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THE RADON-NIKODYM-PROPERTY, <7-DENTABILITY AND
MARTINGALES IN LOCALLY CONVEX SPACES

L. EGGHE

In this paper we give relations between the Radon-
Nikodym-Property (RNP), in sequentially complete locally
convex spaces, mean convergence of martingales, and
α-dentability. (RNP) is equivalent with the property that
a certain class of martingales is mean convergent, while
<7-dentability is equivalent with the property that the
same class of martingales is mean Cauchy. We give an
example of a σ-dentable space not having the (RNP). It is
also an example of a sequentially incomplete space of in-
tegrable functions, the range space being sequentially
complete.

I* Introduction, terminology and notation* A nonempty subset
B of a locally convex space (l.c.s.) (over the reals) is called deniable,
if for every neighborhood (nbhd) V of o, there exists a point x in
B such that

x£c<m(B\(x + V))

(con denotes the closed convex hull). X is called deniable if every
bounded subset of X is deniable. When we replace con by σ, where

λ»na?Λ||a?n e A, Vn e N, Σ K = l, Σ K%» convergent, λ ^

we get the corresponding definitions for σ-dentability.
We use the following integral:
Let X be a sequentially complete l.c.s., and (βf Σ, μ) a finite

complete positive measure space.
A function f:Ω-+X is said to be μ-integrable, if there exists

a sequence (/J^U of simple functions such that:
( i ) \imnfn(ω) = f(ω),μ-a.e..
(ii) For every continuous seminorm p on X:

lim \ p(fn(ω) - f(ω))dμ(ω) = 0 .

Put \ fdμ = limw \ fndμ, V i e l . This limit exists and is in X.
JA JA

Denote Lz(μ, Σ) as the space of classes [/] of μ-integrable functions,
where [/] = [g] iff / = g, μ - a.e..

Put q{f) — \ p(f)dμ, where p is any continuous seminorm on X.
JΩ
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The topology on Lx considered is these, generated by all the q.

Note. It is easily seen by Lebesgue's convergence theorem and
(i), that we can replace (ii) by:

(ii)' limw>n I p(fn(ω) - fm(ω))dμ(ω) = 0 for every continuous

seminorm p on X.
Let 5 be a closed bounded subset of X. We say that B has

the Radon-Nikodym-Property, (RNP), if, for every positive finite
separable measure space (β, Σ> μ), and every vector measure m: Σ ~v ^
with

contained in B, there is a μ-integrable function /: Ω —> X, such that

m(A) = \ fdμ , VA 6 Σ

We say that X has the (RNP) if each closed bounded convex subset
of X has the (RNP).

A sequence (xn, Σ*)»=i *s called an X-valued martingale, if every
xn is in L\(μ, Σ )̂> where (Ω, Σ> i") i s a measure space and the Σ^
are σ-algebras such that Σ « c Σ d - i ^ Σ > VneN, and if, for every A
in Σ*:

ϊ xwd^ = ϊ xn+1dμ, VneN.
JA JA

We call a l.c.s. in which every bounded set is metrizable, a (BM)-
space. In this case our definition of (RNP) corresponds to this given
in [10]. (This is a consequence of Theorems 1 and 2 below.)

2. The results* The following theorem is well-known in Banach
spaces (see [1] and [8]):

THEOREM. The following assertions are equivalent in a Banach
space X:

( i ) X has (RNP).
(ii) Every uniformly bounded martingale (xn, ΣJ5U is Lι

x-
convergent.

(iii) X is deniable.
(iv) X is σ-dentable.
In our case the space Lι

x(μ, Σ) is 'm general not complete, so
that we might get some Cauchy-results, when (ii) is relied to (iii) or
(iv). On the other hand: (RNP) implies a certain completeness
condition, since, in proving (RNP) we have to prove the existence
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of a μ-integrable function, being the Radon-Nikodym-derivative of a
certain vector measure, w.r.t. a scalar measure. We first state some
lemmas. Some of them have independent interest.

LEMMA 1. Let ^ be a separable σ-algebra. Suppose Σ — σ(A)
(the σ-algebra generated by A) where A is an algebra. Then there
is a countable BaA such that Σ = &(B).

