THE RADON-NIKODYM-PROPERTY, σ -DENTABILITY AND MARTINGALES IN LOCALLY CONVEX SPACES

L. EGGHE

In this paper we give relations between the Radon-Nikodym-Property (RNP), in sequentially complete locally convex spaces, mean convergence of martingales, and σ -dentability. (RNP) is equivalent with the property that a certain class of martingales is mean convergent, while σ -dentability is equivalent with the property that the same class of martingales is mean Cauchy. We give an example of a σ -dentable space not having the (RNP). It is also an example of a sequentially incomplete space of integrable functions, the range space being sequentially complete.

1. Introduction, terminology and notation. A nonempty subset B of a locally convex space (l.c.s.) (over the reals) is called dentable, if for every neighborhood (nbhd) V of o, there exists a point x in B such that

$$x \notin \overline{\mathrm{con}} (B \backslash (x + V))$$

($\overline{\text{con}}$ denotes the closed convex hull). X is called dentable if every bounded subset of X is dentable. When we replace $\overline{\text{con}}$ by σ , where

$$\sigma(A) = \left\{ \sum_{n=1}^{\infty} \lambda_n x_n \mid \mid x_n \in A, \ \forall n \in N, \ \sum_{n=1}^{\infty} \lambda_n = 1, \ \sum_{n=1}^{\infty} \lambda_n x_n \ \text{convergent, } \ \lambda_n \geq 0 \right\} \text{ ,}$$

we get the corresponding definitions for σ -dentability.

We use the following integral:

Let X be a sequentially complete l.c.s., and (Ω, Σ, μ) a finite complete positive measure space.

A function $f: \Omega \to X$ is said to be μ -integrable, if there exists a sequence $(f_n)_{n=1}^{\infty}$ of simple functions such that:

- (i) $\lim_{n} f_{n}(\omega) = f(\omega), \mu \text{a.e.}$
- (ii) For every continuous seminorm p on X:

$$\lim_{n}\int_{\Omega}p(f_{n}(\omega)-f(\omega))d\mu(\omega)=0.$$

Put $\int_A f d\mu = \lim_n \int_A f_n d\mu$, $\forall A \in \Sigma$. This limit exists and is in X. Denote $L_X^1(\mu, \Sigma)$ as the space of classes [f] of μ -integrable functions, where [f] = [g] iff f = g, $\mu - a$.e..

Put $q(f) = \int_{a} p(f) d\mu$, where p is any continuous seminorm on X.

The topology on L_X^1 considered is these, generated by all the q.

Note. It is easily seen by Lebesgue's convergence theorem and (i), that we can replace (ii) by:

(ii)' $\lim_{m,n}\int_{\mathbb{Q}}p\left(f_{n}(\omega)-f_{m}(\omega)\right)d\mu(\omega)=0$ for every continuous seminorm p on X.

Let B be a closed bounded subset of X. We say that B has the Radon-Nikodym-Property, (RNP), if, for every positive finite separable measure space (Ω, \sum, μ) , and every vector measure $m: \sum \to X$, with

$$A_{\scriptscriptstyle{m}}(\sum$$
 , $\mu) = \left\{ rac{m\left(A
ight)}{\mu(A)} - \left\|A \in \sum$, $\mu(A) > 0
ight\}$

contained in B, there is a μ -integrable function $f: \Omega \to X$, such that

$$m(A) = \int_A f d\mu$$
 , $orall A \in \sum$.

We say that X has the (RNP) if each closed bounded convex subset of X has the (RNP).

A sequence $(x_n, \sum_n)_{n=1}^{\infty}$ is called an X-valued martingale, if every x_n is in $L^1_{\mathsf{Y}}(\mu, \sum_n)$, where (Ω, \sum_n, μ) is a measure space and the \sum_n are σ -algebras such that $\sum_n \subset \sum_{n+1} \subset \sum_n \forall n \in N$, and if, for every A in \sum_n :

$$\int_{\scriptscriptstyle{A}}\!\! x_{\scriptscriptstyle{n}} d\mu = \int_{\scriptscriptstyle{A}}\!\! x_{\scriptscriptstyle{n+1}} \! d\mu$$
, $orall n \in N$.

We call a l.c.s. in which every bounded set is metrizable, a (BM)-space. In this case our definition of (RNP) corresponds to this given in [10]. (This is a consequence of Theorems 1 and 2 below.)

