
PACIFIC JOURNAL OF MATHEMATICS
Vol. 89, No. 2, 1980

AN ANALOGUE OF THE WIENER-TAUBERIAN
THEOREM FOR SPHERICAL TRANSFORMS

ON SEMI-SIMPLE LIE GROUPS

ALLADI SITARAM

Let G be a semi-simple connected noncompact Lie
group with finite center and K a fixed maximal compact
subgroup of G. Fix a Haar measure dx on G and let I^G)
denote those functions in Lλ(Gj dx) which are biinvariant
under K. The purpose of this paper is to prove that if
fe /i(G) is such that its spherical Fourier transform (i.e.,
Gelfand transform) / is nowhere vanishing on the maximal
ideal space of /̂ G) and / "does not vanish too fast at oo",
then the ideal generated by / is dense in Ii(G). This gen-
eralizes earlier results of Ehrenpreis-Mautner for G=SL(2,
R) and R. Krier for G of real rank one.

1* Introduction* Let / be an ZΛfunction on R (or more
generally on a locally compact abelian group). Then the celebrated
Wiener-Tauberian theorem says that if the Fourier transform / is a
nowhere vanishing function then the ideal generated by / is dense
in L\R). In [1] Ehrenpreis and Mautner observe that the cor-
responding result is not true if one considers the commutative
Banach algebra of if-biinvariant functions on noncompact semi-
simple Lie group G, where K is a maximal compact subgroup of G.
More precisely, let G = SL(2, R) i.e., the group of 2x2 real matrices
of determinant 1, and

ί / cos θ sin θ\ )
K = SO(2) = 0 < θ < 2π and let

(\-sin0 cos#/ ~~ ~~ )

IX{G) denote the commutative Banach algebra of if-biinvariant
Z/-functions on G. For feI1(G)f let / denote its spherical Fourier
transform (see §2). Then Ehrenpreis and Mautner observed that
there exist functions fel^G) such that / does not vanish anywhere
on the maximal ideal space of I^G) and yet the algebra generated
by / is not dense in I^G). However they were able to show that
if / is non vanishing and f 'does not go to zero too fast at oo'
then the ideal generated by / is indeed dense in IX{G). (Theorems
6 and 7 of [1].) These results have been generalized by R. Krier
[6] in his thesis when G is a noncompact connected semi-simple Lie
group of real rank 1. (The author does not know whether Krier's
results have been published.) The purpose of this note is to prove
a theorem in the spirit of Theorem 7 of [1] without any restriction
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on the rank of G. While the basic technique we use is that of [1],
we have to use the more recent results of Trombi-Varadarajan [7]
and some observations of Gangolli-Warner [4] to prove our main
theorem. Indeed in [3] Gangolli predicts that a theorem of the
Trombi-Varadarajan type would yield a Tauberian type theorem.

2* Notation and preliminaries* (For any unexplained notation
and terminology please see [5].) G will denote a connected non-
compact semi-simple Lie group with finite center and K a fixed
maximal compact subgroup of G. Fix an Iwasawa decomposition
G = KAN and let α be the Lie algebra of A. Let α* be the real
dual of a and α* its complexification. Let p be the half-sum of the
positive roots for the adjoint action of α on g (where g is the Lie
algebra of G). The Killing form will induce a form <•,•> on a*xa*.
Then, as is well known, <•,•> is positive definite on a*xa*. Extend
the form <-,-> to a bilinear form on a*xaf. This bilinear form
also will be denoted by <•,•>. Let W be the Wey 1 group of the
symmetric space G/K. Then there is a natural action of W on α,
a* and α* and < , ) is invariant under the action of W.

For each λ e α * let φλ be the elementary spherical function as-
sociated with λ. (Recall that φλ is given by the formula, φχ(x) =
f eM-p)an.k))dk _ s e e [5] f o r details.) Then it is known that φx = φ'λ,
J K

iff Is e W with sX = λ'. Let F = {λ; φλ is a bounded function on G}.
Then it is known (a theorem of Helgason and Johnson) that:

F = α* + iCp where Cp = convex hull of {sp: s e W] .

