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SOME EXACT SOLUTIONS OF THE NONLINEAR
PROBLEM OF WATER WAVES

DENTON E. HEWGILL, JOHN REEDER, AND MARVIN SHINBROT

Our purpose here is to present two related, strictly con-
structive methods for proving existence and uniqueness of
certain steady problems of water waves. By "water waves",
we mean free-surface flows, under gravity, of inviscid, irrota-
tional, incompressible fluids.

Our results are related to those of Gerber [3], Moiseev [5],
Krasovskii [4], Beckert [2] and others, and, in fact, include all the
earlier works but Krasovskii's. Moreover, unlike any other work
we know of, ours makes no use of complex function theory. Thus,
our methods also apply, at least in principle, to three-dimensional
flows. However, there appear to be serious technical difficulties
with the generalization to three dimensions, and we reserve all
discussion of this for later work.

Before discussing our results, we state the problem precisely.
For this, choose a coordinate system with the Y-axis pointing up.
Then, since the flow is assumed steady, we suppose the fluid occupies
a domain — B(X) < Y< T(X), independent of time, and we seek
[10] a velocity potential Φ satisfying Laplace's equation

(1.1) Φxx + Φγγ = 0 for -B(X) < Y< T(X) ,

with two conditions on the (unknown) free surface Y = T(X) and
one on the (given) bottom Y=-B(X). When Y = T(X), the
boundary conditions are

(1.2) ΦY = TXΦX ,

and

(1.3) 2gT + Φx + Φ\ = constant;

here, g denotes the acceleration due to gravity. Subscripts denote
partial differentiation. On the bottom, Y = — B{X), we require

(1.4) Φγ + BXΦX = 0 .

In addition, two parameters are given, say, the mean depth and a
mean speed.

Our main hypothesis is that the bottom is not too far from
being flat and horizontal. We impose this condition by supposing
that B has the form
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(1.5) B(X) = Bε(X) = do(l + eH(X)) ,

where ε is a real parameter, varying in a neighborhood of zero. d0

is the mean depth we just spoke of, and, to specify it precisely,
we always suppose that H has mean value zero. This means that
d0 is the mean depth when there is no flow (T = Φx = Φγ = 0).

We also need the parameter J70, which is the mean value of
the horizontal velocity on the free surface Y = T(X). The Froude
number F is defined by

7Ύ2

(1.6) J?7 = - ^ - .

We begin by studying periodic flows. Let B be periodic, with
period Ld0. Then, we show that the problem (1.1)-(1.4) has a unique
solution if ε is small enough and F Φ Fn, n = 1,2, , where

(1.7) F.
L

This result is close to that of Moiseev [5], who also assumes the
bottom periodic and nearly flat, as well as the hypothesis F Φ Fn.
On the other hand, Moiseev supposes that the bottom is symmetric
about vertical lines through its crests and troughs, while we need
no symmetry hypothesis at all.

We derive our result by mapping the domain of the fluid (not
conformally) onto a strip Σ. In Σ, the transformed equations are
solved in a natural way by a contraction mapping argument, if ε
is small enough. Using this fact, it is also easy to show that the
solution is analytic in ε and so can be found by expanding every-
thing in a series of powers of ε. Note that, to do this, we use the
fact that Σ — unlike the physical domain of the water—is fixed,
known a priori, and independent of ε.

The periodic case occupies us from § 2 through § 5. Then, in
§ 6, we drop the hypothesis that B be periodic and replace it by
the assumption

(1.8) Hm B(X) = d0 .

Here, we show that existence, at least, follows from our earlier
results if ε is small enough and F ^ 1. This fact is related to one
proved by Krasovskii [4]. Krasovskii showed the problem has a
unique solution if the hypothesis (1.8) is strengthened to read:
B(X) = d0 for all X large enough. He did not require anything
like our hypothesis that ε be small, but he did only prove his result
for large enough F. As mentioned above, we require that ε be
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small, but we do prove the theorem for all Froude numbers down
to the critical one of unity.

Using the method of §§ 2-6 it seems impossible to prove a uni-
queness theorem in the aperiodic case (1.8). Also, in this case, the
method is no longer constructive. Therefore, in §§ 7-8, we take
up a new method, based on the hint that, in the periodic case, the
solution is analytic in .ε. We show directly that, under a streng-
thened version of the hypothesis (1.8), the problem has a solution
analytic in ε for ε small enough. It is easy to see that the analytic
solution is unique (within the class of analytic solutions), and,
moreover, we show how this analyticity can be used to construct
the solution to any desired degree of accuracy by simply expanding
everything in series of powers of ε. In § 8, we also state a slightly
different uniqueness theorem in the case of periodic H.

