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THE RADON-NIKODYM-PROPERTY, o-DENTABILITY AND
MARTINGALES IN LOCALLY CONVEX SPACES

L. EGGHE

In this paper we give relations between the Radon-
Nikodym-Property (RNP), in sequentially complete locally
convex spaces, mean convergence of martingales, and
o-dentability. (RNP) is equivalent with the property that
a certain class of martingales is mean convergent, while
os-dentability is equivalent with the property that the
same class of martingales is mean Cauchy. We give an
example of a s-dentable space not having the (RNP). It is
also an example of a sequentially incomplete space of in-
tegrable functions, the range space being sequentially
complete.

1. Introduction, terminology and notation. A nonempty subset
B of a loecally convex space (l.c.s.) (over the reals) is called dentable,
if for every neighborhood (nbhd) V of o, there exists a point z in
B such that

x ¢ con (B\(x +V))

(con denotes the closed convex hull). X is called dent_able if every
bounded subset of X is dentable. When we replace con by o, where

0(A)= {g} M|z, € A, Vi€ N, g}"nﬂ» gﬁ“ﬂ“ convergent, x,,go} ,

we get the corresponding definitions for o-dentability.

We use the following integral:

Let X be a sequentially complete l.c.s., and (2, 2, &) a finite
complete positive measure space.

A function f:Q2 — X is said to be p-integrable, if there exists
a sequence (f,);-, of simple functions such that:

(i) lim, fi(®) = f(o), ¢t — a.e..

(ii) For every continuous seminorm p on X:

lim | p(f.@) - F@Ndp@) = 0.

Putg fdp = limns f.dp, vAe Y. This limit exists and is in X.
Denot‘:e Liy(y, 2) asAthe space of classes [f] of y-integrable functions,
where [f]l=[g] iff f =9, ¢t — a.e..

Put q(f) = gp( f)dp, where p is any continuous seminorm on X.
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314 L. EGGHE
The topology on L% considered is these, generated by all the gq.

Note. It is easily seen by Lebesgue’s convergence theorem and
(i), that we can replace (ii) by:

(ii)’ limm,,‘g 2 (fu(®) — fn(@)dp(w) = 0 for every continuous
seminorm P on X.

Let B be a closed bounded subset of X. We say that B has
the Radon-Nikodym-Property, (RNP), if, for every positive finite
separable measure space (2, >, &), and every vector measure m: >, — X,
with

Az, = {0~ || 4e S, ma > of

contained in B, there is a p-integrable function f: 2 — X, such that

m(A):SAfd#, VAEY, .

We say that X has the (RNP) if each closed bounded convex subset
of X has the (RNP).

A sequence (z,, >..)i-; is called an X-valued martingale, if every
z, is in Li(g, >.,), where (2, >, 1) is a measure space and the >},
are o-algebras such that >, c>.... <>, Yne N, and if, for every 4

in >.:
S x,dp = S 2,1, d, VR e N .
A A

We call a l.c.s. in which every bounded set is metrizable, a (BM)-
space. In this case our definition of (RNP) corresponds to this given
in [10]. (This is a consequence of Theorems 1 and 2 below.)

2. The results. The following theorem is well-known in Banach
spaces (see [1] and [8]):

THEOREM. The following assertions are equivalent im a Banach
space X:

(i) X has (RNP).

(il) Ewery wuniformly bounded martingale (x,, D)o, i1s Lk-
convergent.

(iii) X s dentable.

(iv) X 1is o-dentable.

In our case the space Li(g, >)) is in general not complete, so
that we might get some Cauchy-results, when (ii) is relied to (iii) or
(iv). On the other hand: (RNP) implies a certain completeness
condition, since, in proving (RNP) we have to prove the existence
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of a p-integrable function, being the Radon-Nikodym-derivative of a
certain vector measure, w.r.t. a scalar measure. We first state some
lemmas. Some of them have independent interest.

LEMMA 1. Let 3, be a separable o-algebra. Suppose 3>, = o(A)
(the a-algebra gemerated by A) where A is an algebra. Then there
ts a countable BC A such that >, = o(B).

LEMMA 2. Let X be a sequentially complete l.c.s., and (%, 3.)ie;
a uniformly bounded martingale. Put 3, = o(U;>.). Let (X )5
be a sequence such that 3, = o(Us-, >,). Let F: 3, — X be the
limit measure of (x;, 2. )v-i- Then F is also the limitmeasure of

(xi} Zi)i €1

The proofs of Lemma 1 and 2 are easily made. From them we
have:

LeMMA 3. Let X be a sequentially complete l.c.s., and (&;, D.)ier
a uniformly bounded martingale. Suppose >, = o(U; D) separable.
Then the limit measure of (x;, >,) exists on ..