LEMMA 2. Let X be a sequentially complete Z.c.s., and (xif Σ<)<ez
a uniformly bounded martingale. Put Σ = tf(U* Σ*) Let (Σ*n)ϊ=i
be a sequence such that Σ = 0"(UϊU Σ<») Let F: Σ -* X be the
limit measure of (xin, Σ<«)ϊ=i Then F is also the limitmeasure of

The proofs of Lemma 1 and 2 are easily made. From them we
have:

LEMMA 3. Let X be a sequentially complete l.c.s., and (xif Σ<)<ei
a uniformly bounded martingale. Suppose Σ = σ(Ui Σ*) separable.
Then the limit measure of (xif Σ<) exists on Σ

Let (Ω, Σ> i") b e a separable positive finite measure space. Let
F be a vector measure on Σ into X, such that AΩ(F) is bounded.
Put:

where π runs through /7 (the set of all finite partitions of Ω into
elements of Σ> directed in the usual way). Since {Ωf Σ , j") is coun-
tably generated, we have: Σ is the σ-algebra generated by an
increasing sequence of finite partitions πn oi Ω.

LEMMA 4. (xπ)πeΠ is L\-Cauchy iff every sequence (#-J~=1 is
Lχ-Cauchy, with (πn)ζ=1 increasing such that Σ = ^(U ^ J In ^his
case we have that for any two such sequences (TΓJ^U, (7T»)«=r«

L\ - lim (xKn - xπ0 = 0 .

/^ case ô Ẑ z o^β such sequence (a^JίU is L\-convergent, then they all
are convergent (to the same limit). This limit is also L\ —

Proof. Denote Σn = ^(^«) t h e ^-algebra generated by πn'(xπ)πeΠ

is Lχ-Cauchy. Hence for every continuous seminorm q on L\, there
is a τr0 € Π, such that for every π ^ ττ0:
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Let τr0 = {Alt , An). By a well-known theorem ([3], p. 76), we can
construct

in {Jn=ίπnf such that μ(AidAΪ) < l/2A.n.Mp, for every ί — 1, , n,

where M9 is a p-bound of (xzjn=i (and where g(/) = l p(f)dμ). Mak-

ing the usual arrangements:

we get < = UΓ, .- ,^,ii;'+ 1}.
Let π' be any refinement of πό; π' e 77

Choose 7r" = π' V π0 in J7. Then we consider three parts in π":
( I ) Those sets Biyj of π' which can also be taken in π": i.e.:

which are already part of one Ak. This part cancels in x~, — xs,,.
(II) Those sets Bitj of π' which are in more than one Ak. As

sets in π" we have of course to choose Bifj f] Ak(k = 1, , n).
(III) For those Bn+1}j, which are in more than one Ak, we take

also Bn+Uj Π Ak{k = 1, ••-,%) in π".
We have:

q(xπ, - xrj)

- n(^ H&J) Ύ - V V F(B*'J Π A*h \
Vdi) μ{Bi>5)

 ι'3 (ID fc=i μ(βiti Π Λ ) /

+ ?( Σ (the same)
\(ΠI)

+ Σ (the same)
(III)
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+ Σ Σ *>(^^H - *X§*^^ W , π
«ii) »i \μ(Bn+ltj) μ(B Π A) /

We remark that, when E, G are arbitrary in Σ , M-̂ O > °» KG) > o,
we have:

F(E) _ F(G) μ{G)F(E) - F(G)μ(E)
μ(E) μ(G) μ(G)μ(E)

_ F(G) F(E\G) __ F(G\E) F(G)μ(E\G) F(G)μ(G\E)
μ(G) μ(E) μ{E) μ(E)μ(G) μ{E)μ{G)

Now, here, we put E = Biti, G — Bi:j n At. We can suppose μ{BuS) >
0, μ(Buj Π At) > 0, since we consider only partitions, μ—a.e.. Hence:

J F(Bu) _ F(Buf]Ad\

\F\,{BtliΔ{Bt,, Π A*)) JF(Bui n A,) \ μ(BtliΔ<βu Π A,))
ΛiBΠAdJ μ(Btli)

where \F\P denotes the ^-variation on F.
So

(1) ^ Σ [Mj{Bt,ABu Π A,)) + Mpμ{BuΔ(Bitj

<ϊ
Now:

Σ
(II)

n ince U A? ΠAk(z A?\At)

= J_
12 '

(3) ^ 2M,μ(Aϊ+ι)

2Mp-n

JL_
12

( i
\24.».
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Thus q(x, - X;,,) < 1/4.
We have also by (1): q(xΓ,» — x-0) < 1/4.
Now 7r o "cU»Σn Hence there exists a noeN such that πno ^ π".
So g(α,no - α^) < 1/2.
When ττπ >̂ πno, we have also τrw 2> π0". Hence also g(ίcΓ% — xKQ) <l/2.
Hence g φ ^ - x,nQ) < 1, Vn ^ nQ. So (a^jΞU is Li-Cauchy.

