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A CHARACTERIZATION OF THE LOCAL
RADON-NIKODYM PROPERTY

BY TENSOR PRODUCTS

DONALD P. STORY

In this paper, results are presented that characterize the
collection of all vector valued measures expressible as an in-
definite Bochner integral. More precisely, if X is a Banach
space, an X-valued vector measure, τ, defined on a measurable
space (S, Ω) is expressible as a Bochner integral if and only
if τ belongs to ca(S, Ω)®πX, where ®π denotes the strong (or
projective) tensor product of two Banach spaces. Other related
results are given.

Introduction* Throughout this paper, (S, Ω) will denote a
measurable space and X a Banach space. By ca{Ω) [cafv(Ω; X)] we
mean the Banach space of all real valued (resp., X-valued) countably
additive set functions with finite variation, equipped with the total
variation norm | |. Generally, we use the basic notions and notation
in Dunford and Schwartz [2].

A vector valued measure τ e cafv(Ω: X) is said to have the
Radon-Nikodym property if whenever λ 6 ca{Ω) is a positive measure
such that τ < λ (that is, \τ{E)\ —> 0 whenever X(E) —• 0), then there
exists a Bochner integrable function /: S— > X, (see pages 144-154 in
[2]) such that

τ{E) = [ fdx for all EeΩ .

In this case, / is called the Radon-Nikodym derivative of τ with
respect to λ. The space of Bochner integrable functions from S
into X with respect to a scalar measure λ is denoted B(S9 Ω, λ; X);
the space of all X-valued measures on Ω that have the RN (Radon-
Nikodym) property is denoted RNca(Ω; X), and forms a closed linear
subspace of cafv(Ω; X).

The Main Results. The RN property of a measure is important
in classifying certain tensor products of spaces of measures. In
preparation for this, we establish an important lemma.

LEMMA 1. Suppose τ ecafv(Ω; X) such that τ < λ and λ < v,
for some two positive measures λ and v on Ω. If τ has a Radon-
Nikodym derivative with respect to v, then it has a derivative with
respect to λ.
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Proof. By the Lebesgue Decomposition theorem, there exists
positive measures μ and σ such that v — μ + σ and μ < λ and σ_Lλ.
Since σ ± λ, there exists a set EoeΩ with <7(2£0) = 0 and X(S—E0) =
0. From μ <X, there exists an fe e IΊ+(>S, 42, λ) such that

μ{E) = ί Mλ for all £ e f l .

Let / denote the derivative of τ with respect to ι>, then for EeΩ.

τ{E) - ( /<fo = ( fdμ + ( /ΛJ = ( fhdX + [ fdσ .
JE JE JE JE JE

It is easily seen that \ fdσ = \ fdσ + I /d<7 = 0 for all E e

S JE JEE0 JE-EO

fhdX and, therefore, fh is the Radon-Nikodym
E

derivative of τ with respect to λ.
THEOREM 2. Let {τk} £ cafv(Ω; X) be a sequence of vector

measures such that ΣϊU |rfc|(S) < +©°. If τk has the RN property
for each k, then so does τ —— ΣΣ?=i

Proof. Suppose λ 6 ca(Ω) is a positive measure such that r < λ.
Note that Σ I ^ I ( ^ ) converges absolutely for each EeΩ, consequent-
ly? Σl̂ "fc! defines a σ-additive measure on Ω such that rΛ<ΣI^"fcl
for each n.

Define v = λ + Σ k t | . Then v is a positive measure on i2 such
that λ < v; consequently, τ < λ < v. It suffices, in view of Lemma
1 to show that τ has a derivative with respect to v.