The main difficulty in the water waves problem is that the
function T describing the free surface is not known in advance.
We overcome this difficulty in all cases by mapping the fluid domain
onto the strip Σ discussed earlier. In Σ, the problem takes on a
form in which the invertibility of the mapping from the fluid
domain to Σ has no relevance. (It can be seen easily from § 2 that
the invertibility is entirely a question of whether the top of the
fluid remains above the bottom.) Therefore, since all our arguments
are in Σ, we ignore the question of invertibility here and state all
our results in Σ. (Except in one place: see the remark following
Theorem 5.2.) If it turns out that the top remains above the
bottom, then our solutions have physical significance, and, in this
case, the transformation back to the physical variables is entirely
trivial. Sufficiant conditions for invertibility are not hard to find,
and we leave these to the interested reader. On the other hand,
the interesting question of finding truly precise conditions for in-
vertibility is open.

A few further remarks are in order before we proceed. First,
we note that, in all that follows, we assume neither d0 nor H
depends on ε. However, both of them can be allowed to do so.
What is usually needed is sufficient smoothness of d0 and H as
functions of ε (analyticity in §§ 7-8) and boundedness (as a function
of ε) of the norms of H that appear in the hypotheses. We leave
the details to the interested reader.

Next, we note that we may always assume ε > 0, since ε
appears in the problem only in the definition (1.5), while H can
always be replaced by —H.

Finally, we point out explicitly that, without further mention,
we always use the letter c to represent a positive constant. The
appearance of a c in a formula means that the formula is correct
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for some positive constant c.

2* A preliminary transformation* It is convenient to consider
the problem directly in terms of the velocity field (£7, V) = FΦ,
instead of the velocity potential Φ. The fact that (U, V) is a
gradient and Laplace's equation (1.1) give the equations

(2.1) Uγ - Vx = 0, Ux + Vγ = 0, for -B(X) <Y< T(X) ,

with the boundary conditions

(2.2) V = UTX, 2gT + U2 + V2 = constant, when Y = T(X)

and

(2.3) V + UBX = 0, when Γ = -

We attack the problem by transforming it to dimensionless
variables, at the same time mapping the domain1 — B(X) < Y<
T(X) into a strip, as follows. Define x and y by

(2'4) *-x «-
If the bottom were flat (ε = 0 in (1.5)), one solution would be the
uniform flow defined by T = 0, U = Uo, V = 0. We look for a
perturbation of this solution, and, accordingly, we write

(2.5) T(X) = εdj]{x) ,

(2.6) U(X, Y) = J70[l + βu(x, y)] ,

(2.7) V(X, Y) = Uoεv(x, y) .

The dependent variables 7)f u, and v, as well as the independent
variables, x and y, are dimensionless.

Setting

(2.8) H(X) = Λ(a?) ,

we find that equations (2.1) go over into the form

(2.9) u y — vx = —εφ(u, v ) , u x + vy = e ψ ( u 9 v ) , — l < y < 0 ,

where, because of (1.5), as well as (2.4) — (2.8),

(2.10) φ(u, v) = [yhx + (1 + y)ηx]vy - (h + η)vm ,

and

1 For now, we suppress the dependence of B and T, as well as U and V, on ε.
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(2.11) φ(u, v) = [yhx + (1 + y)V*]uv ~ (h + η)ua .

Here, h is given (since, through (2.8) and (1.5), it defines the bottom
B), while because of (2.2b) and (2.5)-(2.7), the function η is defined
by

(2.12)
y=o

where F is the Froude number (1.6), and the constant in (2.2b)
has been chosen appropriately.

We also have the boundary conditions (2.2a) and (2.3):

(2.13) v = ηJX + en) when y = 0

and

(2.14) v + hz(l + en) = 0 when y = — 1 .

57 can be eliminated from the free surface boundary conditions.
Differentiating (2.12) and substituting into (2.13), we find

(2.15) v + Fux = sσ(u, v) when y = 0 ,

where

(2.16) <j(w, v) V a U ζ ^
2 dx

The problem we want to solve is now reduced to (2.9), with
the boundary conditions (2.14) and (2.15), and with φ, ψ, η, and σ
defined by (2.10), (2.11), (2.12), and (2.16). F is a given constant.
But there is another side condition to be satisfied by the solution.
Since, by definition, Uo is the mean value of U on the surface (see
§ 1), we also have, for any solution of the original problem with
period Ld0,

Uo = i P " U(X, T(X))dX = Mm uo[l + eu(x, 0)]dx ,
Ld0 J-Ld0l2 L J-£'2

which entails

S L12

u(x, 0)dx = 0 .
-LI2

Thus, we also require that the solutions satisfy (2.17).

3* A related linear problem* In § 5, we show that the pro-
blem we have posed has a unique solution by proving a certain
operator A is a contraction. To construct A, we begin by discus-
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sing a simple linear problem. It is to find when there is a periodic
(in x) solution of the equations

(3.1) Uy — vx=f and ux + vy = g in the strip — 1 < y < 0 ,

with the boundary conditions

(3.2) v(x, 0) + Fux(x, 0) = s(x) and v(x, -1) = b(x) .