Let (2, >, 1) be a separable positive finite measure space. Let
F be a vectormeasure on >, into X, such that A4,(F) is bounded.
Put:

F(A)
X, = X
)
where 7 runs through /7 (the set of all finite partitions of £ into
elements of 3, directed in the usual way). Since (2, 3, ¢) is coun-
tably generated, we have: >, is the o-algebra generated by an
increasing sequence of finite partitions «, of Q.

LEMMA 4. (X.)..; %8 Li-Cauchy iff every sequence (. ),-, s
Li-Cauchy, with (z,)s-, increasing such that 3, = (U, x,). In this
case we have that for any two such sequences (T,)me, (Th)m=y:

Ly — lim (x;, — %) = 0.
In case only one such sequence (x. )y, is Li-convergent, then they all
are convergent (to the same limit). This limit is also Ly — lim. ..

Proof. Denote 3, = o(x,): the o-algebra generated by @, ().
is LY-Cauchy. Hence for every continuous seminorm ¢ on LY, there
is a m,e I, such that for every = =
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(1) qx. — @) =

.

NP

Let 7, = {4, ---, 4,}. By a well-known theorem ([3], p. 76), we can
construct

{A;, s, AL, AU A;}

in Us. 7, such that p(A,44)) < 1/24.n.M,, for every ¢ =1, -+, n,
where M, is a p-bound of (x. )7, <and where g( f):S o(f )dp). Mak-
ing the usual arrangements: )

A= Al AV = A;\tj A mzi>1)
i=t
AL =004y

we get ) = {4, ---, AL, A,.}.
Let ' be any refinement of =#); n' eIl

r_ . . .
T = {Bl,ly Tty Bl,p17 ) Bn,ly ) B'n,,p,,,’ Bn+1,19 ] Bn-fl,pn.;.l} .

Choose " =’ \/ &, in II. Then we consider three parts in =”':
(I) Those sets B;; of #' which can also be taken in x'": i.e.:
which are already part of one A,. This part cancels in x., — x...
(II) Those sets B;; of #’ which are in more than one 4,. As
sets in 7" we have of course to choose B,; N Ak =1, ---, m).
(III) For those B,.,;, which are in more than one 4,, we take
also B,y ;N A k=1, ---,n) in n".

We have:
q(@. — x-00)
_ F(B,,;) v v F(Bi,; N4
= q(uzl,) ) Xsi m;kz:l W(B., N 4A) Xzy,mm:)

+q< > (the same))

(I1I)
~( F(B,;) _ F(Bi,;N A
= a8 STt Lo o
= (]ZI) q<k=1( /,((Bi’j) #(Bi,j N Ak)) BM.IA,W.>
+ 3 (the same)

(I11)
F(B,;) F(B,;NA)
= - : B.. N A,
= (Izll)p<#(Bl’]) #(Bi,j n A,) )!’e( i,7 ﬂ Az)

F(B.;) _ F(B.iNA)\,, B .
+ {In k#e p({,z(BM) u(B,.; N Ay )F‘(Bz,g N A,)
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o EButrs) - FBanni) VA)N,yp . 4
am k=1 <#(Bn+1,j) (Bt N Ay )*a (Busis N A

=:(1) + (2) + 3).

We remark that, when E, G are arbitrary in >, #(E) > 0, i(G) > o,
we have:

&) _ FG)  MGFE) - FG)UE)
HE)  pG) MG E)
- F&) | FEG) FG\E) FGMEG) |, FGMG\E)
G) UE) U E) HUE)HG) UENG)

Now, here, we put £ = B, ;, G = B;; N A;. We can suppose p(B; ;) >
0, u(B;;NA) >0, since we consider only partitions, p#—a.e.. Hence:

p< F(B.;) _ F(B,;N Ai))

1(B.;) (BN A)
< [ F(Bi;4B,; 0 4)) p<F(Bi,j n Az)> C1(BABy,; N AY)
- t(B;,;) 1(B;; N A (B, ;)

where | F'|, denotes the p-variation on F.
So

b

D) = X [M,(By ;4(Bis N A)) + M,yp(Bi ;4B ; (1 A))]

< 3 2ML M ALHAY 1) A)
1

12

Now:
(2) < 2M, uzn % (B, ;N A)

< 2M, 3 5, A7 11 4)

1 . n ”
=2M, n- 24%Mp(smce Il:#Ji AN A, cC A, \A,)

-1
12 °

(3) < 2M, (AL,
= 2M,p(2\U &)

= 2M,- n(ﬁ-ﬁp—)

1
12 °
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Thus q(x. — x...) < 1/4.

