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A NOTE ON GAP-FREQUENCY PARTITIONS

D. M. BRESSOUD

George Andrews has introduced gap-frequency partitions
in order to interpret the Rogers-Selberg ^-series identities
related to the modulus seven. In this paper, we give a direct
derivation of the generating function for such partitions.
Our approach makes it much easier to extend and generalize
the notion of gap-frequency partitions.

L. J. Rogers is known today primarily for his discovery of the
Rogers-Ramanujan identities:
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These analytic identities came to prominence largely because of P. A.
MacMahon's combinatorial interpretation of them:

( 3 ) For r = 1 or 2, and any positive integer n, the partitions
of n into parts not congruent to 0, ± r mod 5 are equi-
numerous with the partitions of n into parts with differ-
ence at least two between parts, and in which one appears
as a part at most r — 1 times.

Statement (3) can be proved from equations (1) and (2) by viewing
each side of the equations as a generating function (see [3], § 19.13),

It is less well known that Rogers also discovered similar identities
for the modulus 7:

(4) Π (1 - g")-1 = Σ
nΦQ, ±1 (mod 7)

oo

Π (1 - <iΎι = ΣΣ ^τ^
, ±2 (mod 7) Vd 9 H

( 6 ) Π (1 - Q")-1 = Σ , fm\ (-Q2m+1)
n^O, ±3 (mod?) V± > H Jm



2 D. M. BRESSOUD

Equations (4) and (6) first appeared in [4]. All three are proved by
Rogers in [5]. A. Selberg rediscovered them in [6].

There is also a combinatorial theorem for the modulus seven.
It is a special case of a combinatorial theorem by B. Gordon, [2],
which was stated for all odd moduli greater than or equal to five.

(7) For r = 1, 2 or 3, and any positive integer n, the parti-
tions of n into parts not congruent to 0, ± r mod 7 are
equinumerous with the partitions of n in which each part
appears at most twice, the difference between nonidentical
parts is at least two if either appears twice, and one
appears as a part at most r — 1 times.

While many proofs of statement (7) exist, until recently there
was no proof which showed (7) as a direct consequence of equations
(4)-(6). It was to supply such a proof that George Andrews intro-
duced the notion of gap-frequency partitions (abbreviated g-f parti-
tions) in [1]. The purpose of this paper is to provide a simpler
derivation of the generating function for g-f partitions. This yields
a more direct proof that equations (4)-(6) imply statement (7), and
also leads to certain natural generalizations of g-f partitions.

The generating function for g-f partitions*

DEFINITION. A partition π is said to be a gap-frequency (or g-f)
partition if whenever a summand s appears exactly t times, the next
larger part is at least s + t, and if it is exactly s + t it can appear
at most t times.

EXAMPLE. 1 + 4 + 4 + 4 + 7 + 7 + 7 is a g-f partition. Neither
1 + 3 + 3 + 3 + 6 + 6 + 6 + 6 nor 2 + 3 + 5 + 5 + 5 + 7 + 7 is a g-f
partition.

DEFINITION. For positive integers r, x and n, let Sr,Λ(n) denote
the number of g-f partitions of n in which no part appears more
than x times and one appears at most r — 1 times.

T H E O R E M . For positive integers r, x and n and for \q\ < 1, let

M(mlf -, mx) = M = Σ;=ii2(™y) + Σi*i<;έ« ijm.m^ Then

For fixed values of m2, .. , mx, the left side of (8) can be summed
using Euler's formula:
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( 9 )

It is then a straightforward exercise to verify that when x = 2 the
right-hand sides of equations (4)-(6) are obtained.

Note that Sr>2(n) counts those partitions described in the second
part of (7). The theorem is sufficient to prove that equations (4)-
(6) imply statement (7).

Proof of the theorem*

DEFINITION. A partition with attributes is a partition in which
parts of equal value may be distinguished by some attribute or
characteristic. For example, parts may be colored red, blue, green,
etc. A partition with x attributes is a partition in which at most
x attributes or characteristics are used. In a partition with x at-
tributes, each part will be denoted by an ordered pair, (di9 at), where
di is the value of the part and α* is its attribute, 1 <; at ̂  x.