2. The results. The following theorem is well-known in Banach spaces (see [1] and [8]):

Theorem. The following assertions are equivalent in a Banach space X:

- (i) X has (RNP).
- (ii) Every uniformly bounded martingale $(x_n, \sum_n)_{n=1}^{\infty}$ is $L_{\mathbb{X}}^1$ -convergent.
 - (iii) X is dentable.
 - (iv) X is σ -dentable.

In our case the space $L_X^1(\mu, \sum)$ is in general not complete, so that we might get some Cauchy-results, when (ii) is relied to (iii) or (iv). On the other hand: (RNP) implies a certain completeness condition, since, in proving (RNP) we have to prove the existence

of a μ -integrable function, being the Radon-Nikodym-derivative of a certain vector measure, w.r.t. a scalar measure. We first state some lemmas. Some of them have independent interest.

LEMMA 1. Let \sum be a separable σ -algebra. Suppose $\sum = \sigma(A)$ (the σ -algebra generated by A) where A is an algebra. Then there is a countable $B \subset A$ such that $\sum = \sigma(B)$.

LEMMA 2. Let X be a sequentially complete l.c.s., and $(x_i, \sum_i)_{i \in I}$ a uniformly bounded martingale. Put $\sum = \sigma(\bigcup_i \sum_i)$. Let $(\sum_{i_n})_{n=1}^{\infty}$ be a sequence such that $\sum = \sigma(\bigcup_{n=1}^{\infty} \sum_{i_n})$. Let $F: \sum \to X$ be the limit measure of $(x_{i_n}, \sum_{i_n})_{n=1}^{\infty}$. Then F is also the limit measure of $(x_i, \sum_i)_{i \in I}$.

The proofs of Lemma 1 and 2 are easily made. From them we have:

LEMMA 3. Let X be a sequentially complete l.c.s., and $(x_i, \sum_i)_{i \in I}$ a uniformly bounded martingale. Suppose $\sum = \sigma(\bigcup_i \sum_i)$ separable. Then the limit measure of (x_i, \sum_i) exists on \sum .

Let (Ω, \sum, μ) be a separable positive finite measure space. Let F be a vectormeasure on \sum into X, such that $A_{\Omega}(F)$ is bounded. Put:

$$x_{\pi} = \sum_{A \in \pi} \frac{F(A)}{\mu(A)} \chi_{A}$$

where π runs through Π (the set of all finite partitions of Ω into elements of Σ , directed in the usual way). Since (Ω, Σ, μ) is countably generated, we have: Σ is the σ -algebra generated by an increasing sequence of finite partitions π_n of Ω .

LEMMA 4. $(x_{\pi})_{\pi\in II}$ is L^1_X -Cauchy iff every sequence $(x_{\pi_n})_{n=1}^{\infty}$ is L^1_X -Cauchy, with $(\pi_n)_{n=1}^{\infty}$ increasing such that $\sum = \sigma(\bigcup_n \pi_n)$. In this case we have that for any two such sequences $(\pi_n)_{n=1}^{\infty}$, $(\pi'_n)_{n=1}^{\infty}$:

$$L_{X}^{1} - \lim_{n \to \infty} (x_{\pi_{n}} - x_{\pi'_{n}}) = 0$$
.

In case only one such sequence $(x_{\pi_n})_{n=1}^{\infty}$ is L_X^1 -convergent, then they all are convergent (to the same limit). This limit is also $L_X^1 - \lim_{\pi \in H} x_{\pi}$.

Proof. Denote $\sum_n = \sigma(\pi_n)$: the σ -algebra generated by $\pi_n \cdot (x_n)_{\pi \in \Pi}$ is L^1_X -Cauchy. Hence for every continuous seminorm q on L^1_X , there is a $\pi_0 \in \Pi$, such that for every $\pi \geq \pi_0$:

$$q(x_{\scriptscriptstyle\pi}-x_{\scriptscriptstyle\pi_0}) \leqq \frac{1}{4} \ .$$