<== Let Σ = 0"(Un=i π j where (τrΛ) is an increasing sequence of
finite partitions of Ω. Supposing (xr)^cn n ° t Li-Cauchy, we have:
there is a continuous seminorm q on L\-(μ) such that for every πe
II, 3ττ', π" e 77, π', TΓ" ^ TΓ, with g(xr, - xrJ,) > 2. Let τr';' be π' or π "
according to q(x~ — x-,//) > 1.

We start the induction with π — π^ we call π"f now: π[. Then
for TΓ — π[ V ίτ2;

 w e c a H ^'" now: τr2', and so on. Hence we have

for every w = 1, 2, 3, It is trivial that (&4')*U is not Li-Cauchy,
although (7(U?=i f̂c') = Σ> since 7r£i = 7r̂  ^ π% for every ^ in N.

So, the two assertions are equivalent. In this case, since (α?-)reY

is Lχ.Cauchy, we have, for every continuous seminorm p on X,
3τrn 6 77 such that for any π ^ πQ:

- \ ~-

Let (πn)n=ι and (π'n)Z=ι be two increasing sequences, consisting of
finite partitions of Ω into elements of Σ> such that Σ = ^(U^ πn) —
σ(\Jnπ'n). From the first part of the proof of this lemma, and (1),
we deduce: There is a πnQ such that

( 2 ) for every n ^ n0: q(x,n - XZQ) < —

and a π ^ such that for every n ^ wx: q(x->n — x^Q) < 1/2.
Choose m = max (n0, fO So, there is a m in JV such that for

every w ^ m: g(ίc-Λ — »SJ < 1, for every p. Hence:

L\ - lim (xΓn - xr>n) = 0 .
7i -->oo

Now suppose that there is at least one sequence (CCΓΛ)Ϊ=I with

^•(Ur, π «) = Σ> s u c h t i i a t there is a a? in Lχ(μ) for which

L\ — limw ccΓ% — x. Let (x^)^ L be another sequence with Σ =

n^n)- It is immediate that F(A) = \ xdμ, for every A in
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\Jn π%. Hence F(A) — limΛ I xπ dμ, for every A in \Jn πn. Since
JA Γ

AΩ{F) is bounded we have that F(A) = lim^ \ x, dμ, for every A

S jA

xdμ, for every A in Σ So: Z i —lim^α?,, = &,
and Li- — Iim êτ7 %* = #.

THEOREM 1. Lβί X be a sequentially complete l.c.s. The follow-
ing assertions are equivalent:

(1) X has (RNP).
(2a) Every uniformly bounded martingale (xn9 Σ»)SU w ί ^ Σ —

σ(U« Σn) separable, is Lχ-convergent.
(2b) Every uniformly bounded and finitely generated martingale

(&», ΣJϊ-i 1 is Lι

x-convergent.
(2c) Every uniformly bounded martingale (xit Σΐ)ϊez> ^iίfe Σ =

^(Ui Σt) separable, is Lχ-convergent.
(2d) Every uniformly bounded and finitely generated martingale

(xif Σi)iei with Σ — ̂ (UiΣΐ) separable, is Lχ-convergent.

Proof This proof is now done in the same way as in Banach
spaces; We use now Lemmas 3 and 4.

REMARKS. (1) When the property "separable" is deleted in the
definition of (RNP) we can prove in Theorem 1 only (1) <=> (2c) <=> (2d)
(without the assumption Σ separable). This we can do if X is
supposed to be quasi-complete (to be sure of the existence of the
limitmeasure). However Theorem 1 is much more useful as will be
seen later on.

( 2) When the property "AΩ{F) bounded" in the definition (RNP)
is changed into CCF bounded variation and ^-continuous", we can
prove Theorem 1 in the same way, but now using L^-bounded and
uniformly integrable martingales instead of uniformly bounded mart-
ingales: However Theorem 1 is more interesting in connection with
σ-dentability. (See Theorem 2.)

We are now going to characterize cr-dentability in terms of
mar tingale-Gauchy-pr operties.

THEOREM 2. Let X be a sequentially complete l.c.s.. The following
assertions are equivalent:

( 3 ) X is σ-dentable.
(4a) Every uniformly bounded and finitely generated martingale

(&*, Σ»)£=i is Ux-Cauchy.
(4b) Every uniformly bounded martingale {xn, Σ*)»=i is IA-

Cauchy.
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REMARKS. (1) As will follow from the proof of this theorem,
we may also use in (4a) and (4b) martingales on a separable measure
space only. We may even restrict the martingales to be defined on
([0, 1], B[0, 1], λ)(J?[O, 1] = the Borelsets in [0, 1] and λ denoting Lebes-
gue measure).