Let P(a*) be the symmetric algebra over a*. Then each ueP(a*)
gives rise to a differential operatior d(u) on αf.

Let 1(6?) be the set of all complex valued spherical functions on
G, i.e., I(G) = {f;f(Kxk2) = f(x), kl9 k2eK,xeG}. Fix a Haar measure
dx on G and let JX(G) = I(G)ΠL\G). Then it is well known that
/i(G) is a commutative Banach algebra under convolution (and that
the maximal ideal space of I^G) can be identified with F/W). We
shall denote by I°°(G) the space of C°°-spherical functions and by
IΓ(G) the space of compactly supported functions in I°°(G).

For fel^G) define its spherical Fourier transform, / o n F by:

/(λ) = ( f(x)φ-λ(x)dx , λ 6 F .

Then it is known that / is a TV-invariant bounded function on F,
holomorphic in F\ = interior of i*7) and continuous on F. Also
(f*g)~ = f-g for /, gel^G) where /*# is the convolution of / and g
and is given by
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(f*9)(y) = ί f ( y χ - 1 ) g ( x ) d x , yeG.
JG

If felΓ(G) then / is defined on all of af (and in fact will be an
entire TF-invariant function on a* satisfying the Paley-Wiener
growth condition—see [2]).

We shall now introduce a space of rapidly decreasing functions
in I°°(G) which we will denote by SX(G). (This is the so called
L^Harish-Chandra-Schwartz space of spherical functions):

Let xeG. Then x = k expX, keK, Xep (g = k + p is the
Cartan decomposition of the Lie algebra g of G). Put σ(x) = \\X\\,
where || || is the norm induced on p by the restriction of the Killing
form. For any left invariant differential operator D on G and any
integer r ^ 0, we define for feI°°(G)

pD>r(f) = supd + σ(X)y\φo(x)\~*\Df(x)\
xeG

where φ0 is the elementary spherical function corresponding to λ = 0.
Define S^G) = {f;feΓ(G) and pD,r(f) < °°Vr, D}. S,(G) becomes a
Frechet-space when equipped with topology induced by the family
of semi norms pDtr. It is known that S1(G)C^I1(G) and IΓ(G)C^S1(G)
are both dense inclusions.

Now let Z{F) be the space of functions f on F satisfying the
following conditions: (i) / is holomorphic in F° and continuous on
Ff (ii) If ue P(at) and I ^ 0 is any integer, then quΛ{f) —
sup^Fθ(l + IMI2)zl(d(w)/)(λ,)| < co, (where | |λ| |2 = ||Λ,x[|

2 + ||λ2||
2, λ —

\ + iλa, \, λ 2 eα* and \W\\2 — <λ<, λ,». Let Z(F) denote the sub-
space of Z(F) consisting of TF-invariant functions. Z(F), Z(F) are
algebras under pointwise multiplication and we topologize them by
the family of semi norms qul. In this topology Z(F), Z{F) are
Frechet spaces. If aeZ(F) define the 'wave packet' ψa on G by:

I w\ J

(I W\ is the order of the Weyl group) .

(c(λ) is the well known c-function of Harish-Chandra and one knows
that c(λ)~1c(—λ)"1 is a continuous function on α* of at most poly-
nomial growth. Further if dμ is the measure on α* defined by
dμ = ITFI^cCλ)"1^—λ)"1^, then one knows that the map/—>/ is an
isometry of 1(G)Γ\L\G) onto L2(a*,dμ)w where the superscript W
indicates Weyl-group invariants in L\a*, dμ)). We are now finally
in a position to state the theorem of Trombi-Varadarajan [7]:

THEOREM 2.1. ( i ) If fe S^G), then f e Z{F).
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(ii) // aeZ(F) then the integral defining the wave packet ψa

converges absolutely and in fact ψa e S^G) and ψa = α.
(iii) The mapf-^f is a topological linear isomorphism of

SAG) onto Z{F).

