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A CHARACTERIZATION OF DIMENSION OF TOPOLOGICAL
SPACES BY TOTALLY BOUNDED PSEUDOMETRICS

JEROEN BRUIJNING

For a compact metrizable space X, for a metric d on
X, and for :>0, the number N(c, X, d) is defined as the mini-
mum number of sets of d-diameter not exceeding ¢ required
to cover X. A classical theorem characterizes the topolog-
ical dimension of X in terms of the numbers N(s, X,d). In
this paper, two extensions of this result are given: (i) a
direct one, to separable metrizable spaces, involving totally
bounded metrics; (ii) a more complicated one, involving the
set of continuous totally bounded pseudometrics on the
space as well as a special order on this set.

The dimension function involved is the so-called Katétov dimen-
sion, i.e., covering dimension with respect to covers by cozero sets.
Let d be a metric for the compact metrizable space X. Define

k(X, d) = sup {inf{—Ml_(fg’_;’&i)_ e < ao}

& > O} .
Then we have the classical

THEOREM A (L. Pontrjagin and L. Schnirelmann [4]).

dim X = inf{k(X, d)|d is a metric for X}.

REMARK. The number log N(e, X, d) is often referred to as the
¢/2-entropy of X (with respect to d).

The extension of Theorem A to separable metrizable spaces is
given by Theorem 2, while the general case is covered by Theorem
1. The referee has pointed out that Lemma 5 below, needed in the
proof of Theorem 1, can be derived from two theorems by Katétov
([3], Theorems 1.9 and 1.16). The author wishes to thank Professor
J. Nagata for drawing his attention to Theorem A and to the pro-
blem of finding its generalization.

2. Definitions and notations. All spaces considered will be
nonempty. A zeroset (cozeroset) in a space X is a set of the form
FHHOH( (0, 1)), where f: X—][0, 1] is continuous. The symbols U,
U, V, V, ete. will denote cozerosets throughout; F, F,, F} etc. will
denote zerosets. If &7 = {A;|vel} is a collection of subsets of X,
the order of .o (ord .o&) is defined as sup{|.&’|| .&'C .o and
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N’ #+ @}. Dim X will be the Katétov dimension of X, i.e.,

dim X < n iff every finite cover % = {U,, ---, U,} has a
finite refinement 7~ = {V,, ---, V;} with
ord7” <n +1;

dimX =2 if dimX <% but not dimX<n—1;

dim X = o iff not dim X <% for any = .

Note that in the above definition, U, and V; are cozerosets by nota-
tion. For normal spaces, Katétov dimension coincides with ordinary
covering dimension [1, p. 268].

A continuous pseudometric on a space X is a continuous function
d: X X X—[0, ) which is symmetrie, satisfies the triangle inequality
and has the property that d(z, ) = 0 for all x€ X. A pseudometric
d is totally bounded iff for every ¢ > 0 there exists a finite ¢-net in
X with regard to d. .&# will be the set of all totally bounded, con-
tinuous pseudometrics on X. For de#, ¢ >0 and xe X, Ul(x) is
defined as the set {y e X|d(x, y) < ¢}. This is a cozeroset. On .
we introduce the following relation: d, > d, iff for all ¢ > 0 there
exists a § > 0 such that Uf(x) cU(x) for allze€ X. For de.&Z and
AcX, the diameter of A4 with regard to d is the number d-diam A=
sup{d(z, y) |z, y€ A}. We define |d| = d-diam X. |d| is always finite.
Finally, if % is a cover of X and de.<#, we say that % is d-uni-
form iff there exists ¢ > 0 such that the cover {Ui(zx)|x € X} refines 7.

3. An extension of Theorem A. For de.<# and ¢ >0, let
N(e, X, d) be defined as the minimum number of sets of d-diameter
not exceeding ¢ required to cover X. Put

k(X, d) = sup {inf{—loil%eg’—sw e< 80}

so>0} )

just as in the introduction.
Then we have

THEOREM 1. If k(X, d) is defined as above, then
dim X = sup{inf{k(X, d)|d > d,, d € #}| d, e F#} .