The generating function for partitions into exactly m parts, each
part greater than or equal to δ is given by

It follows that

is the generating function for partitions with x attributes such that
for 1 <; i <; xf there are exactly m* parts with attribute i, and each
such part is greater than or equal to bt.

DEFINITION. Let Rr(mu — ,ma\n) denote the number of parti-
tions of n with x attributes such that for 1 ̂  i ^ x there are exactly
mi parts with attribute i, each part with attribute i is divisible by
i9 and all parts with attribute i ^ r are greater than or equal to 2i.

L E M M A 1.

Qm>l-\-2m2-\ \- (r — 1)mr_ι
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Proof. This lemma follows from the discussion given above and
the definition of Rr(mlf , m*; n).

DEFINITION. Let Sr(mu .., mx; n) denote the number of g-f
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partitions of n in which no part appears more than x times, one
appears at most r — 1 times, and for 1 <; ί ^ x, exactly mt different
integers appear i times.

LEMMA 2. Let M(mlf..., m.) = AT = Σ;=i

Then Rr(mu , mx; n — M) = Sr(m1, , m,; w)

Before proving Lemma 2, we note that it and Lemma 1 imply
the theorem, since

Σ Sr(mlf . . . , m.;

Σ Σ

*i. ..m^o (q; q)mi . . . (q; q)mχ

Proof of Lemma 2. We shall prove this lemma by establishing
a one-to-one correspondence between partitions counted by Rr(mu ,
mx; n — M) and those counted by Sr(mu , mx; n).

Consider a partition counted by Rr(mu - -, mx; n — M) with parts
given by (dlf aλ), (d2, α2), . and with the parts ordered from left to
right such that if dχ/aλ < dμ/aμf then (dλ, aλ) precedes (dμt aμ) and if
dχ/aλ = dμ\aμ and aλ > aμ, then (dχ9 aλ) precedes (dμ, aμ). Clearly there
is a unique such ordering of the ordered pairs.

This partition of n — M with x attributes is transformed into a
partition of n with x attributes if each ordered pair (dx, aλ) is replaced
by the pair (eλf aλ) where

λ-l

ex — cίx -j- /) axa^ .

We claim that our new partition is a partition of n. The total
amount which has been added to our partition is

mi + . + m- λ-l
NT1 X1 ^ ~

s i /1 axQ/jg ,

which is the second elementary symmetric function of the numbers
Till 7ϊl2 Ίffltx

which is equal to
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+ Σ ijm.mj = M .

This proves our claim.
Observe that ax divides eλ9 and for each λ

Equality occurs when dχ/aλ = dλ_Ja^19 which implies that aχ_t ̂  aλ.
Also, if aλ ^ r, then eja1 = dja1 ^ 2. Thus if each part (eλ, aλ) is
replaced by aλ equal parts of value eλ/aλ9 we have a partition counted
by Sr(mu •• ,mx;n). This procedure is uniquely reversible (equal
parts are added together and the resulting part is given the attri-
bute equal to the number of parts which were added, ^JcZ\axak is
then subtracted from the value of the λ'th part), and so the one-to-
one correspondence is established.

This concludes the proof of Lemma 2, and so also the proof of
the theorem.

A generalization*

DEFINITION. A partition π is said to be a k-fold g-f partition
if whenever a summand s appears exactly t times, then the next
larger part is at least s + kt, and if it is exactly s + kt9 it can
appear at most t times.

DEFINITION. For positive integers r, x, k and n, let SriXjk(n)
denote the number of k-fo\d g-f partitions of n in which no part
appears more than x times and one appears at most r — 1 times.

By the method used above to find the generating function for
SrtX(n) = Sr,Xtl(n), it can be readily verified that

co ~/c 1/ -}~m^H \-{r-~ϊ)m , _]_+2(rm r + " ή-xmχ)

Σ Sr,Un)q* - ^ Q

Since Sr>ltk(n) counts the number of partitions of n into parts
with minimal difference k9 including at most r — 1 ones, we see that
the right sides of the Rogers-Ramanujan identities are special cases
of the generating function for Sr,Xtk(n).
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