Before closing this section we introduce some more function
spaces and state a proposition due to Gangolli-Warner [4]. (As the
authors point out in [4] this proposition can be obtained by a
careful examination of the proof of Theorem 2.1 of Trombi-Varada-
rajan.)

Let m, I be nonnegative integers and let us put Zm>ι{F) for the
space of functions f on F such that (i) / is holomorphic in F°, con-
tinuous on F, and invariant under the action of W (ii) If u e P{af)
and degree u <^ m, then

QUf) = sup(l + \\X\\2)ι\{d{u)f){\)\ < oo .
λeFO

Put Zm(F) = C\ι^ZmΛ(F). Then tne following proposition is conta-
ined in Proposition 3.3 and Corollary 3.4 of Gangolli-Warner [4].

PROPOSITION 2.2. Let G be a noncompact connected semi-simple
Lie group with finite center. Then 3 an integer mG {depending only
on the group G) such that if aeZmG{F), then:

( i ) The integral defining the wave packet ψa converges ab-
solutely.

( i i ) ψa

3* An analogue of the Wiener-Tauberian theorem* Before
we state and prove the main theorem we will first prove a couple
of preliminary lemmas which will be used in the proof of the main
theorem. The first lemma is a very mild strengthening of Proposi-
tion 2.2 and the second lemma is a slight generalization of Lemma
5.2 for the case of G = SL(2, R) in [1].

LEMMA 3.1. There exists an integer mG {depending only on the
group G) such that if ae ZmG{F) then all the following conditions
are satisfied

( i ) The integral defining ψa {the wave packet) converges ab-
solutely.

(ii) ψ.eUG).
(iii) f a = a.

Proof. From Proposition 2.2 it follows that we can find an in-
teger mG such that if aeZmG{F) then (i) and (ii) are satisfied. We

show that (iii) is also satisfied. Observe first that if a e ZmG{F),
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then since (VZ) it decays faster than 1/(1 + ||λ||2)* on α* and since
c(λ)~1c(—λ)"1 has at most polynomial growth, a is integrable with
respect to the measure c(X)~1c(—X)~1dX on α*. To prove that ψa = a,
we first show that

VbeZ(F), \ a(X)b(X)c(X)~1c(-X)-1dX
Ja*

<•> f . ( λ ) 6 ( λ ) c ( λ ) _ l c

)a*

The integral on the left hand side exists since both α, b decay faster
than 1/(1 + ||λ||2)z on α* and c W ' ^ - λ ) " 1 has at most polynomial
growth. The integral on the right hand side exists because ψa is
a bounded function (being the spherical Fourier transform of an
integrable function) and b is a rapidly decreasing function. The
proof of (*) is a straightforward application of Fubini's theorem
keeping in mind the following facts (i) Since b e Z(F), ψδ e SX(G) and
is hence integrable and further ψh = b (ii) ψa is an integrable func-
tion on G and a(X) is integrable with respect to c(λ)~1c( — λ^cZλ.
Since (*) is true Vb e Z(F) and since Z(F) contains 'enough' functions
it follows easily that

α W c W ^ ί - λ ) " 1 = ^α(λ)c(λ)~1c(—λ)"1 a.e. on α*

with respect to Lebesgue measure. But the zeros of c(λ)~1c( — λ)"1

must have zero Lebesgue measure in α* and hence it follows that
•α = φa>

LEMMA 3.2. Let k be a fixed nonnegative integer and let
ψ(z) = e<z>z>k,zeF. Define X by X = {h; heZ(F) and hφeZ(F)}.
Then X is a dense linear subspace of Z(F).

Proof. Let ψn(z) = e-<* *>fc+1' . Then since <•,•> is TF-invariant,
ψn, φ are TF-invariant. It is easy to see that ψn, φψneZ(F). (To see
this observe that F = a* + iCp. Clearly ψn9 φψn are rapidly decreas-
ing on α*, but if zeF the 'imaginary' part of z varies only over a
•compact set.) Hence if feZ(F),fφψneZ(F). Now it is easy to
see that as n-^ °°, fψn—>/ in the topology of Z(F). But since
fψnφeZ(F),fψneX and the lemma is proved.

We are now in a position to state and prove our main theorem.

THEOREM 3.3. Let fel^G) and suppose
( i ) f is nowhere vanishing on F.
(ii) la positive integer k such that for every ueP(a?) with

degree u <; mG (where mG is as in Lemma 3.1) we have
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sup ISMICftz))-^-^*]! <

Then the ideal generated by f is dense in I

Proof. (Note: condition (ii) says that *f does not vanish too
fast at oo\) Let X be as in Lemma 3.2. Let 7 = { f α ; α 6 l } .
Since by Lemma 3.2 X is dense in Z(F), by Theorem 2.1, Y is
dense in SX(G). Hence since Sj(G) ̂  I^G) is a dense inclusion, Y is
a dense subspace of IX(G). We will show that every he Y can be
written as h = fog, with gel^G) and this will prove the theorem.
Now if h e Y, h e X and h = / - / - C

(Note that since / does not vanish on F, f~x is well defined on
F.)

Now we claim f~ιh is in Zma{F). This follows from the defini-
tion of X and condition (ii) of Theorem 3.3 (since f{z)~ιh{z) = /

e-<***>k

e«>»kίi(z))m Hence by Lemma 3.1 ψf-^eUG) and

Claim: h = f*ψf-i£. This is because

Hence (by the semi simplicity of J^G)) f*ψϊ-i£ — h. Thus we have
shown that every function h in a dense subspace Y" of I^G) can be
writted as h = f*g and this concludes the proof of our theorem.

(Note: For G — SL(2, R) or more generally for G a real rank
one group mG — 2 (see [1], [6]).)

4- The case of Lp for 1 £ p £ 2. For ε ̂  0, let Fε = α* +
Then one can introduce the spaces Z(Fε), Z(Fε) just as in § 2. Let
Ip(G) = I(G)Γ\LP(G). Then one can define the so called Lp-Harish
Chandra-Schwartz subspace of iΓ-biinvariant functions i.e., SP(G)Q
IP(G) (see [7] for details). Actually the theorem of Trombi-Varada-
rajan is more general than stated in § 2. In fact they show that
under the map/—>/ the spaces SP(G) and Z(Fε) where e = 2/p — 1
are topologically isomorphic (p ^ 2). Also one knows that if p >̂ 1
then iSi(G) ̂  SP(G) is a dense inclusion. Using this one can modify
the arguments in the last section to obtain the following theorem.

THEOREM 4.1. Let 1 <: p < 2 cmd feIp(G)f]Iι(G)9 such that:
( i ) / ΐs nowhere vanishing on F.
(ii) 3 a positive integer k such that for every ueP(af) with

degree u <̂  mG (mσ as in Lemma 3.1), we have
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Then the set of functions of the form g*f, g e IΓ(G), is dense in IP(G).

Finally we observe that the Plancharel theorem for /2(G) (i.e.,
the spherical Fourier transform is an isometric isomorphism of I2(G)
onto L2(α*, μ)w, where the superscript indicates Weyl-group invari-
ance and μ is the measure on α* defined by dμ = |TΓ|~1c(λ)~1c(—λ)~2cZλ)
gives us the following fact: Let feI2(G) such that / is nonvanish-
ing on α* except possibly on a set of ^-measure zero. Then the set
of functions of the form g*f, geI?(G) is dense in I2(G). (The proof
of this fact is exactly as in the case of abelian groups).
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