Before we give the proof, we will state and prove a few lemmas.

LEMMA 1. Let 6 >0, and let zz ={U, ---, U} be a cover of
X. Then there exists d € & such that Z is d-uniform and |d| < 0.

Proof. For the sake of completeness, we include an elementary
proof. Let fi:X—]0,1] be continuous, with f7'((0,1]) =
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UL =1=k).
Define f: X — R* by the formula

_(_A@ . _fu@
o = (5w )

Define d;: X X X — [0, o) by d,(z, ¥) = || f(®) — f(y)|]|. It is not dif-
ficult to show that d,e.<#. Now

FX)cd={0 -, MIZ M =1 and N =201=i=Zk).

Denoting the set {(A, ---, \p) €4|N; >0} by V;, we have U; = f(V;)
A3k, {V, -+, V,} is an open cover of the compact set 4, so
there exists ¢ >0 such that the cover {U.(p)N 4|ped} refines
{v, ---, V,}. Let xeX. Then there exists j,1 < j <k, such that
U.((fx)cV;. It follows that Ul(x)c fY(V;) = U;. Thus Z is
d,-uniform. Finally putting d = d/|d,|-d, we get the desired element
of F#2.

LEMMA 2. (a) Let d,, d,e #. Then d, + d,c A.
(b) Let d;e F#(1eN) and let I, |d;| < co. Then X7, d, e F.

Proof. (a) It is easy to see that d, + d, is a continuous pseudo-
metric. To prove that is totally bounded, let ¢ >0 and {z, ---, 2}
be an ¢/3-net for (X, d,). Let, for 1<1 =k, {¥, ---, ¥5,} be an ¢/3-
net for Uji(x;), with regard to d, (the restriction of d, to any sub-
set of X is again totally bounded, as can be proved in a standard
manner). Put VY={y}|1<i1<k 1=<j=<mn} It is not difficult to
prove that Y is an enet for X with respeet to d, + d,. This
proves (a).

(b) 2z.d, is, as a uniform limit of continuous functions, itself
continuous. It is easily seen to be a pseudometric. Let ¢ > 0, and
Ne N so, that 3,.,|d;| < ¢/2. Since by (a), T¥,d; e &, there exists
a finite ¢/2-net for X with respect to -, d,. The same set is easily
proved to be an e-net for (X, ¥, d;), which proves (b).

LEMMA 3. Let Y be a dense subset of X, and let de #. Then
BX,d) =kKY,d|Y XY).

Proof. It is easy to see that N(¢, X, d) = N(g, Y, d|Y x Y) for
all ¢ > 0. From this the result follows by the very definition of
kX, d) and (Y, d|Y xY).

Now we are ready to go on with the proof of Theorem 1. For
shortness, denote sup{inf{k(X, d)|d > d,, de F}|d, e #Z} by kX).
First we prove: k(X) = dim(X). This will follow from the following
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LEMMA 4. Let n =0 and dim X = n. Then there exists d,€ #
such that, for all de # with d > dy, k(X,d) = n. (This formula-
tion also takes care of the case dim X = o.)

Proof of Lemma 4. Let %z ={U, ---, U,} be a cover such that
every refinement 7 ={V, ---, V}} of % has order =n + 1. By
Lemma 1, there is a d,e.&# such that %/ is d,-uniform. Let d > d,,
de.2#. Then there exists 6 > 0 such that the cover {Uj(x)|ze X}
refines Z .

Consider the equivalence relation ~ on X defined by z ~ y iff
d(x, y) = 0. Let X’ be the set of evuivalence classes, and ¢: X — X’
the natural projection. Define d: X’ X X' — [0, =) by d'(¢(x), 6(y))=
d(x, y). This definition turns (X', d') into a totally bounded metric
space. Since d is continuous, ¢ is continuous if we equip X’ with
the metric topology. Furthermore, if AcC X, then d-diam A=
d'-diam #(4); and if Bc X’, then d’-diam B = d-diam ¢7'(B). It fol-
lows that N(, X,d) = N(g, X', d’) for all ¢ >0, thus kX, d)=
kX', d). Let (X”,d”) be the metric completion of (X', d’). Since
(X', d’) is totally bounded, (X", d”) is compact. From Lemma 3 it
follows that k(X' d") = k(X"”,d”). From Theorem A we deduce
kE(X",d’") = dim X”. Combining the above results, we infer k(X, d)=
dim X”.

