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ON SPACES WHOSE STONE-CECH
COMPACTIFICATION IS 0Z

TosHI1JI TERADA

A Tychonoff space X is called Oz if every open subset
is 2-embedded in X. In this paper we characterize a class

of spaces whose Stone-Cech compactifications are Oz. Espe-
cially it is shown that for a realcompact Oz-space of count-
able type, BX is Oz if and only if X is expressed as the
union of an extremally disconnected subset and a compact
subset.

1. Introduction. All spaces considered here are Tychonoff. A
subset S of a space X is z-embedded in X in case each zero-set of
S is the restriction to S of a zero-set of X. A space X is called an
Oz-space if every open subset of X is z-embedded in X. Perfectly
normal spaces and extremally disconnected spaces are Oz. For basic
results of Oz-spaces, see [2] and [6]. Especially R. L. Blair [2]
showed the following result: A space X is an Oz-space if and only
if vX is Oz, where vX is the Hewitt realcompactification of X.
However it is unknown whether the Stone-Cech compactification S X
of an Oz-space X is Oz.

The purpose of this paper is to characterize a class of spaces
whose Stone-Cech compactifications are Oz. As an application of our
characterizations it will be shown that both SR and BQ are not Oz,
where R is the space of all real numbers and @ is the space of all
rational numbers. In §2, we will show formal characterizations. In
§ 3, structural characterizations will be studied. For example, it
will be shown that for a realcompact Oz-space X of countable type,
BX is Oz if and only if X can be expressed as the union of an ex-
tremally disconnected subset and a compact subset.

2. Formal characterizations. The following lemmas are basic
for our studies.

LeEmMMA 1 (R. L. Blair [2]). A space X is an Oz-space if and
only if every regular closed subset of X 1s a zero-set in X.

LEMMA 2. Let X be a dense subspace of a space Y.

(1) If A is a regular closed subset of X, then Cl, A is a re-
gular closed subset of Y.

(2) If B is a regular closed subset of Y, then BN X is a re-
gular closed subset of X.
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Lemma 2 is well-known. Let U be an open subset of a space
X. Then X — Cl;y(X — U) is denoted by U? in this paper.

LemMA 3 (E. G. Skljarenko [5]). For any open subset U of a
space X, the equality Bd;(U?) = Cl;«(Bd, U) holds.

The following lemma is used only once for the proof of
Theorem 1.

LEMMA 4 (D. Rudd |4]). For a zero-set Z of a space X the
following are equivalent.

(1) ClvZ 1s a zero-set of BX.

(2) There exists a 7real-valued continuous jfunction f on X
with the following properties; (&) Z = f7*0).

(b) If a subset A of X 1is completely separated from Z, then
inf{f(a): a € A} > 0.

The following theorem can be established by a routine argument
relying on Lemmas 1, 2, and 4.

THEOREM 1. For an Oz-space X the following are equivalent.

(1) BX 1s Oz.

(2) For each regular closed subset A of X there is a sequence
{Uy: i < @} of cozero-sets of X with the following properties; (a)
Ac U, for each 1 < w. (b) For any cozero-set U of X containing A
there 1s some U, such that U,CU.

Another formal characterization is given as follows. This char-
acterization is useful for the studies in § 3.

THEOREM 2. For an Oz-space X the following are equivalent.

(1) BX is Oz.

(2) For each regular closed subset A of X there is a sequence
{U;: 1 < 0} of regular open subsets of X with the following pro-
perties; (a) AcC U, for each 1 < w. (b) For any regular open subset
U of X containing A there is some U, such that U, U.

Proof. (1)—(2). Let A be a regular closed subset of X. Then
by Lemma 2 Cl;yA4 is a regular closed subset of 8X. Hence Cl; 4
has a countable neighborhood basis {V,: 4 < w} consisting of regular
open subsets of BX since BX is a compact Oz-space. For each
1<wlet U = V,NX. Then it will be shown that {U,: 7 < w} has
the properties (a) and (b). (a) is obviously satisfied. Let U be a
regular open subset of X containing A. Then A and X — U are
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completely separated since A and X — U are regular closed subsets
of an Oz-space X. Hence Cl,;AcCU?. Therefore, for some ¢, Cl;yAC
V.cU?® Thus U,cU for some 7. Hence (b) is satisfied.

