R(U, ---, U,).
We will say that a firm property &° of a d-dimensional local Cohen-
Macaulay ring (R, m) is stable if .&° is preserved under reduction

modulo the ideal generated by any element of a minimal reduction
of m.

ExampLes. If (R, m) is a local Cohen-Macaulay ring, the property
of being Gorenstein or regular is clearly stable. Let e be a fixed
positive integer. The property .&° for a local Cohen-Macaulay ring
to have multiplicity e¢ is a stable property. As mentioned in the
first paragraph of §2, the property .’ for a local Cohen-Macaulay
ring of dimension d and multiplicity e to have embedding dimension
e + d — k is stable. As example of a property stable for a particular
minimal reduction z is given in §3.

THEOREM 2.3. Let (R, m) be o d-dimensional local Cohen-
Macaulay ring with o property .&° stable for the minimal reduction
T =%y, X, 0f m.  Suppose that 1-dimensional local Cohen-Macaulay
rings (S, n) with & satisfy () N w* = an’ for ¢ < some positive
integer 1 and any minimal reduction x of n. Then (z)Nm'* = xm’
for 1 = 1.
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Proof. The proof is by induction on d. We take d > 1. Let
U=U, ---, U, be a finite set of indeterminates. Let g(U) =, +
Ux,+ --- + Uyx,. By hypothesis, R(U)/g(U)R(U) has & and is
stable for the minimal reduction %, ---, #, which is the image of
Xy -+, %, in R(U)/g(U)R(U). By induction, (mR(U)/g(U)R(U))*+ N
@y +-+, By) = By, -+ -, TH)mRU)/g(U)R(U))* for i<1l. By (2.2),
MmN (X -0, 2y) = (@, -+, x)m* for 7 < 1.

COROLLARY 2.4. Let (R, m) be a d-dimensional local Cohen-
Macaulay ring with a proverty . stable for the minimal reduction
=12, -, 2 of m. If grS is Cohen-Macaulay for every l-dimen-
stonal local Cohen-Macaulay ring (S, w) with &7, then grR is Cohen-
Macaulay.

For further use it will be convenient to have a variant of (2.3)
which requires us to test only some of the minimal reductions in
dimension 1. We need the same types of stability for properties of
a minimal reduction. Let (R, m) be a d-dimensional local Cohen-
Macaulay ring. Let U be an indeterminate. Let z =, ---, 2, be
a minimal reduction of m. Let & be a property of xR. We will
say that &« is firm if zR(U) has & We will say that a firm
property & if stable if, given any element g of a minimal generating
set for 2zR(U), say zR(U)=1(9,9, -+, ¥ys)R(U), the image
Y, + -+, Y)(R(U)/gR(U)) has &

For example, let (R, m) be a d-dimensional local Cohen-Macaulay
ring and, for positive integers j, let & be the property for minimal
reductions 2 of m that m’ C zR. Then & is stable. Let & be
the property that m’ £ xR. Then &; is also stable.

THEOREM 2.5. Let (R, m) be a d-dimensional local Cohen-Macaulay
ring with a property P stable for the minimal reduction z =
Xy o0, Xy 0f M. Assume in addition that x has a stable property
&. Suppose that 1-dimensional local Cohen-Macaulay rings (S, n)
with 7 satisfy (x) N n'™ = xn® for i < some positive integer | and
all minimal reductions x of m which have the stable property &.
Then (x) N m+* = xm® for i < 1.

Proof. The proof is the same as the proof of (2.3).
3. Applications.
THEOREM 3.1. Let (R, m) be a d-dimensional local Gorenstein

ring of multiplicity e and embedding dimension e +d — 3. Ifx =
Xy, v, Xy 18 any minimal reduction of m, m* L xR and m*C am.
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grR is Cohen-Macaulay if and only if m* = xm® for some minimal
reduction x of m.

Proof. Let x =a, ---, 2, be a minimal reduction of m. Pass
to (R, m) = (R/xR, m/xR). Since v(i) = e — 3 and M(R) = ¢, we must
have that 7i* = 0. Since \(socle B) = 1, #* = socle B. Thus m® <& zR
and m*C zR. By the analytic independence of z, m*c am.

If, for some minimal reduction z of m, m* & xm?® then Z,, ---, %,
is a homogeneous system of parameters in grR that is not a regular
sequence by (1.1) so that grR is not Cohen-Macaulay by [2].

To complete the proof we will show that if (R, m) is a d-dimen-
sional local Cohen-Macaulay ring of embedding dimension ¢ +d — 8
and if z is a minimal reduction of m such that m®* £ 2R and m* =
xzm’® then grR is Cohen-Macaulay. Let & be the property for d-
dimensional local Cohen-Macaulay rings (S, n) that S has embedding
dimension e + d — 3 and that there exists a minimal reduction y of
n such that #n° £ yR and n' = yn’. R has & and &” is stable for
the minimal reduction z of m. Thus by (2.4), we may assume d = 1.
Let z=2 and let m = (x, w, ---, w,_y). There exist p,qe
{1, - -+, e—38} such that m® = (xm, w,w,), m’ = (xm?, wiw,) and wiw, ¢
xm. This follows from the fact that (m/xR)* and (m/xR)’ are non-
zero principal ideals. It is clear that m‘ ' N (x) = em’ for 1 = 3. We
must show that m’N (x) = am®. Let zem’N (x). 2z =y + rwiw,
with p#em®and re R. Since rwiw, € (), r € m and rwiw, € m* = xm’.
Thus zeam® and m® N (x) = xm?.