(2) In (4a) and (4b) we may also use martingales with an
arbitrary index-set /. This is trivial, since we are looking at Cauchy-
properties.

Proof of Theorem 2.

(4) => (3). This a adaptation of the proof of Huff [7] to our case:
Now supposing X not being cr-dentable, we can construct a, seminorm-
independent uniformly bounded and finitely generated martingale,
which is not ZΛ-Cauchy.

(3) => (4a). An application of RieffeΓs theorem to our case shows
that (aj-) rey is LV-Cauchy, with

limim 1 xndμ
J L -—

- & μ(A)

where (xny Σ»)»=i * s the given uniformly bounded and finitely gen-
erated martingale, and where Π = {π\\π is a finite partition of Ω into
elements of Σ).

Then Lemma 4 gives the result.
The proof of (4a) <=> (4b) is easily made.

COROLLARY. Let X be a quasi-complete (BM)-space. Then all
the assertions in Theorem 1 are equivalent with all the assertions
in Theorem 2 (and equivalent with dentability).

Proof This is easily seen by the result of Saab [10].

We also see that in a quasi-complete (BM)-space, we get an equi-
valent formulation of (RNP), by deleting the word "separable" in
our definition.

The proof of the following lemma is immediate:

LEMMA 5. Let (xΛ)SU be a sequence of step-functions which is
L\(μ)-Cauchy. Then there is a martingale (yn, Σ*)?=i> such that

L\(μ) - lim (yn - xn) = 0 .
n-*oo

From this lemma and Theorems 1 arid 2 we have now:
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THEOREM 3. σ-dentability is equivalent with (RNF)(in sequentially
complete Lc.s.) iff every uniformly bounded Lx-Cauehy sequence of
{step-) functions in LX

X(Ω, Σ> /Ό is Lx-convergent. ((<£?, Σ , μ): any
separable positive finite measure space.)

Hence the Radon-Nikodym-property's equivalence with <7-den-
tability depends critically on the sequential completeness of Lx(μ).

For the remainder of this article, we intend to prove that there
is a sequentially complete Lc.s. X for which Lx is not sequentially
complete: We shall even show that there is a Schur space X for
which Lx>σ{XtXn is not sequentially complete. This is done by proving
that these X are tf-dentable and have not (RNP). We first recall
the definition of a weak-Radon-Nikodym-Banach space.

DEFINITION. Let X be a Banach space. X is said to have the
weak-Radon-Nikodym property (WRNP), w.r.t. the measure space
(Ω, Σ , $9 if for every X-valued measure ί1 on Σ , which is ^-con-
tinuous and of finite variation, there is a Pettis-integrable function
f:Ω-^X such that

F(A) = P-\fdμ
JA

for every 4 in Σ (Here P — I fdμ denotes the Pettis-integral of
JA

f over A.)
The following lemma is immediately seen:

LEMMA 6. Let the Banach space X be weakly sequentially com-
plete. If X, σ(Xf X') has (RNP) then X has (WRNP) w.r.t. separable
measure spaces.

We denote by JH the space constructed by Hagler [6].

LEMMA 7 ([1], [2], [6]). JH' is a Schur space without (RNP). Lι

is a weakly sequentially complete Banach space without (RNP). Every
Schur space is trivially weakly sequentially complete.

In Theorems 4 and 5, X denotes a weakly sequentially complete
Banach space without (RNP).

THEOREM 4. There is a closed separable subspace Y of X such
that Y, σ(Y, Yf) is σ-dentable and has not (RNP).

Proof. Since X does not have (RNP), there exists a closed
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separable subspace Y of X without (RNP), hence without (RNP)w.r.t.
([0, 1], B[0, 1], λ). (Here B[0, 1] denotes the class of the Borel subset
of [0, 1] and λ denotes Lebesgue measure on [0, 1]). Since Y is separ-
able, Y has not (WRNP)w.r.t. ([0, 1], B[0, 1], λ). By Lemma 6:
Y, σ(Y, Y') has not (RNP)w.r.t. ([0, 1], B[0, 1], λ). Furthermore
Y, σ(Y, Yr) is sequentially complete, and by [5] (Cor. 3 of Theorem
1) is σ -dentable.

From Theorems 1, 2 and 4, we have now:

THEOREM 5. There is a sequentially complete l.c.s. X such that
L\ is not sequentially complete.
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