Here, /, g, s, and b are given functions, periodic in x, with period
L, say. In addition to (3.1) and (3.2), we impose the side condition

S L/2
u(x, 0)dx = 0 .

-L/2

Let Σ be the strip {{x, y)eR2: - 1 < y < 0}. We say that a
function fiΣ-^R1 is periodic if it is periodic in cc alone: there
exists an L > 0 such that /(a? + L, y) = f(x, y) for all (#, y)eΣ. It
f is periodic and has period L, for brevity, we say that / is
periodic (L). We always denote by RL the rectangle

RL = {(%, V): -L/2 <x< L/2, - 1 < y < 0} ,

and by JL the interval (-L/2, L/2).
Let fiΣ-^R1 be continuous and periodic (L). Then, it has an

associated Fourier series Σn fn{y)eiΩnx, where

(3.4) Ω = 2π/L .

We write

= Σ sup \fn(y)\

if the sum converges, and we denote by Λ°L(Σ) the set of all con-
tinuous, periodic (L) functions for which || ||0 is finite. We define
another norm by

ll/IL = Σ(l*0r + i) sup \fM\
n -Ky<0

and denote the set of continuous, periodic (L) functions for which
this norm is finite by Ak

L(Σ).
If / : R'-^R1 is periodic (L), we say that feA^R1) if the

extension /*:2 r->i2 1 defined by f*(x,y) = f(x) is in Λk

L(Σ), k =
0,1, . . . .

Now, recall the formula (1.7) defining Fn. We prove

LEMMA 3.1. Let f,geA°L(Σ), seA«L{Rι), beA^R1). If F Φ Fn,
n = 1,2, -, then a necessary and sufficient condition that the pro-
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blem (3.1)-(3.3) have a periodic (L) solution is

(3.5) \ [8(x)-b(x)]dx=\\ g(x,y)dxdy.
}lL URL

Furthermore, if (3.5) is satisfied, the solution is unique, both func-
tions u and v lie in Λλ

L(Σ), the derivatives ux, vx, uy, and vy lie in
Λ°L(Σ), and

(3.6) \\uy\\0 + \\vy\\0 + \\u\\, + \\v\\, ^ c ( | | / | | 0 + \\g\\Q + | | s | | 0

Proof. The condition is necessary, as integrating (3.1b) gives

rr Γ0 ΓL/2 ΓL/2 TO

\\ ff(x9 y)dxdy = \ I uadxdy + I I vβydx
}}HL J-lJ-L/2 J-L/2J-1

S L/2

[v(x, 0) - v{x, -l)]dx ,
~]LI2

since u is periodic. Also, subtracting and integrating the boundary
conditions (3.2) gives

S
LI2 f

[v(x, 0) - v(x, -l)]dx = \ [s(x) - b(x)]dx ,
-LI2 JIL

again by the periodicity of u.
To prove the sufficiency, expand all functions into Fourier series.

Thus, we define Ω by (3.4) and write u(x, y) — X ^ un{y)eiΩnx, with
a similar notation for the functions v, f, g, sf and 6. Then, equa-
tions (3.1) become

(3.7) <{y) = inΩvM +

vr

n(y) = -inΩun(y) + gn{y) ,

with boundary conditions

(3.8) vM + inΩFuM = sn ,

for n — 0, ± 1 , ± 2 , •••. In addition, because of (3.3), we require

(3.9) uo(O) = 0 .

The ordinary differential equations (3.7) are readily solved to give

un(y) = an ch nΩy + iβn sh nΩy - 1 [fjj]) ch wΰ(y - η)
Jy

(3.10) + igjjf) sh nΛ(y - 37)]^ ,

S O

[gjrj) ch ̂ ΰ(y - η)
y

- ifjfl) s h nΩ(y -
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where an and βn are constants. The boundary conditions (3.8) then
give

(3.11) βn + inΩFan = sn

sh nΩ(l

When n Φ 0, the determinant of the coefficients of βn and αH is not
zero, since, by hypothesis, F Φ Fu. (Recall (3.4) and (1.7).) When
n = 0, consistency of (3.11) and (3.12) requires

S os0 = b0 +

which is equivalent to (3.5). β0 is now given by (3.11) or (3.12)
with n = Q, while (3.9) and (3.10) give a0 = 0.