REMARKS. Note that, with the hypotheses of (3.1), if grR is
Cohen-Macaulay it is not Gorenstein. (38.1) may also be proved
directly, using just (1.5) instead of (2.4) and (1.5).

ExamMPLES. 1. Let &k be a field. The rings FK[[t, 5, ¢°]],
E[[t, &, ¢, t*]], E[[t°, ¢*, t¥, t*]] are Gorenstein and satisfy v = e+d—38
and m* = xm®. Recall that the multiplicity ¢ of a numerical semi-
group ring R = k[[tn, 2 -+, t*»]] with o, <a, < --- <a, and
ged(e, a,, <+, a,) =1 is just «,. This follows for example, from
[8, VIII, §10, Thm. 24].

2. K[, 5 Ul =KX, Y, Z])/(X® — YZ, Y* — Z*) is a complete
intersection with associated graded ring k[ X, Y, Z|/(YZ, Z?, Y*—ZX?)
which is Cohen-Macaulay but not a complete intersection.

3. The hypothesis that R is Gorenstein cannot be omitted from
(8.1). Let R = K[[t", t°, ¢, ¢¥, ¢"]], with k a field. R satisfies v(m) =
e+d—8=T+1—3 and m* = t'm*® but grR is not Cohen-Macaulay
at t"m C m’.

It is possible that the hypothesis m* = zm® is redundant in (3.1),
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i.e., it is possible that all d-dimensional local Gorenstein rings of
embedding dimension ¢ + d — 3 have Cohen-Macaulay associated graded
rings." By (2.4) it is sufficient to prove this for d = 1. It is true
that if (B, m) is a 1-dimensional analytically irreducible local
Gorenstein domain with algebraically closed residue field and with
embedding dimension e + d — 3, then grR is Cohen-Macaulay.

Next, we want to show that Cohen-Macaulay local rings with
certain Hilbert polynomials have Cohen-Macaulay associated graded
rings. First, we recall definitions of the concepts involved. For
any d-dimensional local ring (R, m), the Hilbert function is defined
for nonnegative integers n by Hz(n) = dimg,,(m"/m"*™*). The Hilbert
sum transforms are defined inductively for nonnegative integers » by

Hin) = H(n) and Hi(n) = 3 Hi'() -

For large n, Hi(n) is a polynomial P%(n) of degree d — 1+ 1. If
zem, then Hy,x(n) — H%n) = M(m"+: 2)/m™), cf. [8], Lemma 3,
VIII, §8. If x is super-regular, H% z(n) = H%(n). If x just has the
property that (m"*:x) =m" for all large =, we still get that

ter(M) = Pi(n). This prompts the definition of superficial element,
cf. [8], VIII, §8. An element z in a local ring (R, m) is superficial if
there is a positive integer ¢ such that (m"*: )N m°=m", for all n=c.
If x is a superficial element and a nonzero divisor then (m"*: x) = m"
for all large n. A superficial element is the preimage in R of an
element of degree 1 in grR which does not lie in any prime belonging
to 0 in grR except possibly grm. Superficial elements exist if R/m
is infinite. If, in addition, m does not belong to 0 in R, there
exists a superficial element which is also a nonzerc divisor.

THEOREM 3.2. Let (R, m) be a d-dimensional local Cohen-
Macaulay ring with d=2 and multiplicity e. The Hilbert polynomial
P%(n) for R is

n+d—2 n-+d—2
Pi(n) = < >e + < )

n—1 n

if and only if B has embedding dimension e + d — 1 in which case
grR is Cohen-Macaulay.

Proof. It was proved in [4] that v(m) = ¢ + d — 1 implies that

grR is Cohen-Macaulay and in [5] that v(m) = ¢ + d — 1 implies that
H%(n) = ”Zf'z n+d_2>,foralln§0.

1 )‘”( n

Suppose that (R, m) is a local Cohen-Macaulay ring with Hilbert

polynomial Pi(n) = (" ;?ll__‘% I 2)6 + <n +;§ - 2). We will show

Y Added in proof. The author has recently verified that this is the case.
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that v(m) =e¢e +d —1 by induction on d. Let d =2. We may
assume that R/m is infinite and take a superficial element x with «
a nonzero divisor. Then, for » = n, some integer n, Hk, z(n) =
%(n) = ne + 1. R/xR is a 1-dimensional local Cohen-Macaulay ring
so, for al n =1, Hy,zs(n) =14+e—3, +e—j,+ +--- + e — 37, with
nonnegative integers j, having the property that if j, =0, then
Jr=0 for k=4 Since for n = n,, Hizn) =1+ ne — D7 . J, =
1 + ne, it must be true that >%_,j, =0. Thus v(m/cR) = ¢ and
v(m) = e + 1.
Suppose d > 2. Again, assuming R/m infinite, if necessary, we

take a superficial element & which is also a nonzero divisor. For
large n, Hi.r(n) = Hi(n) = <" ;i f 1 2>e + <” +?‘f - 2>. Since
HY,.z(n) = H).z(n) — HY,z(n — 1), we have for large =,

Ho(n) = <n+d—2>e N <n+d—2>

n—1 n
_<n—l+d—2> B n—1+d—2
n — 2 ¢ < n—1 >
:<n+(d——1)——2>e+(n+(d——1)—2>'
n—1 n

Thus, by induction, v(m/zR) = e + (d — 1) — 1. Therefore, v(m) =
e+d— 1

REMARK. Clearly, the hypothesis d = 2 is necessary in (8.2) as
every l-dimensional local Cohen-Macaulay ring (R, m) has P%(n) = e.

THEOREM 3.8. Let (R, m) be a d-dimensional local Cohen-
Macaulay ring with d =2, and multiplicity e. The Hilbert poly-
nomial Py(n) for R is

P%(n)z(%+d~2>e+<n+d—3>

-1 n

if and only if R has embedding dimension e +d —2 and grR s
Cohen-Macaulay.

We need two lemmas. Lemma 3.4 was given in [6]. We give
a proof below using the results of §1.

LEMMA 3.4. Let (R, m) be a d-dimensional local Cohen-Macaulay
ring of multiplicity e and embedding dimension e + d — 2. Let
x=1x, -, 2, be a minimal reduction for m. Then m’C (x) and
grR s Cohen-Macaulay if and only if m® = xm?, for some minimal
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reduction x of m.

Proof. Pass to (R, m) = (R/zR, m/xR). MR) =e¢ and v(#) =
e — 2. Counting lengths, we see that #°=+0 and % =0. Thus
W (2). Suppose that m® = gm® Then m‘* N (x) = zm’® for 7 = 2.
But, by the analytic independence of x, cf. [3], we also have m?*N
(z) = zm. Thus grR is Cohen-Macaulay by (1.5). If, on the other
hand, m*& xzm?, then by (1.1) there is some j,1<j<d, such
that( z, -, %;_:%;) & &, -+, T;_y) + (grm)* so that grR 1is not
Cohen-Macaulay.

LEMMA 3.5. Let (R, m) be a d-dimensional local Cohen-Macaulay
ring with d = 2. Let x = x,, ---, ©; be a minimal reduction for m.
Suppose that (m[x,R)’ N (x,, «--, 2 )R/xR = (x,, - -, 2,)(m/x.R)}?* and
that (m/x,R)* N (%, 4 -, T) B[R = (@1, 5, - - -, 2)(m/2,R):. Then

mam (xly ) xd)R = (xlv ) xd)mz .

Proof. Let w=a2x, + -+ + ax,em®* N (x,, ---, ;). Passing to
R/x,R and R/x,R in turn, we get that a, a,, - -, a,e(m? z). Thus
w = fy@, -+, x) +w, with w e, - -, v)m* and fyx, ---,2,) a
form of degree 2 in x, ---, x5. fi®, ---, ;) €m®, by the analytic
independence of z, fy(z,, - - -, %) € (£)*m and w € xm?, as desired.

Proof of 8.8. The proof is by induction on d. We may assume
that R/m is infinite and take a minimal reduction z = 2, ---, x; of
m having the property that each z; is a superficial element. Let
d = 2. For large n and for ¢ = 1,2, H%/, z(n) = Hy(n) = ne. Since
R/x;R is a 1-dimensional local Cohen-Macaulay ring, for every = =1,
Hyoz(m) =1+e¢—7J, + --- + e—J,, with nonnegative integers j,
having the property that if j, = 0, then j, =0 for £ = 1. For large
n, Hl}e/ziR('n) =1+ mne— % j,=mne. Thus, X% 5, =1 so j,=1
and j,=0 for k£>1. It follows that wv(m/x,R) =e¢ —1 and
v((m/x,R)) = e for {>1. Therefore, v(m)=e and (m/x,R)’ = x,(m/x,R)?
and (m/x.R)’ = x,(m/x,R)’. By (3.5), we have m’N(x, x,) = (2, x,)m?
and by (3.4), grR is Cohen-Macaulay.

Assume that d > 2. For each z,, 1 =1, ---,d, and for large n,
we have HY,.z(n) = Hy(n) = (n j; i I 2>e + ("’ +;§ o 2). Since,
Hbox() = HYypz(n) — Hipz(n — 1), it follows that

Heypouln) = (n +d—-1 —2>e N (n +(d—-1) —2) ’

n—1 n

for large n. We may apply induction to R/x,R to get v(m/xR) =
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e+ (d—1) —2and v(m) =e + d — 2. Also, by induction, (m/x,R)* =
(wly crey Wy o0y xd)(L”'/%R)zy 80, by (3-5) and (34)’ mj' = (xly Tty xd)_’”l'z
and grR is Cohen-Macaulay.

REMARK. (3.3) answers a question D. Mumford asked the author.
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