Let $\pi_0 = \{A_1, \dots, A_n\}$. By a well-known theorem ([3], p. 76), we can construct

$$\left\{A_1', \ \cdots, \ A_n', \ \varOmega \setminus \bigcup_{i=1}^n \ A_i' \right\}$$

in $\bigcup_{n=1}^{\infty} \pi_n$, such that $\mu(A_i \triangle A_i') < 1/24.n.M_p$, for every $i=1,\cdots,n$, where M_p is a p-bound of $(x_{\pi_n})_{n=1}^{\infty}$ (and where $q(f) = \int_{\Omega} p(f) d\mu$). Making the usual arrangements:

$$A_{\scriptscriptstyle 1}^{\prime\prime}=A_{\scriptscriptstyle 1}^{\prime},\,A_{\scriptscriptstyle i}^{\prime\prime}=A_{\scriptscriptstyle i}^{\prime}igvee_{j=1}^{i-1}A_{\scriptscriptstyle j}^{\prime}\quad(n\geqq i>1)$$
 $A_{\scriptscriptstyle n+1}^{\prime\prime}=\Omegaigvee_{i=1}^{n}A_{\scriptscriptstyle i}^{\prime\prime}$

we get $\pi_0'' = \{A_1'', \dots, A_n'', A_{n+1}''\}.$

Let π' be any refinement of π'_0 ; $\pi' \in \Pi$

$$\pi' = \{B_{1,1}, \cdots, B_{1,n_1}; \cdots; B_{n,1}, \cdots, B_{n,n_n}; B_{n+1,1}, \cdots, B_{n+1,n_{n+1}}\}.$$

Choose $\pi'' = \pi' \vee \pi_0$ in Π . Then we consider three parts in π'' :

- (I) Those sets $B_{i,j}$ of π' which can also be taken in π'' : i.e.: which are already part of one A_k . This part cancels in $x_{\pi'} x_{\pi''}$.
- (II) Those sets $B_{i,j}$ of π' which are in more than one A_k . As sets in π'' we have of course to choose $B_{i,j} \cap A_k (k = 1, \dots, n)$.
- (III) For those $B_{n+1,j}$, which are in more than one A_k , we take also $B_{n+1,j} \cap A_k(k=1,\cdots,n)$ in π'' .

We have:

$$\begin{split} q(x_{\pi'} - x_{\pi''}) &= q\Big(\sum_{(\text{III})} \frac{F(B_{i,j})}{\mu(B_{i,j})} \chi_{B_{i,j}} - \sum_{(\text{III})} \sum_{k=1}^n \frac{F(B_{i,j} \cap A_k)}{\mu(B_{i,j} \cap A_k)} \chi_{B_{i,j} \cap A_k}\Big) \\ &+ q\Big(\sum_{(\text{IIII})} (\text{the same})\Big) \\ &\leq \sum_{(\text{III})} q\Big(\sum_{k=1}^n \Big(\frac{F(B_{i,j})}{\mu(B_{i,j})} - \frac{F(B_{i,j} \cap A_k)}{\mu(B_{i,j} \cap A_k)}\Big) \chi_{B_{i,j} \cap A_k}\Big) \\ &+ \sum_{(\text{IIII})} (\text{the same}) \\ &\leq \sum_{(\text{III})} p\Big(\frac{F(B_{i,j})}{\mu(B_{i,j})} - \frac{F(B_{i,j} \cap A_i)}{\mu(B_{i,j} \cap A_i)}\Big) \mu(B_{i,j} \cap A_i) \\ &+ \sum_{(\text{III})} \sum_{k \neq i} p\Big(\frac{F(B_{i,j})}{\mu(B_{i,j})} - \frac{F(B_{i,j} \cap A_k)}{\mu(B_{i,j} \cap A_k)}\Big) \mu(B_{i,j} \cap A_k) \end{split}$$

$$\begin{split} &+\sum\limits_{(111)}\sum\limits_{k=1}^{n}p\Big(\frac{F(B_{n+1,j})}{\mu(B_{n+1,j})}-\frac{F(B_{n+1,j})\cap A_{k})}{\mu(B_{n+1,j}\cap A_{k})}\Big)\mu(B_{n+1,j}\cap A_{k})\\ =&:(1)+(2)+(3).\end{split}$$