What is left to prove, is that dim X” ==x. So suppose
dim X”"<n—1. Then there is an open cover %# ={W, ---, W,} (con-
sisting of cozerosets) such that ord 2%7° < » and d”-diam W, < é for
1<71<s. Then {"(W)|1 <1 < s} is a refinement of %, consisting
of cozerosets, with order <n. This is a contradiction. Thus
kX, d) = dim X” = n, which completes the proof of Lemma 4.

Next we will prove: k(X) <dim X. If dim X = o, we have
nothing to prove. So suppose dim X = n < oo,

Then the result will follow from

LEMMA 5. Let dy,e &, and ¢ > 0. Then there exists de A2,
d > d,, such that k(X, d) < n + ¢,

Proof. First we prove the following

Claim. There exist d*e #,d* >d, and 7, ={F¥, ---, F}
(k = 0) such that

(i) Frisacoverandord F,=n+1 (k=0

(ii) d*-diam F} < 1/k (keN,1<1<m,)

(iii) Forevery & 'c. &, with N.F ' = @, the cover {X\F|Fe . '}
is d*-uniform (keN).



A CHARACTERIZATION OF DIMENSION OF TOPOLOGICAL SPACES 287

Proof of Claim. We will construct inductively sequences (d.)r-,
of elements of &7 and (F,);, of cozero covers of X in the follow-
ing way: d, is given, put &, ={X}; let keN, and suppose
dy, -+, dp_, and F,, ---, F,_, have been defined in such a way that

(@) FH={F, -, Fp}isacoverandord #, <n+10=1<k)

(b) (do+---+d, )-diam F{ <1/l 0<1<k 0=i=<m)

() For every #'c.# such that N’ = @, the cover
{X\F'|Fe~"} is diuniform (0 <1 < k)

(@ ldif=2"0<I<k).

Since dy+---+d, €2, by Lemma 2, and since dim X = =,
there exists a cover 7, = (F}, ---, F;} of X such that ord
Fe=n+1 and (d,+---+d,)-diam Ff<1/k 1 <7< m,): simply
take #; to be a suitable shrinking of a finite cover ¥ = {U,, ---, U}
with ord % <n + 1 and (d, +--- +d,_,)-diam U, < 1/k (compare e.g.,
[1, p. 267)).

Let 0 < 0 <min{27* min{1/l — (d, + - +d,_)-diam F|0< I < k,
Fe 7}.

Let {#,, -+, %} be the set of all covers of the form {X\F'|Fe. # '},
where # 'C. %, and N.¥ ' = @. By Lemma 1, there exist d'e.<#
such that |d*| <4/t and %, is d’-uniform (1=<¢=<1t). Put d,=
d'+---+dt. It is not difficult to prove that for these choices of
“#; and d, the conditions (a)-(d) are satisfied for %k instead of & — 1.
This completes the inductive construction.

Now put d* = 32,d,. By Lemma 2, d*€.&#. It is easy to see
that d* > d,. The conditions (i)-(iii) are readily verified. This
proves our claim.

Now, let as before ~ be the equivalence relation on X defined
by  ~ vy iff d*(x, ¥) = 0. Let X’ be the set of equivalence classes
and ¢: X — X' be projection. Let d': X’ x X' — [0, ) be defined by
d'(¢(x), 6(y)) = d*(zx, y). Again ¢ is continuous. Let (X", d”) be the
(compact) completion of (X', d'). We will prove: dim X" <#n. It
will suffice to show that, for every ke N, there exists a closed cover
of X” with order<= -+ 1 and such that its elements have d”-diameter
not exceeding 1/k. So, let ke N. Define G, = Cl(¢(F})) (1 £ 7 < my),
where the closure is taken in X", and put & ={G,, ---, G.,}. Then
¥ is a closed cover of X', and d”-diam G, = d”-diam &(F}) =
d’-diam ¢(F¥) = d*-diam F} < 1/k.

It is left to prove that ord & <n +1. Let ' c &, |Z'| =
n + 2. For convenience we assume that &’ = (G, ---, G,+.}. Let
F ' ={F}, ---, Ft,}. Since ord. 7, <n +1, NF’' = @. Thus the
cover {X\F}|1<i<m+2} is d*-uniform and there exists 6 >0 such
that for all xe€ X Ui (x)c X\F¥ for some ¢ with 1 <7< n + 2.

Suppose NZ' # @, say ze N¥’'. Since G, = Cl(¢(F¥)), there
exists x;,€ F} such that d”"(s(x,),2) <d8/2 1<41=<m+2). Thus
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d*(x;, ;) = d'(3,), ¢(x;) <& for 1L <14,5<mn + 2. It follows that
Ufe)NFf+@ I1£1<n+2), which is a contradiction. So
N’ =@, and ord &€ < n + 1. This proves dim X" < #n.

Thus ¢: X — X" is a continuous map into the compact metric
space X", which satisfies dim X” < n. By Theorem A, there exists
a metric d’ on X" with k(X",d") =n + ¢,. Put d(x, y) = d'(¢(x), (%))
for z, y€ X. From the compactness of X" and the continuity of ¢
it follows that de . Also d" > d"’ on X", again since X" is com-
pact. From the formulas d*(x, ¥) = d"(¢(x), 6(y)) and d(x, y)=
d’(¢(x), ¢(y)) it follows then that d > d*. Since d* > d,, we also
have d > d,. Furthermore, just as before, k(X,d) =kX",d) =
n + ¢,. This completes the proof of Lemma 5.

Combining Lemma 4 and Lemma 5, finally, we get the proof of
Theorem 1.

REMARK. If X is a compact, nonempty, metrizable space, then
(a) all (pseudo) metrics on X are totally bounded
(b) for every two metrics d, and d,, we have d, > d,
(¢) for every metric d and every pseudometric d’, d’ > d im-
plies that d’ is a metric, compatible with the topology.
(N. B. all these (pseudo) metrics are supposed to be continuous.)
We did prove:

dim X = sup{inf{k(X, d)|d > d,, d e Z#|d, e FZ} .
It follows, that for fixed d, e .#
dim X = sup{inf{k(X, d)|d > d,, d € #}|d, > d,, d, € F} .

(Here the fact that the pseudo-order > is directed (cf. Lemma 1) is
needed.) Now, if we take d, to be a fixed metric for X, we infer
from (a)-(c):

dim X = sup{inf{k(X, d)|d > d,, d € #}|d, > d,, d, € F#}
= inf{k(X, d)|d is a metric for X}

which is Theorem A. Thus our result includes Theorem A as a
special case.

4. The separable metrizable case. In the case of a separable
metrizable space X another, more direct generalization of Theorem
A is available. Namely, we have

THEOREM 2. Let X be a mnonempty, separable metrizable space.
Then dim X = inf{k(X, d)|d is a totally bounded metric for X}.
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Proof. Denote k(X) = inf{k(X, d)|d is a totally bounded metric
for X}. First we prove: k(X) < dim X. If dim X = -, we have
nothing to prove. So suppose dim X ==» = 0. Let X be a metri-
zable compactification of X with dim X = n[2, p. 65]. Let ¢ > 0 and
d, be a metric for X such that k(X, d,) <n + ¢ (Theorem A). The
restriction of d, to X is totally bounded, and by Lemma 3,
(X, dy| X X X) =k(X,d) <n +e Thus k(X) < n = dim X.

Next we prove: k(X) = dim X. Let d be any totally bounded
metric for X. The completion (X, d) of (X, d) is then compact, so
(X, d) =dim X, again by Theorem A. By Lemma 3, k(X, d)=
(X, d). This completes the proof of Theorem 2.
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