We have also by (1): q(@.. — x.) < 1/4.

Now 7/ U, ... Hence there exists a n,€ N such that Tpy = T
So q(x-,, — x.) < 1/2.

When 7, = 7, we have also 7, = n;. Hence also q(zx., — ) <1/2.
Hence q(#., — 2-,) <1, ¥n = n, So (z.);., is L\-Cauchy.

—=Let > = o(Uy.,®,) where (m,) is an increasing sequence of
finite partitions of Q. Supposing (x.)..; not L:-Cauchy, we have:
there is a continuous seminorm ¢ on L' () such that for every we
I, 3n', 7" ell, ', n"” = n, with q(x.. — z..) > 2. Let a’" be 7’ or ="
according to q(x. — ....) > 1.

We start the induction with # = =,; we call 7" now: n!. Then
for # = n{ Vv w,; we call 7”7 now: 7, and so on. Hence we have
(@i with 7l = 7,

’

144 — ’
Tona1 = Ty V Ty

for every m =1,2,3, ---; It is trivial that (@.;);., is not Li-Cauchy,
although o(UJr., #)) = >, since 7}, = 7, = 7, for every » in N.

So, the two assertions are equivalent. In this case, since (x.)..
is L%.Cauchy, we have, for every continuous seminorm p on X,
37,e /[ such that for any 7= = n,:

(1) aw. = ) = | p. —2) <+

Let (m,)5-, and (m,);-, be two increasing sequences, consisting of
finite partitions of 2 into elements of 3}, such that 3 = o(U,7,) =
o(U, 7). From the first part of the proof of this lemma, and (1),
we deduce: There is a m,, such that

(2) for every mn = n,:q., — 2.) < —;—
and a 7, such that for every n = n.: q(x., — ) < 1/2.

Choose m = max (n,, #,). So, there is a m in N such that for
every n = m:q(x., — ;) <1, for every p. Hence:

Ly —lim (v, — @) = 0.

Now suppose that there is at least one sequence (x.);., with
o(U,m,) =2, such that there is a « in L\(#) for which
L —lim,z. =o. Let (x.);.. be another sequence with ) =

o(U,x,). It is immediate that F(A4) = Sixdﬂ, for every A4 in



THE RADON-NIKODYM-PROPERTY, s-DENTABILITY AND MARTINGALES 319

U. 7. Hence F(4) = lim, Lx,,"d)u, for every A in U, x,. Since
Ay(F) is bounded we have that F(A) = lim, Lx“d#, for every A
in >,. Thus F(A)=SAxdﬂ, for every A in 3. So: Li—lim,x, =z,
and Ly — lim,.; z. = 2.

THEOREM 1. Let X be a sequentially complete l.c.s.. The follow-
ing assertions are equivalent:

(1) X has (RNP).

(22) Ewery uniformly bounded martingale (€,, D, )u-1 wWith >, =
o(U. >..) separable, is L-convergent.

(2b) Every uniformly bounded and finitely generated martingale
(®,, S is Li-convergent.

(2¢) Ewvery uniformly bounded martingale (x;, Dii)ies, With >, =
o(lU; 3 separable, ts Li-convergent.

(2d) Ewery uniformly bounded and finitely generated martingale
(X, D0)ier with >, = o(U; D) separable, is Li-convergent.

Proof. This proof is now done in the same way as in Banach
spaces; We use now Lemmas 3 and 4.

REMARKS. (1) When the property “separable” is deleted in the
definition of (RNP) we can prove in Theorem 1 only (1) = (2¢) = (2d)
(without the assumption >, separable). This we can do if X is
supposed to be quasi-complete (to be sure of the existence of the
limitmeasure). However Theorem 1 is much more useful as will be
seen later on.

(2) When the property “A,(F) bounded” in the definition (RNP)
is changed into “F bounded variation and g-continuous”, we can
prove Theorem 1 in the same way, but now using L%-bounded and
uniformly integrable martingales instead of uniformly bounded mart-
ingales: However Theorem 1 is more interesting in connection with
o-dentability. (See Theorem 2.)

We are now going to characterize o-dentability in terms of
martingale-Cauchy-properties.

THEOREM 2. Let X be a sequentially completel.c.s.. The following
assertions are equivalent:

(3) X 1s o-dentable.

(4a) Ewvery uniformly bounded and finitely generated martingale
(X, Din)aey 8 Li-Cauchy.