(2) — (1). Let B be a regular closed subset of 8X. Then A=
BN X is a regular closed subset of X. Hence there is a sequence
{U;: 1 < @} of regular open subsets of X with the properties (a) and
(b). Then it is obvious that Cl,;;A = B = N{U? ¢ < w}. Hence B is
a zero-set of BX sinece BX is normal. This completes the proof.

COROLLARY 1. For a mormal space X the following are equi-
valent.

(1) BX is Oz.

(2) Ewvery regular closed subset of X has a countable neigh-
borhood basis.

COROLLARY 2. SR, BQ and B(R — Q) are not Oz.

3. Structural characterizations. A subset S of a space X is
called relatively pseudocompact if every real-valued continuous -fune-
tion f on X satisfies the condition that the restriction f|S is bounded.

THEOREM 3. If X is Oz, then for any regular closed subset A
of X, BdzA s relatively pseudocompact.

Proof. Let A be a regular closed subset of X. Assume that
Bd;A is not relatively pseudocompact. Then it will be proved that
condition (2) of Theorem 2 is not satisfied. Let {U,:7 < w} be a
sequence of regular open subsets of X containing A. Since BdyA4
is not relatively pseudocompact, Clzx(Bd,A)N(BX —vX) is non-
empty. Let y be a point of Cl,x(BdzA)N(BX — vX). Then it is
obvious that yeCl,x(U, — A) for each 7 < w. Since y¢vX, there is
a discrete sequence {F: 1 < w} of regular closed subsets of X such
that F,cU, — A for each i <w. Now let U= X — U{F;: 1 < w}.
Then U is a regular open subsets of X containing A. But U con-
tains no member of {U,:1 < w} by the construction.

COROLLARY 3. If BX 1is Oz, then the following hold.
(1) ind(BX —vX)<0.
(2) For any regular open subset U of vX, Bd, U is compact.

A space X is called of countable type if, for any compact sub-
set C of X, there is a compact subset C’ such that CcC’ and C’
has a countable neighborhood basis (see [1]).
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THEOREM 4. If vX 1s of countable type, then the following are
equivalent.

(1) BX is Oz.

(2) For any regular closed subset A of X, BdyA is a relative-
ly pseudocompact zero-set.

Proof. (1) — (2). Since X must be Oz, Bdy4 is a zero-set for
any regular closed subset 4 of X. Then by Theorem 38 this impli-
cation is obvious.

(2) — (1). Let B be a regular closed subset of 8X. Then BNX
is a regular closed subset of X. Hence Bd(BNX) is a relatively
pseudocompact zero-set of X. Since Bd;yB = Cl;x(Bd.(BN X)), BdsxB
is a compact zero-set of vX. By the assumption that vX is of count-
able type, Bd;yB is a G,set of BX. Thus B is G, in BX.

Next, we will show that, in Corollary 1, the normality of X
can be replaced by the realcompactness of X.

LeMMA 5. Let X be a realcompact space and let A be a closed
subset of X. If A has a countable meighborhood basis in X, then
ClsxA is a zero-set of BX.

Proof. Let {U;:7 < w} be a countable neighborhood basis of A.
Assume that Cl;;A — Uf # @ for some 4, Then since Cl;AC
(Usy 0 U UBdal(Us, 0 U) = (Uyy N U U Clax(BA(U,, N UY) € U, U
Clyx(U; — A) for each i < w®, ClgxyA — U cCly(U, — A) for each
i <w. If we take a point y in Cl;A — U, then by the same
argument in the proof of Theorem 3 it is shown that {U;: 7 < w} is
not a neighborhood basis of A in X. This is a contradiction. Thus
Cl;yAcU# for each ¢ <®. Then it is obvious that Cl;;A = N
{Uf:1 < w}. Thus Cl;yA is a zero-set of BX.

COROLLARY 4. Let X be a realcompact space. If every closed
subset of X has a countable neighborhood basis, then X is (perfectly)
normal.

THEOREM 5. For a realcompact space X the following are equi-
valent.

(1) BX is Oz.

(2) Any regular closed subset A of X has a countable meigh-
borhood basis in X.

(8) For any regular closed subset A of X, BdzA is a compact
subset with a countable meighborhood basis in X.
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Proof. (1) —(3). By Lemma 3, for any regular closed subset A
of X, Cl,;A=Cl;x(BdyA4)U(IntzA)" and Clsx(X—A)=Clsx(Bdx(X—A4))U
(X — A) = Clx(Bdz4) U (X — A)~. Thus ClgzA N Clex(X — A)=
Cl;x(BdyA). Therefore Cls;x(BdyA) is G, in BX since X is 0z. By
Theorem 3, BdyA is relatively pseudocompact in X. Since X is re-
alcompact, BdyA must be compact. Hence Bd,A has a countable
neighborhood basis in X.

(8) — (2). This is obvious.

(2) - (1). By Lemma 5 it is proved that every regular closed
subset of BX is a zero-set of SX.

A space X is called extremally disconnected if the closure of
every open subset is open. If X is extremally disconnected or
pseudocompact Oz, then BX is Oz (see [2]). Conversely we have
the following.

THEOREM 6. If BX 1is Oz, themn for each discrete sequence
{Us: i < w} of open subsets of X there exists 1, such that U; is ex-
tremally disconnected for each j = 1.

Proof. Assume the contrary. Then there is a subsequence
{U,: k < w} of {Uz:i<w} such that U, is not extremally discon-
nected for each k. For each %k let V, be an open subset of U,
such that CIU% V. is not open. Let F = U{ClyV.:k < w}. Then ob-
viously F' is regular closed. But we will show that condition (2) of
Theorem 2 is not satisfied. Let {W,:1 < w} be a sequence of regular
open subsets of X containing F. Then, for each k, there is a
regular closed subset S, of X such that S,c(W,nU,) —F. Let
U=X— U{S;:k < ®}. Then U is a regular open subset of X which
contains no member of {W,. 1 < w}.

COROLLARY 5. If every open subset of a space X is mot extre-
mally disconmected, then the following are equivalent.

(1) BX s Oz.

(2) X is pseudocompact and Oz.

The fact that GR, 8Q and B(R — Q) are not Oz follows also from
Corollary 5. The following is the main theorem in this section.

THEOREM 7. Let X be an Oz-space whose Hewitt realcompacti-
fication vX 1is of countable type. Then the following are equivalent.

(1) BX is Oz.

(2) X s expressed as the union of an extremally disconmected
open subset and a relatively pseudocompact (closed) subset.
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Proof. (1)—(2). Let % be the family of all extremally dis-
connected open subsets of X. Then %/ is partially ordered by the
inclusion relationc. Let %/’ be a linearly ordered subset of 2. Then
it is not so difficult to see that U{U: Ue %’} is also a member of
7. Hence by Zorn’s lemma there exists a maximal member E of
%. Let P= X — E. Assume that P is not relatively pseudocompact.
Then there is a discrete sequence {U,:7 < w} of open subsets of X
such that U,NP # @ for each ¢. If U, is extremally disconnected,
then U, U E is also extremally disconnected. But this contradicts
the maximality of E. Hence each U, is not extremally disconnected.
But this is a contradiction by Theorem 6. Thus P is relatively
pseudocompact.

(2)—(1). Let X = EU P, where E is an extremally disconnect-
ed open subset and P is a closed relatively pseudocompact subset.
We will show that for each regular closed subset A of X, Bd,A is
relatively pseudocompact. Then by Theorem 4 it is true that 8X is
Oz. It suffices to show that Bdy;A c P. This follows from the
following observation:

Bd;A4 = Cly(IntA) — Int A
= Cl;((IntzA) N E)U ((IntzA)N P)) — Int A4
= (Clx(Cly((Inty A)N E)) — IntzA) U(Cly((Int,A)N P)
— Int,A)
cPUP
=P.

This completes the proof.

COROLLARY 6. Let X be a realcompact Oz-space of countable
type. Then the following are equivalent.

(1) BX is Oz.

(2) X 1is expressed as the union of an extremally disconnected
subset and a compact subset.

ExaMPLE. In Theorem 4 and Theorem 7, the assumption that
vX is of countable type can not be omitted. In fact, there is a
realcompact Oz-space X with the following properties:

(a) X =FE UC, where E is an extremally disconnected subset
and C is a compact subset.

(b) BX is not Oz.

Let N be a countably infinite discrete space and let p be a
point of BN — N. Then NU{p} is realcompact as a subspace of SN.
Let X be the quotient space of the topological sum of N U{p} and
the unit interval I obtained by identifying the point p of N U{p}
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and the point 0 of I. Then X is realcompact and Oz since X is
Lindelof and perfectly normal. It is also obvious that X can be
expressed as the union of a discrete subset and a compact subset.
But £X is not Oz since the homeomorphic image of I is a regular
closed subset of X which does not have a countable neighborhood
basis in X (see Theorem 5).
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