This argument shows the system (3.1)-(3.3) has a formal, unique
solution. What remains is to prove (3.6). For this, solve (3.11)-
(3.12) for an and βn and substitute into (3.10). This gives an ex-
plicit formula for un(y) which, for large n > 0, has for its dominant
terms (recall y ^ 0)

and this is bounded by

nΩF 21 nΩ I -

One can also show the dominant terms in un(y) to be bounded by
this same quantity when n is large and negative. Therefore,

(3.13) L|nί?| + 1 ' "' |«Λ| + 1

x {max |j7,(37) | + max |Λ(J?)|}
η

for all n. There is a similar inequality for \vn(y)\, proved in the
same way. Multiplying (3.13) by \nΩ\ + 1, taking the maximum
on y, and summing, we conclude that \\u\\i is bounded by a multi-
ple of

(3.14) ll«llo + l|δ||i +Hallo+ II/II0.

H l̂li is similarly bounded. Thus, u and v lie in Λ^Σ) and the sum
of their norms is bounded by a multiple of (3.14). That ux and vx
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lie in Λ°L(Σ) follows immediately from the definition of the norms,
for \\ux\\0 + \\vΛ\\0 ^ IWIi + \\v\\i. Now, the fact that uy and vy lie
in Λ°L(Σ) and have their norms bounded by a multiple of (3.14) can
be read off directly from equations (3.1). (3.6) and the lemma
follow.

4* The operator A. Writing D for either Σ or R1, we define

0Λ
k

L(D) as the set of all functions in Λk

L(D) satisfying (3.3). Let
uβoΛϊiΣ), veAϊiΣ), uy, vyeΛ°L(Σ). Define φ, ψ, and σ by (2.10),
(2.11), (2.12), and (2.16). We show that, if F Φ Fn9 n = 1, 2, - ,
then there is a unique solution to the problem of finding functions
ueoΛϊίΣ), veΛiiΣ) with uy, vyeΛ°L(Σ), such that

(4.1) uy - vx = -sφ(u, v) ,

(4.2) ua + Ό9 = eψ(u, v),

and satisfying

(4.3) v + Fux — εσ(u9 v) when y — 0

and

(4.4) v = —hJX + eu) when y = — 1 .

The system (4.1)-(4.4) has the same form as (3.1)-(3.3), and,
in this case, we see, using (2.11) and (2.16),

S o ro

gdy = hx(l + ew)!^.! + εσ{u, v)\y=0 - ε\ ψ(u, v)dy
= hx(l + eu)^ + eϊη.u - ζ-^-(u2 + i;2)]

L 2 dx Jy=o

S o

{[yK + (1 + y)ηx]uy - (h + η)ux}dy .

However,

[»λ. + (1 + y)V.hy ~ (h + 57) ,̂

- λ.(l/w)» + 5?,((1 + y)n)y - -^—[{h + 37)w] .

dx
Thus, in the context of (4.1)-(4.4), we have, since h and rj are
independent of y,

s - b - \° gdy = -A-Γλ - ^ ( ^ 2 + ^2) + e(h + ^ Γ wdy Ί .
J-i αίC L Z i/=o J-i J

Integrating with respect to x, we get zero, since the function in
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brackets is periodic. Thus the consistency condition (3.5) needed to
be able to solve (4.1)-(4.4) is satisfied automatically when ψ and σ
have the form (2.11) and (2.16)!

It is convenient at this point to introduce the space ΛL consist-
ing of pairs of functions (u, v) e *Λl(Σ) x A\(Σ) with (uy, vy) e Λ°L(Σ) x
A°L(Σ). For (u,v)eΛL, we define \\(u, v ) | M M I i + I M I i Ή I " Λ + l b X
Because of Lemma 3.1 and what we have just proved, we have

LEMMA 4.1. Let he^KR1). If F Φ Fn, n = 1, 2, , then,
there exists a mapping A: ΛL —> ΛL defined by A(u, v) = (if, v),
where u and v are the solutions of (4.1)-(4.4). This mapping satisfies

(4.5) \\A(u, v)\\ £ co[l + ε(||(u, t;)|| + \\(u, v)\\> + \\(u, *)ll3)] ,

where c0 is a constant, depending only on h and F.

Indeed, Lemma 3.1 actually gives

\\A{u9 v)\\ £ c[\\h\\2 + ε(\\φ\\0 + | | f ||0 + \\σ\\0 + \\hM\\J\ ,

where we have written u(x) = u(x, —1). However, the two facts
that, in Aι

L, the norm of a product is bounded by the product of
the norms and || ||o ^ IIΊIi &i y e (4.5) when taken together with the
formulas (2.10), (2.11), (2.12), and (2.16).

5* The main theorem for periodic h. It is clear that any
fixed point of A is a solution of our problem. To show that A has
a fixed point, we begin with

LEMMA 5.1. Let h e oΛKR1). Let F Φ Fn, n = 1, 2, . Then,
there exists an ε0 and a corresponding ball ^ Λ O = {(W, V) 6 ΛL: \\(u, v)\\^
Ro} such that A maps &RQ into itself for each ε <Ξ s0.