(4b) Ewery wumiformly bounded martingale (x,, D.)ee 8 L-
Cauchy.
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REMARKS. (1) As will follow from the proof of this theorem,
we may also use in (4a) and (4b) martingales on a separable measure
space only. We may even restrict the martingales to be defined on
([0, 1], B[O, 1], M)(B[0, 1] = the Borelsets in [0, 1] and X\ denoting Lebes-
gue measure).

(2) In (4a) and (4b) we may also use martingales with an
arbitrary index-set I. This is trivial, since we are looking at Cauchy-
properties.

Proof of Theorem 2.

(4) = (3). This a adaptation of the proof of Huff [7] to our case:
Now supposing X not being o-dentable, we can construct a seminorm-
independent uniformly bounded and finitely generated martingale,
which is not L%-Cauchy.

(3) = (4a). An application of Rieffel’s theorem to our case shows
that (z.).., is L%-Cauchy, with
limS x,an¢

4 .

n

A

where (z,, >,.)o-; is the given uniformly bounded and finitely gen-
erated martingale, and where /7 = {x||x is a finite partition of 2 into
elements of X}.

Then Lemma 4 gives the result.

The proof of (4a) < (4b) is easily made.

COROLLARY. Let X be a quasi-complete (BM)-space. Then all
the assertions in Theorem 1 are equivalent with all the assertions
in Theorem 2 (and equivalent with dentability).

Proof. This is easily seen by the result of Saab [10].

We also see that in a quasi-complete (BM)-space, we get an equi-
valent formulation of (RNP), by deleting the word “separable” in
our definition.

The proof of the following lemma is immediate:

LeEMMA 5. Let (x,);-, be a sequence of step-functions which is
Li(¢)-Cauchy. Then there is a martingale (¥,, >..)i-, such that

Li() — lim (g, — @) = 0 .

n—>00

From this lemma and Theorems 1 and 2 we have now:
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THEOREM 3. o-dentability is equivalent with (RNP)(in sequentially
complete l.c.s.) iff every uniformly bounded L%-Cauchy sequence of
(step-) fumctions in Ly(2, >, ) ts Li-convergent. ((2,3, t): any
separable positive finite measure space.)

Hence the Radon-Nikodym-property’s equivalence with o-den-
tability depends critically on the sequential completeness of L%(f).

For the remainder of this article, we intend to prove that there
is a sequentially complete l.c.s. X for which L' is not sequentially
complete: We shall even show that there is a Schur space X for
which LY ,x,x» is not sequentially complete. This is done by proving
that these X are o-dentable and have not (RNP). We first recall
the definition of a weak-Radon-Nikodym-Banach space.

DEFINITION. Let X be a Banach space. X is said to have the
weak-Radon-Nikodym property (WRNP), w.r.t. the measure space
@, >, »), if for every X-valued measure F' on >, which is p-con-
tinuous and of finite variation, there is a Pettis-integrable function
f: 2 — X such that

F(A) = P— SAfd,a

for every A in >,. (Here P — S fdp denotes the Pettis-integral of
A

f over A.)
The following lemma is immediately seen:

- LEMMA 6. Let the Banach space X be weakly sequentially com-
plete. If X, 0(X, X') has (RNP) then X has (WRNP) w.r.t. separable
measure spaces.

We denote by JH the space constructed by Hagler [6].
LemMmA 7 ([1], [2], [6])). JH' is a Schur space without (RNP). Lt

18 @ weakly sequentially complete Banach space without (RNP). Every
Schur space is trivially weakly sequentially complete.

In Theorems 4 and 5, X denotes a weakly sequentially complete
Banach space without (RNP).

THEOREM 4. There is a closed separable subspace Y of X such
that Y, o(Y, Y') is a-dentable and has mot (RNP).

Proof. Since X does not have (RNP), there exists a closed
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separable subspace Y of X without (RNP), hence without (RNP)w.r.t.
([0, 1], B[O, 1], »). (Here B[O, 1] denotes the class of the Borel subset
of [0, 1] and A denotes Lebesgue measure on [0, 1]). Since Y is separ-
able, ¥ has not (WRNP)w.r.t. ([0, 1], B[O, 1], »). By Lemma 6:
Y, 0(Y, Y') has not (RNP)w.r.t. ([0, 1], B[O, 1], A). Furthermore
Y, o(Y, Y') is sequentially complete, and by [5] (Cor. 3 of Theorem
1) is o-dentable.

From Theorems 1, 2 and 4, we have now:

THEOREM 5. There 1s a sequentially complete l.c.s. X such that
L'\ is mot sequentially complete.
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