Indeed, for each n, τn < v and τn has the RN property implies

there exists a function fn e 2?(S, i3, y; X) such that τn(E) — \ fndv. It

is easily seen that Σn=iΛ converges in B(S, i2, v\X). Therefore, if

we define / = Σ/» it ίs s e e n that

τ{E) = Σ*τΛ(E) = Σ ( /.*> = ί

Thus, / is the derivative of τ with respect to v.
We now present the main result of this paper which constitutes

a generalization of a theorem of Gil de Lamadrid (Theorem 4.2 [3]).
In his paper, he identifies C*(ίί)®^X as the class of all regular X-
valued Radon measures of bounded variation which can be represented
as an absolutely convergent series of "step measures." In his paper,
H is a compact Hausdorff space, and, of course C*(H) is the space
of all regular Radon measures on H.
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THEOREM 3. Let (S, Ω) be a measurable space and X a Banach

space, then ca(Ω) ®^ X = RNca(Ω; X) isometrίcally.

Indication of Proof. In [5], we show that ca(Ω)®πX can be
isometrically embedded in cafv(Ω X) by the canonical isomorphism

Σ A<8)&< >Σ3ίft( )
i=i ί=i

To prove ca(Ω)®π X = RNca(Ω; X), let τeRNca(Ω X). Put

λ = | τ | , then τ < λ. Since τ has the i2ΛΓ property, there exists a

function feB(S, Ω, λ; X) such that τ(E) = [ fdX for all Ee.Ω.

Because / is Bochner integrable, / can be written in the form
/ = E«=iff»£s> - a.e, where xneX, EneΩ, and ΣϊU |» | λ(£7J < +
oo (see Brooks [1]). Here ζE is the characteristic function of the
set E.

Define τn: Ω-> X for each positive integer n by τn(E) = a?n

\{EE%). τn is easily seen to have the J?ΛΓ property and τΛ e ca(Ω)QπX.
Furthermore,

(1) Έ\τk\(S) = ±\xk\X(Ek)< +oo .
k=l fc=l

Thus, we have

r(^) = ί /dλ - ( Σ XkζEkdX = Σ

or,

( 2 ) τ(#) = Σ τh(E) for each

As remarked above τA 6 cα(fl) ®,τ X, hence Σί=i ^^ e cα(fl) ®,τ X
also. Note that (1) implies that the sequence {Σ*=i τk} is Cauchy in
cα(ιθ) 0 * X, because the variation norm is the same as the π-norm.
But by (2), Σ?=i τk converges setwise to τ, therefore in variation
(π-norm). Thus τeca(Ω)&πX.

Conversely, if τ e ca(Ω) ®ff X, by the general theory of projec-
tive tensor products (see Treves [[6]), there exists xneX and Xn e
ca(Ω) such that ΣϊU |α*l|λΛ |(S) < +oo and τ{E) = ΣfcU&ίλ*(#) for
all EeΩ. Write rfc = a?fcλΛ, then clearly rfc has the RN property,
τ* = Σ^fc and Σkfcl < +°° By Theorem 2, τ has the i2iVproperty.

COROLLARY 1. A measure τ e cafv(Ω; X) has the RN property
if and only if τ is expressible as the indefinite Bochner integral
with respect to some positive measure.
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Recall that a Banach space X has the Radon-Nikodym property
if it's true that any X-valued vector measure of finite variation can
be expressed as an indefinite Bochner integral.

COROLLARY 2. A Banach space X has the Radon-Nikodym pro-
perty if and only if ca(S, Ω) ® τ X — cafv(S, Ω; X) for every meas-
urable space (S, Ω).

REMARKS. In particular, if X is reflexive or a separable dual
space, then ca(Ω) ®π X = cafv(S, Ω; X) for every measurable space
(S, Ω). It has been shown that ca(S, Ω) φπ X is the Banach space,
with total variation norm, of all X-valued measures on Ω with the
RN property; for sake of completeness, it has been shown in [4]
and [5], that ca(Ω) ® ε X, where ® e is the weak (or inductive) tensor
product, is the Banach space of all X-valued vector measures with
relatively norm compact range, equipped with the semi-variation
norm. In conclusion, the following question is posed: can the
criterion of Corollary 2 be used to give an "external" proof of the
fact that reflexive Banach spaces and separable dual spaces have the
Radon-Nikodym property?
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