Proof. Let \\(u, v)\\ ^ R, where R > c0 and c0 is the constant
occurring in (4.5). Then (4.5) shows that |[A(u, v)\\ ^ R also, if
only eco(R + R2 + Rz) ^ R - c0. Set ε(R) = (R - co)co(R + R2 + R*).
ε(R) is a nonnegative, continuous function of R for c0 < R < oo
which tends to zero as R tends to either cQ or infinity. Hence ε(R)
assumes its maximum at, say, Ro. We state the above lemma with
ε0 = ε(R0) since it is the maximal ε for which we can assert that A
maps a ball into itself.

It is easy to show that A is a contraction on the ball ^?Ro. For
this, let | |(u\ v*)\\ ^ ROf i = 1, 2, - . Also, let (u\ i>«) - A(u\ if),
and let (α, v) = (u1 — u2, v1 — ι?2). Then by the definition of A (cf.
(4.1)-(4.4)) we have
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uy-vx = εφ(u\ v2) - εφ(u\ v1) ,

Ux + vy = εψ(u\ v1) — εψ(u\ v2) ,

while

v + Fux = εσ(u\ v1) — εσ(u2, v2) when y = 0 ,

and

i; = εhx(u2 — w1) when 2/ = — 1 .

We need not verify the condition (3.5), as these equations have a
solution by Lemma 4.1. Moreover, Lemma 3.1 gives

\\(u,v)\\ = \\A(u\vί)-A(u2,v2)\\

^ cε[\\φ(u\ v2) - φ(u\ ^)llo + \\ψ(u\ v2) - ψ(u\ ^)lio
2, v2) - σ(u\ t;1)!!,, + \\u2 - u'U ,

where the formula (4.4) for 6 has been used. As in the proof of
(4.5), the polynomial character of Φ, ψ,ηr and σ shows that, if
\\(u, v)\\-^ Ro, then the quantity in brackets is bounded by
c(R0)\\(u\ v1) — (u2, v2)\\, where, as the notation indicates, c(R0) is a
constant, depending on Ro. Thus, we obtain

(5.1) \\A(u\ v') - A(u\ v2)\\ ̂  c s | | « v1) - (u2, v2)\\ .

Choosing ε0 smaller, if necessary, we see that A is a contraction on
&Bo for each ε < ε0. Consequently, A has a fixed point in any such
ball. Since a fixed point of A is a solution of our problem, we have
our first main result.

THEOREM 5.2. Let h e QΛ2

L{RX), and let F Φ F%, n = 1, 2, .
Then, there exists an ε0 and a corresponding ball &Bo of radius Ro

in ΛL, centered at (0, 0), such that the problem (2.9)-(2.17) has a
unique solution in &Bo for each fixed ε < ε0.

In view of the formulas (2.6) and (2.7), relating (u, v) to (C7, V),
it might appear that the reference to ^ , 0 is unnecessary, since
(u, v) is multiplied by ε (and so makes a small contribution if ε is
small enough) in going from {u, v) to (Z7, V). The necessity for
the statement in terms of &Bo appears to be related to the ques-
tion of the invertibility of the mapping (2.4) as discussed in the
introduction. We leave the details of the transformation from (u, v)
to (Uf V) to the interested reader.

We now turn to some simple but interesting corollaries of the
main Theorem 5.2. First, since {Fn} is decreasing, and since
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2π

we have

COROLLARY 5.3. Let heQA\{Rx). Then, the problem (2.9)-(2.17)
has a periodic (L) solution if ε is small enough and F > F^ In
particular, since F± < 1, the problem has a solution if F ^ 1.

Of course, as is the case whenever an object is a limit of
iterates of a contraction mapping, beginning with zero, we have

(u, v) = Σ [Afc+1(0, 0) - A\0, 0)] .
k=Q

Now, it is a triviality that each term in this series is a polynomial
in ε (with coefficients in ΛL), and it follows easily from (5.1) that

11^(0, 0) - A\0, 0)|| ^ ||A(0, 0)||cfeε* .

Therefore, the solution (u, v) is analytic in ε in a neighborhood of
ε = 0, and also

Ufa, v) - A (0, 0)|| ^ Σ ll^fe+1(0, 0) - A\0, 0)||
k=n

) | | ,
1 — cε

which gives an estimate for the error in computing the solution.
We restate these facts as

COROLLARY 5.4. The solution of Theorem 5.2 is an analytic
function of ε in a neighborhood of ε = 0. Moreover, if (u, v)
denotes this solution, then \\{u, v) — An(0, 0)|| = 0(εn) as ε->0.

Two remarks should be made here. First, the analyticity means
that one can compute the solution by expanding u and v in a
series of powers of ε, substituting into (2.9)-(2.17), equating like
powers of ε on each side, and solving the resulting equations. This
method for computing the solution is unquestionably more efficient
than simply calculating {An(0, 0)}, since An(0, 0) contains terms of
order higher than εn, terms that change wben one proceeds further
to calculate An+\0, 0).

The second remark is this. Corollary 5.4 shows that the error
in u and v after n iterates is O(εw). What one really wants,
however, is not u, v, and ΎJ, but the actual flow quantities U, V,
and T, that satisfy (2.1)-(2.3). However, as (2.5)-(2.7) show, in
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going from u, v, and rj to U, V, and T, one always multiplies by
ε. Therefore, although the error in calculating u, v, and η is
O(εn) after n iterations, the error in calculating U, V, and T is
O(εn+1).

All the results so far are also valid in spaces other than Λ\.
The spaces Λk

L are very convenient, as precise estimates on the
various constants that appear can be found, without reference to
outside results. On the other hand, for some purposes, it is useful
to have our results in other spaces.

For this, note that the entire basis for the argument is Lemma
3.1 and the inequality (3.6). On the other hand, the equations (3.1)-
(3.3) are elliptic and one can use the Schauder-type estimates of
Agmon, Douglis, and Nirenberg [1] to derive an estimate exactly
like (3.6) in the spaces Ck+a, where by Ck+a we denote the space
obtained by completing the trigonometric polynomials in the usual
Ck+a norm. One has merely to replace Λk by Gk+a and interpret
IHIfc as the norm in Ck+oc. Thus, writing Ct+a for the periodic (L)
functions in Ck+a and 0C£+a for those functions in C£+a with mean
value zero on y = 0, it can be seen that the complete argument then
goes through exactly as before to give, instead of Theorem 5.2,

THEOREM 5.2 bis. Let he^Cl^R1), and let F ΦFn, n = l, 2,
Let &R+a be the ball of radius Ro in 0Ci+a(Σ) X Cl+"(Σ), centered at
(0, 0). Then the problem (2.9)-(2.17) has a unique solution in
for each fixed ε < ε0.

0

One remark should convince the reader that the proof of
Theorem 5.2 bis is the same as that of Theorem 5.2. First, note
that Theorem 9.3 of [1] gives, instead of (3.6),

\f\\g\\ξ

where || ||0 denotes the supremum. To obtain the exact analog of
(3.6), one has only to notice that (3.10) and the similar formula
for vn(y) imply, via a tedious calculation, that

INIoΓ + IMI? ̂  β(||/||f + llflrllί + 11*11? + ll&llίt).

In a similar way, all the results of this section have analogs
with the spaces Λ\ replaced by C£+a. Given any result in this
section, we refer to its analog in the spaces C£+a by adding a "bis"
to its title, as we did in the case of Theorem 5.2 bis above.

We complete this section with the comment that the solution
(u, v) is as smooth as the datum h allows. For the proof of Lemma
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3.1 shows that the solution of the related linear problem is as
smooth as its data allows (cf. (3.13)). It follows that if heQP2

L

+a(Rι),
where P denotes either Λ or C, then (u, v)e0Pl+a(Σ) x Pl+a(Σ), k =
0, 1, . In particular, we have

COROLLARY 5.5. If hejCΐ(R), F Φ Fn, n = 1, 2, , and ε<ε0,
then the solution (u, v) of problem (2.9)-(2.17) lies in 0C~(Σ)XCL(Σ).

Although we will make no later mention of it, we remark here
that the solutions found in §§ 6 and 8 below are similarly as smooth
as the datum h allows.

6* A theorem for nonperiodic h. In this section, we prove
the existence of a steady flow over an arbitrary C2+ex bottom, as-
suming

(6.1) limΛ(aj) = 0
|z|--oo

and that F ^ 1. This last condition is needed to provide the as-
surance that F Φ Fn for every n > 0 and every L > 0. (Cf. the
proof of Corollary 5.3 bis.) Since we construct a solution in the
nonperiodic case as a limit of periodic solutions whose period goes
to infinity, the hypothesis F ^ 1 is needed to use Theorem 5.2
bis.

To begin, we assume, along with Krasovskii [4], that, for some

L > 0 ,

(6.2) h(x) =0 for |g| > L/2 .

For every n = 2, 3, , we define a periodic (nL) function hn as
follows:

hn(x) = h(x) - - V Γ h(x)dx for \x\ ̂  nL/2 ,

while, outside the interval | x \ ̂  nL/2, we define hn to be periodic
(nL). With this definition, we have that hne.CIΠR1) if heC2+Oί(Rι).
For each n, then, Theorem 5.2 bis provides a periodic (nL) solution
(wn9 vn) associated with the bottom defined by hn(x), if ε is small
enough. Moreover, the proof of Lemma 5.1 bis shows that we may
choose ||tt»||(7i+« + ||vΛ||(7i+« ^ Ro, where RQ is independent of n, since
l|Λ»llσ2+« is bounded independent of n. Also, the bound on ε is
independent of n, because of (5.1), which shows that we only need
c(R0)e < 1. It follows from the Ascoli-Arzela theorem, then, that,
given any compact subset K of the closure, Γ, of Σ, there is a
subsequence of {(un, vn)} converging in C\K).
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Let {Km} be any increasing sequence of compact subsets of Σ
whose union is all of Σ. Then, for every m ^ 1, we can find a
sequence {«m), v™)} such that {{uT\ v»w))}c{(%2*"1}, vT~ι))} (if m ^ 2 ) ,
convering2 in Km. The usual diagonal argument then shows that
the diagonal sequence {(u{f\ v^)} converges (to (u,v), say) inC 1 ^) .
It is an easy matter to prove that (u, v) is a solution of our
problem, and even that (u, v) eC1+a(Σ) x C1+a(Σ), since | |^ ) | lίf« +
||viΛ> \\i+a ^ R' Moreover, since u^ e QClT(Σ) (cf. Theorem 5.2 bis),
we have

\ u{n\x, 0)dx = 0 ,
J-nL/2

and u^ is periodic (wL), so that

Also, it is trivial that the linear functional defined by taking
the mean value along y = 0 is continuous on C1+a(Σ). Therefore,
the solution satisfies

(6.3) lim -L-V u{x, 0)dx = 0 .
ζ̂ oo 2ζ J-c

Now, let 0C
k+"(Σ) denote the set of all functions in Ck+a(Σ)

satisfying (6.3). Notice that, since Uo is defined as a mean value,
we must require that any solution satisfy (6.3). Using [1] and
what we have already proved, it is now easy to complete the proof
of the following version of Krasovskii's theorem [4].

LEMMA 6.1. Let h e C1+a(Rι) satisfy (6.2). Choose F^l. Then,
if ε is small enough, the problem (2.9)-(2.16) has a solution (u, v) 6

0C
1+«(Σ) x C1+«(Σ).

Now, suppose we replace (6.2) by the weaker condition (6.1).
Then, for every n = 1, 2, , we can approximate h by a function
hn, equal to h for \x\ ^ n, equal to zero for |x\ > n + 1, and lying
uniformly in C24""^1)- Lemma 6.1 gives a solution (un, vn), corres-
ponding to hn, for every n = 1, 2, . The construction in Lemma
6.1 shows that {||wj|f+α + ||vj|ί+α} is bounded, and each (un, vn) exists
for the same range of values of ε. Therefore, another use of the
diagonal process gives

2 Notice that we are again using the fact that Σ is a fixed domain, this time in
spite of the fact that the functions hn, which describe the bottoms in the physical
domain, are varying with n.
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THEOREM 6.2. Let heC'+^R1) satisfy (6.1). Choose F ^ 1.
Then, if ε is small enough, the problem (2.9)-(2.16) has a solution
(u,v)e0C

1+a(Σ) x C1+α(J).

That (6.3) is true of the solution follows, as before, from the
continuity of the functional defined by the left side of (6.3).

Notice that, for the aperiodic flows of Theorem 6.2, both the
uniqueness of the solution and our ability to construct it have been
lost in the process of taking subsequences. Also lost is any equi-
valent of Corollary 5.4 (analyticity in ε). On the other hand, we
are able to recover all these properties in the aperiodic case by
using another method of proof, to which we now turn. As we
shall see, the main price to be paid for these gains is that we
must restrict F to be strictly greater than unity; thus the single
case F = 1 is lost in the following argument.

7* Recursion relations for an analytic solution* Our aim
now is to solve the problem (2.9)-(2.16) in the aperiodic case when
h satisfies a condition like (6.1), by looking directly for a solution
that is analytic in ε. Therefore, we write, formally,

oo oo

(7.1) u(x, y, ε) = Σ w*(sc, y)en, v(x, y, ε) = Σ vn(x, y)εn

Λ=0 »=0

Substitution of these expressions into (2.9)-(2.16) gives the follow-
ing recursion relations: for n = 0, 1, 2,

(7.2) u* - vl = fn'\ ul + v* = g*~ι in the strip - 1 < y < 0

with the boundary conditions

(7.3) vn + Fuϊ = sn~ι when y = 0, and vn = b™-1 when y = — 1 .

Here,

(7.4) / - 1 = (T1 = s-1 = 0, 6- = -Λ. ,

and, for n ^ 1,

(7.5) f"-1 = - n M Γ 1 + hvϊ'1 + % Σ [VuvΓ1"u — (1 +

(7.6) g*-1 - i/Mί"1 ~ huΓ1 ~ Σ I^Γ 1- 1 ' - (1 + »)3?W1-y] ,

(7.7) s^-1 = Σ ViM*-1-*

(7.8) δ"" 1 = -hxu
n~ι,
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(7.9) ψ-1 = -Fu"-1 - — Σ(uvu*-2-u + vvvn~2-») .
2 v=o

In (7.5) — (7.9), we have used the following conventions: a tilde over
a function indicates it is to be evaluated at y = 0; a tilde under a
function indicates it is to be evaluated at y = — 1; any sum whose
upper limit is less than its lower is to be taken as zero.

If we assume {uk}lzl and {vk}ΐZi known, then fn~\ gn~\ sn~\
and bn~x can be calculated using (7.5)-(7.9). un and vn must then be
found by solving the boundary value problem (7.2)-(7.3). Notice
that this problem has the same form as the problem (3.1)-(3.2)
studied in § 3. Thus, because of Lemma 3.1, we expect a condition
like

(7.10) Γ [s^Kx) - b*-\x)]dx = Γ Γ g*-\x, y)dxdy
J-oo J-lJ-00

to be necessary in order to solve (7.2)-(7.3). Now, the straight-
forward generalization of the spaces Λk

L(Σ) that we used in §§ 2-5
would be to a space with the norm

Γ (1 + If I*) sup \φ~(ξ, y)\dξ ,
J-oo —l<y<0

φ~ denoting the Fourier transform of <p. However, none of the
functionals appearing in (7.10) is continuous in the topology defined
by this norm. For this reason, we set, instead

Γ
J-o

sup I
l<y<0

when φ e C™(Σ), and we denote by Λ\Σ) the completion of C"(Σ) in
this norm. As before, φ~ is the Fourier transform of φ:

\ e~iζxφ{x9 y)dx .
J-ooJ-oo

is defined as we defined A^R1): we say that fiR'-^R1 is in
Λ\Rλ) if the extension /*, defined by f*(x, y) = fix), lies in A\Σ).

As in § 3, we begin our work by studying the system

(7.11) uy — vx = /, ux + vy = g for (x, y)eΣ

with the boundary conditions

(7.12) v + Fux = s when y = 0, v = b when y = — 1

and the additional side condition (cf. (6.3))
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(7.13) lim -i-fc u(x, 0)dx = 0 .
ĉ oo 2 ζ J-c

Notice, however, that, in the spaces A\Σ)9 (7.13) is automatic,
since, if u e Ak{Σ) with k ^ 0, then u(x, 0) is the Fourier transform
of the ZMunction vΓ(ξ, 0) and so u(x, 0) is continuous and goes to
zero at infinity. (7.13) follows from this. Thus, as long as we
operate in the spaces Λk, we may ignore (7.13).

We wr i te A = {(u, v) e Λ\Σ) x A\Σ): uy,vyeΛ\Σ)}. As in § 4 ,

we use t h e norm \\(u, v)\\ = \\u\\i + \\v\h + \\uy\\0 + H^Ho on A.

Then, we have

LEMMA 7.1. Let f,ge A\Σ), s e A\R% b e Λ\Rι). If F > 1, then
a necessary and sufficient condition that the problem (7.11)-(7.13)
have a solution (u, v) e Λ is that the function

(7.14) k(ξ) =—ϊs~(ξ) - b~(ξ) - Γ g~(ςf y)dy] be continuous at ξ = 0.

In this case, the solution is unique, and if N is a bound for
\k(ξ)\ in a neighborhood of zero, then the solution satisfies

(7.15) \\(u, v)\\ £ c(\\s\\0 + II6H, + | | / | | 0 + ||flr||0 + N ) .

Proof. The proof is similar to that of Lemma 3.1. Therefore,
we merely sketch it. We begin by taking the Fourier transform
of (7.11). The result is two ordinary differential equations, the
general solution of which is (cf. (3.10))

ί, V) = α(f) ch ξy + iβ(ξ) sh ξy - ([/"(£, y') ch ξ(y - y')

v~(ξ, y) = -ia(ξ) shζy + β(Q chξy - \°[g~(ξ, y') chξ(y - y')

-iΓ(f , y')shξ(y-y')]dy' .

Imposing the boundary conditions (7.12), we find that a and β are
determined by the equations

iξFa(ξ) + β(ξ) = s~(ξ) ,

(7.16) ia(ζ) sh ξ + β(ξ) chξ = ίT(f) + \[[9~(ξ, v) ch 5(1 + y)

+ iΓ(ζ, y) sh ζ(l + y)]dy .

The determinant of this pair of equations is J = iξFch.ζ — ishξ.
Since F > 1, Δ vanishes only for ξ = 0. Thus, a and β are con-



SOME EXACT SOLUTIONS OF THE NONLINEAR PROBLEM 105

tinuous for ξ Φ 0. Solving (7.16), we find that β is also continuous
at ζ = 0, provided only that (7.16) is consistent there, and this is
easily seen to be a consequence of even a weaker form of (7.14),
namely, (7.10) without the superscripts. Next, a is continuous at
ξ = 0 only if (7.14) is satisfied, while, if ueΛ\Σ), then vΓ must be
continuous, and the continuity of a is necessary for that of vