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A NOTE ON GAP-FREQUENCY PARTITIONS

D. M. BRESSOUD

George Andrews has introduced gap-frequency partitions
in order to interpret the Rogers-Selberg g-series identities
related to the modulus seven. In this paper, we give a direct
derivation of the generating function for such partitions.
Our approach makes it much easier to extend and generalize
the notion of gap-frequency partitions.

L. J. Rogers is known today primarily for his discovery of the
Rogers-Ramanujan identities:
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These analytic identities came to prominence largely because of P. A.
MacMahon’s combinatorial interpretation of them:

(8) For r =1 or 2, and any positive integer =, the partitions
of n into parts not congruent to 0, ==» mod 5 are equi-
numerous with the partitions of % into parts with differ-
ence at least two between parts, and in which one appears
as a part at most » — 1 times.

Statement (3) can be proved from equations (1) and (2) by viewing
each side of the equations as a generating function (see [3], § 19.13).

It is less well known that Rogers also discovered similar identities
for the modulus 7:
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Equations (4) and (6) first appeared in [4]. All three are proved by
Rogers in [5]. A. Selberg rediscovered them in [6].

There is also a combinatorial theorem for the modulus seven.
It is a special case of a combinatorial theorem by B. Gordon, [2],
which was stated for all odd moduli greater than or equal to five.

(7) For »=1,2 or 3, and any positive integer =, the parti-
tions of m» into parts not congruent to 0, +» mod7 are
equinumerous with the partitions of » in which each part
appears at most twice, the difference between nonidentical
parts is at least two if either appears twice, and one
appears as a part at most » — 1 times.

While many proofs of statement (7) exist, until recently there
was no proof which showed (7) as a direct consequence of equations
(4)-(6). It was to supply such a proof that George Andrews intro-
duced the notion of gap-frequency partitions (abbreviated g-f parti-
tions) in [1]. The purpose of this paper is to provide a simpler
derivation of the generating function for g-f partitions. This yields
a more direct proof that equations (4)-(6) imply statement (7), and
also leads to certain natural generalizations of g-f partitions.

The generating function for g-f partitions.

DEFINITION. A partition = is said to be a gap-frequency (or g-f)
partition if whenever a summand s appears exactly ¢ times, the next
. larger part is at least s + ¢, and if it is exactly s + ¢ it can appear
at most t times.

ExAMPLE. 1 +44+4+4+44+ 747+ 7is a g-f partition. Neither
1+3+383+3+6+6+6+6nr2+3+5+5+5+7+7isag-f
partition.

DEFINITION. For positive integers », x and =, let S, . (n) denote
the number of g-f partitions of # in which no part appears more
than 2 times and one appears at most » — 1 times.

THEOREM. For positive integers r, * and n and for |q| < 1, let
M(ml, . “y mz) = M = Z?:l j2<”21’j> + Zlgi<5;z 'ijm,;mj- Then
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For fixed values of m,, - - -, m,, the left side of (8) can be summed
using Euler’s formula:



A NOTE ON GAP-FREQUENCY PARTITIONS 3

& q(’?)a"‘
=0 (q; Qm

(9) =(—0; @
It is then a straightforward exercise to verify that when xz = 2 the
right-hand sides of equations (4)-(6) are obtained.

Note that S, .,(n) counts those partitions described in the second
part of (7). The theorem is sufficient to prove that equations (4)-
(6) imply statement (7).

Proof of the theorem.

DEFINITION. A partition with attributes is a partition in which
parts of equal value may be distinguished by some attribute or
characteristic. For example, parts may be colored red, blue, green,
ete. A partition with x attributes is a partition in which at most
x attributes or characteristics are used. In a partition with z at-
tributes, each part will be denoted by an ordered pair, (d;, a;), where
d, is the value of the part and a, is its attribute, 1 < a, < z.

The generating function for partitions into exactly m parts, each
part greater than or equal to b is given by
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is the generating function for partitions with x attributes such that
for 1 £ 1 < x, there are exactly m,; parts with attribute ¢, and each
such part is greater than or equal to b,.

DerINITION. Let R,(m, --., m,; n) denote the number of parti-
tions of » with x attributes such that for 1 < 7 < « there are exactly
m, parts with attribute 7, each part with attribute ¢ is divisible by
1, and all parts with attribute ¢ = » are greater than or equal to 21.

LEMMA 1.
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Proof. This lemma follows from the discussion given above and
the definition of R.(m,, ---, m,; n).

DeFINITION. Let S,(m, ---, m,; n) denote the number of g-f
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partitions of n in which no part appears more than 2 times, one
appears at most » — 1 times, and for 1 < 7 < 2, exactly m, different
integers appear ¢ times.

LEMMA 2. Let M(m,, - -, m;) = M= 35, jz<"2"")+21gi<,~gz ijmam;.
Then R.(m,, ---, m;n — M) = 8.(m, ---, m,;n).

Before proving Lemma 2, we note that it and Lemma 1 imply
the theorem, since
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Proof of Lemma 2. We shall prove this lemma by establishing
a one-to-one correspondence between partitions counted by R.(m,, ---,
m,; n — M) and those counted by S,(m,, ---, m,; n).

Consider a partition counted by R,.(m,, ---, m,; n — M) with parts
given by (d,, @), (d;, a,), --- and with the parts ordered from left to
right such that if d;/a, < d,/a,, then (d;, a;) precedes (d,, a,) and if
d;/a; = d./a, and a; > a,, then (d;, a;) precedes (d,, a.). Clearly there
is a unique such ordering of the ordered pairs.

This partition of » — M with « attributes is transformed into a
partition of » with x attributes if each ordered pair (d;, a;) is replaced
by the pair (e; a;) where

i—1
61=d1+2a1ak.
k=1
We claim that our new partition is a partition of n. The total

amount which has been added to our partition is
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which is the second elementary symmetric function of the numbers
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which is equal to
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This proves our claim.

Observe that a; divides e;, and for each

Equality occurs when d;/a; = d;_,/a,_,, which implies that a,_, = a,.
Also, if a, = r, then e/a, = d,/a, = 2. Thus if each part (e, a;) is
replaced by a; equal parts of value ¢;/a;, we have a partition counted
by S.(m, ---, m,;n). This procedure is uniquely reversible (equal
parts are added together and the resulting part is given the attri-
bute equal to the number of parts which were added, Xicia;a, is
then subtracted from the value of the \'th part), and so the one-to-
one correspondence is established.

This concludes the proof of Lemma 2, and so also the proof of

the theorem.

A generalization.

DEFINITION. A partition = is said to be a k-fold g-f partition
if whenever a summand s appears exactly ¢ times, then the next
larger part is at least s + kt, and if it is exactly s -+ ki, it can
appear at most ¢ times.

DEFINITION. For positive integers », z, & and =, let S, ,.(n)
denote the number of k-fold g-f partitions of » in which no part
appears more than x times and one appears at most » — 1 times.

By the method used above to find the generating function for
S, .(n) = S, ,.(n), it can be readily verified that
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Since S, (n) counts the number of partitions of » into parts
with minimal difference %, including at most » — 1 ones, we see that
the right sides of the Rogers-Ramanujan identities are special cases
of the generating function for S, .(n).
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