We remark that, when E, G are arbitrary in Σ , $\mu(E)>0$, $\mu(G)>o$, we have:

$$\begin{split} \frac{F(E)}{\mu(E)} &= \frac{F(G)}{\mu(G)} + \frac{\mu(G)F(E) - F(G)\mu(E)}{\mu(G)\mu(E)} \\ &= \frac{F(G)}{\mu(G)} + \frac{F(E\backslash G)}{\mu(E)} - \frac{F(G\backslash E)}{\mu(E)} - \frac{F(G)\mu(E\backslash G)}{\mu(E)\mu(G)} + \frac{F(G)\mu(G\backslash E)}{\mu(E)\mu(G)} \;. \end{split}$$

Now, here, we put $E = B_{i,j}$, $G = B_{i,j} \cap A_i$. We can suppose $\mu(B_{i,j}) > 0$, $\mu(B_{i,j} \cap A_i) > 0$, since we consider only partitions, μ -a.e.. Hence:

$$\begin{split} p\Big(\frac{F(B_{i,j})}{\mu(B_{i,j})} - \frac{F(B_{i,j} \cap A_i)}{\mu(B_{i,j} \cap A_i)}\Big) \\ & \leq \frac{|F|_p(B_{i,j} \Delta(B_{i,j} \cap A_i))}{\mu(B_{i,j})} + p\Big(\frac{F(B_{i,j} \cap A_i)}{\mu(B_{i,j} \cap A_i)}\Big) \cdot \frac{\mu(B_{i,j} \Delta(B_{i,j} \cap A_i))}{\mu(B_{i,j})} \;, \end{split}$$

where $|F|_p$ denotes the *p*-variation on F. So

$$\begin{split} (1) & \leqq \sum_{\langle \text{II} \rangle} \left[M_p \mu(B_{i,j} \triangle (B_{i,j} \cap A_i)) \, + \, M_p \mu(B_{i,j} \triangle (B_{i,j} \cap A_i)) \right] \\ & \leqq \sum_{i=1}^n 2 M_p \mu(A_i'' \triangle (A_i'' \cap A_i)) \\ & < \frac{1}{12} \; . \end{split}$$

Now:

$$\begin{split} &(2) \leqq 2M_{p} \sum_{i=1}^{n} \sum_{k \neq i} \mu(B_{i,j} \cap A_{k}) \\ &\leqq 2M_{p} \sum_{i=1}^{n} \sum_{k \neq i} \mu(A_{i}^{\prime\prime} \cap A_{k}) \\ &\leqq 2M_{p} \cdot n \cdot \frac{1}{24nM_{p}} \Big(\text{since } \bigcup_{k \neq i} A_{i}^{\prime\prime} \cap A_{k} \subset A_{i}^{\prime\prime} \backslash A_{i} \Big) \\ &= \frac{1}{12} \ . \\ &(3) \leqq 2M_{p} \mu(A_{n+1}^{\prime\prime}) \\ &= 2M_{p} \mu \Big(\Omega \backslash \bigcup_{i=1}^{n} A_{i}^{\prime} \Big) \\ &\leqq 2M_{p} \cdot n \Big(\frac{1}{24.n.M_{p}} \Big) \\ &= \frac{1}{12} \ . \end{split}$$

Thus $q(x_{\pi} - x_{\pi''}) < 1/4$.

We have also by (1): $q(x_{\pi''} - x_{\pi_0}) < 1/4$.

Now $\pi_0'' \subset \bigcup_n \sum_n$. Hence there exists a $n_0 \in N$ such that $\pi_{n_0} \ge \pi_0''$. So $q(x_{\pi_{n_0}} - x_{\pi_0}) < 1/2$.

When $\pi_n \geq \pi_{n_0}$, we have also $\pi_n \geq \pi_0''$. Hence also $q(x_{\pi_n} - x_{\pi_0}) < 1/2$. Hence $q(x_{\pi_n} - x_{\pi_{n_0}}) < 1$, $\forall n \geq n_0$. So $(x_{\pi_n})_{n=1}^{\infty}$ is L_{Λ}^1 -Cauchy.

 \leftarrow Let $\sum = \sigma(\bigcup_{n=1}^{\infty} \pi_n)$ where (π_n) is an increasing sequence of finite partitions of Ω . Supposing $(x_\tau)_{\pi \in H}$ not L_x^1 -Cauchy, we have: there is a continuous seminorm q on $L_x^1(\mu)$ such that for every $\pi \in H$, $\exists \pi'$, $\pi'' \in H$, π' , $\pi'' \geq \pi$, with $q(x_{\pi'} - x_{\pi''}) > 2$. Let π''' be π' or π'' according to $q(x_\pi - x_{\pi'''}) > 1$.

We start the induction with $\pi=\pi_i$; we call π''' now: π_i' . Then for $\pi=\pi_i'\vee\pi_i$; we call π''' now: π_i' , and so on. Hence we have $(x_{\pi_i'})_{k=1}^{\infty}$ with $\pi_{2n}''=\pi_n'$

$$\pi''_{2n-1} = \pi_n \vee \pi'_{n-1}$$

for every $n=1, 2, 3, \cdots$; It is trivial that $(x_{\pi'_k})_{k=1}^{\infty}$ is not L_X^1 -Cauchy, although $\sigma(\bigcup_{k=1}^{\infty} \pi'_k) = \sum_{k}$, since $\pi''_{2n} = \pi'_n \ge \pi_n$ for every n in N.

So, the two assertions are equivalent. In this case, since $(x_{\pi})_{\pi \in \mathcal{I}}$ is L^1_X . Cauchy, we have, for every continuous seminorm p on X, $\exists \pi_0 \in \mathcal{I}$ such that for any $\pi \geq \pi_0$:

$$q(x_{arepsilon} - x_{arepsilon_0}) = \int_{arOmega} p(x_{arepsilon} - x_{arepsilon_0}) < rac{1}{4} \; .$$

Let $(\pi_n)_{n=1}^{\infty}$ and $(\pi'_n)_{n=1}^{\infty}$ be two increasing sequences, consisting of finite partitions of Ω into elements of Σ , such that $\Sigma = \sigma(\bigcup_n \pi_n) = \sigma(\bigcup_n \pi'_n)$. From the first part of the proof of this lemma, and (1), we deduce: There is a π_{n_0} such that

$$(2) \qquad \qquad \text{for every} \quad n \geq n_0 \text{: } q(x_{\pi_n} - x_{\pi_0}) < \frac{1}{2}$$

and a π'_{n_1} such that for every $n \geq n_1$: $q(x_{\pi'_n} - x_{\pi_0}) < 1/2$.

Choose $m = \max(n_0, n_1)$. So, there is a m in N such that for every $n \ge m$: $q(x_{\bar{\tau}_n} - x_{\pi'_n}) < 1$, for every p. Hence:

$$L_X^1 - \lim_{n \to \infty} (x_{r_n} - x_{r'_n}) = 0$$
.

Now suppose that there is at least one sequence $(x_{\pi_n})_{n=1}^{\infty}$ with $\sigma(\bigcup_n \pi_n) = \sum_n$, such that there is a x in $L_x^1(\mu)$ for which $L_x^1 - \lim_n x_{\pi_n} = x$. Let $(x_{\pi_n})_{n=1}^{\infty}$ be another sequence with $\sum_n = \sigma(\bigcup_n \pi_n')$. It is immediate that $F(A) = \int_A x d\mu$, for every A in

 $\bigcup_n \pi_n$. Hence $F(A) = \lim_n \int_A x_{\pi_n} d\mu$, for every A in $\bigcup_n \pi_n$. Since $A_g(F)$ is bounded we have that $F(A) = \lim_n \int_A x_{\pi_n} d\mu$, for every A in \sum . Thus $F(A) = \int_A x d\mu$, for every A in \sum . So: $L_X^1 - \lim_n x_{\pi'_n} = x$, and $L_X^1 - \lim_{\pi \in \Pi} x_\pi = x$.

THEOREM 1. Let X be a sequentially complete l.c.s.. The following assertions are equivalent:

- (1) X has (RNP).
- (2a) Every uniformly bounded martingale $(x_n, \sum_n)_{n=1}^{\infty}$ with $\sum_n = 1$ $\sigma(\bigcup_{n} \sum_{n})$ separable, is L_{X}^{1} -convergent.
- (2b) Every uniformly bounded and finitely generated martingale $(x_n, \sum_n)_{n=1}^{\infty}$ is L_X^1 -convergent.
- (2c) Every uniformly bounded martingale $(x_i, \sum_i)_{i \in I}$, with $\sum_{i \in I}$ $\sigma(\bigcup_{i} \sum_{i})$ separable, is L_{X}^{1} -convergent.
- (2d) Every uniformly bounded and finitely generated martingale $(x_i, \sum_i)_{i \in I}$ with $\sum = \sigma(\bigcup_i \sum_i)$ separable, is L_X^1 -convergent.

This proof is now done in the same way as in Banach spaces; We use now Lemmas 3 and 4.

REMARKS. (1) When the property "separable" is deleted in the definition of (RNP) we can prove in Theorem 1 only $(1) \Leftrightarrow (2c) \Leftrightarrow (2d)$ (without the assumption \sum separable). This we can do if X is supposed to be quasi-complete (to be sure of the existence of the limitmeasure). However Theorem 1 is much more useful as will be seen later on.

(2) When the property " $A_{\Omega}(F)$ bounded" in the definition (RNP) is changed into "F bounded variation and μ -continuous", we can prove Theorem 1 in the same way, but now using L_x^1 -bounded and uniformly integrable martingales instead of uniformly bounded martingales: However Theorem 1 is more interesting in connection with σ -dentability. (See Theorem 2.)

We are now going to characterize σ -dentability in terms of martingale-Cauchy-properties.

THEOREM 2. Let X be a sequentially complete l.c.s.. The following assertions are equivalent:

- (3) X is σ -dentable.
- (4a) Every uniformly bounded and finitely generated martingale $(x_n, \sum_n)_{n=1}^{\infty}$ is L_X^1 -Cauchy.
- (4b) Every uniformly bounded martingale $(x_n, \sum_n)_{n=1}^{\infty}$ is L_x^1 Cauchy.

REMARKS. (1) As will follow from the proof of this theorem, we may also use in (4a) and (4b) martingales on a separable measure space only. We may even restrict the martingales to be defined on ([0, 1], B[0, 1], λ)(B[0, 1] = the Borelsets in [0, 1] and λ denoting Lebesgue measure).

(2) In (4a) and (4b) we may also use martingales with an arbitrary index-set I. This is trivial, since we are looking at Cauchy-properties.

Proof of Theorem 2.

 $(4) \Rightarrow (3)$. This a adaptation of the proof of Huff [7] to our case: Now supposing X not being σ -dentable, we can construct a seminorm-independent uniformly bounded and finitely generated martingale, which is not L_X^1 -Cauchy.

 $(3)\Rightarrow (4a).$ An application of Rieffel's theorem to our case shows that $(x_\pi)_{\pi\in\mathcal{T}}$ is L^1_X -Cauchy, with

$$x_{\pi} = \sum_{A \in \pi} \frac{\lim_{n} \int_{A} x_{n} d\mu}{\mu(A)} \chi_{A}$$

where $(x_n, \sum_n)_{n=1}^{\infty}$ is the given uniformly bounded and finitely generated martingale, and where $\Pi = \{\pi \mid | \pi \text{ is a finite partition of } \Omega \text{ into elements of } \Sigma\}.$

Then Lemma 4 gives the result.

The proof of $(4a) \Leftrightarrow (4b)$ is easily made.

COROLLARY. Let X be a quasi-complete (BM)-space. Then all the assertions in Theorem 1 are equivalent with all the assertions in Theorem 2 (and equivalent with dentability).

Proof. This is easily seen by the result of Saab [10].

We also see that in a quasi-complete (BM)-space, we get an equivalent formulation of (RNP), by deleting the word "separable" in our definition.

The proof of the following lemma is immediate:

LEMMA 5. Let $(x_n)_{n=1}^{\infty}$ be a sequence of step-functions which is $L_{X}^{1}(\mu)$ -Cauchy. Then there is a martingale $(y_n, \sum_n)_{n=1}^{\infty}$, such that

$$L_{X}^{1}(\mu) - \lim_{n \to \infty} (y_{n} - x_{n}) = 0$$
.

From this lemma and Theorems 1 and 2 we have now:

THEOREM 3. σ -dentability is equivalent with (RNP)(in sequentially complete l.c.s.) iff every uniformly bounded L_x^1 -Cauchy sequence of (step-) functions in $L_x^1(\Omega, \sum, \mu)$ is L_x^1 -convergent. ((Ω, \sum, μ): any separable positive finite measure space.)

Hence the Radon-Nikodym-property's equivalence with σ -dentability depends critically on the sequential completeness of $L_X^1(\mu)$.

For the remainder of this article, we intend to prove that there is a sequentially complete l.c.s. X for which L^1_X is not sequentially complete: We shall even show that there is a Schur space X for which $L^1_{X,\sigma(X,X')}$ is not sequentially complete. This is done by proving that these X are σ -dentable and have not (RNP). We first recall the definition of a weak-Radon-Nikodym-Banach space.

DEFINITION. Let X be a Banach space. X is said to have the weak-Radon-Nikodym property (WRNP), w.r.t. the measure space (Ω, \sum, μ) , if for every X-valued measure F on \sum , which is μ -continuous and of finite variation, there is a Pettis-integrable function $f \colon \Omega \to X$ such that

$$F(A) = P - \int_A f d\mu$$

for every A in \sum . (Here $P - \int_A f d\mu$ denotes the Pettis-integral of f over A.)

The following lemma is immediately seen:

LEMMA 6. Let the Banach space X be weakly sequentially complete. If X, $\sigma(X, X')$ has (RNP) then X has (WRNP) w.r.t. separable measure spaces.

We denote by JH the space constructed by Hagler [6].

LEMMA 7 ([1], [2], [6]). JH' is a Schur space without (RNP). L^1 is a weakly sequentially complete Banach space without (RNP). Every Schur space is trivially weakly sequentially complete.

In Theorems 4 and 5, X denotes a weakly sequentially complete Banach space without (RNP).

THEOREM 4. There is a closed separable subspace Y of X such that Y, $\sigma(Y, Y')$ is σ -dentable and has not (RNP).

Proof. Since X does not have (RNP), there exists a closed

separable subspace Y of X without (RNP), hence without (RNP)w.r.t. ([0, 1], B[0, 1], λ). (Here B[0, 1] denotes the class of the Borel subset of [0, 1] and λ denotes Lebesgue measure on [0, 1]). Since Y is separable, Y has not (WRNP)w.r.t. ([0, 1], B[0, 1], λ). By Lemma 6: Y, $\sigma(Y, Y')$ has not (RNP)w.r.t. ([0, 1], B[0, 1], λ). Furthermore Y, $\sigma(Y, Y')$ is sequentially complete, and by [5] (Cor. 3 of Theorem 1) is σ -dentable.

From Theorems 1, 2 and 4, we have now:

Theorem 5. There is a sequentially complete l.c.s. X such that L_1 is not sequentially complete.

REFERENCES

- 1. J. Diestel, Geometry of Banach Spaces, Selected topics, Lecture notes in Mathematics, 485, 1975, Springer Verlag,-Berlin.
- 2. J. Diestel and J. J. Uhl, The Radon-Nikodym-property for Banach space valued measures, Rocky Mountain Math. J., 6, 1, (1976), 1-46.
- 3. N. Dinculeanu, Vector Measures, Pergamon Press, 95, 1967.
- 4. R. E. Edwards, Functional Analysis, Theory and applications, Holt, Rinehart and Winston, 1965.
- 5. L. Egghe, On the Radon-property, and related topics in locally convex spaces, Proceedings of the conference on Vector Space Measures-Dublin, 1977. Lecture Notes in mathematics n° 645, 77-90, Springer-Verlag, 1978.
- 6. J. Hagler, A counterexample to several questions about Banach spaces, Studia Mathematica, T. LX (1977), 289-308.
- 7. R. E. Huff, Dentability and the Radon-Nikodym-property, Duke Math. J., 41 (1974), 111-114.
- 8. H. Maynard, A geometric characterization of Banach spaces possessing the Radon-Nikodym-property, Trans. Amer. Math. Soc., 185 (1973), 493-500.
- 9. K. Musiał, The weak Radon-Nikodym-property in Banach spaces, (preprint).
- 10. E. Saab, Sur la propriété de Radon-Nikodym dans les espaces localement convexes de type (BM), C. R. Acad. Sci. Paris, 283 (1976), 899-902.
- 11. H. H. Schaefer, *Topological vector spaces*, Graduate texts in Mathematics, **3** (1971), Springer Verlag,-Berlin.

Received November 2, 1978 and in revised form March 8, 1979. I thank Dr. J. A. Van Casteren for his help during the preparation of this paper.

LIMBURGS UNIVERSITAIR CENTRUM UNIVERSITAIRE CAMPUS B-3610 DIEPENBEEK (Belgium)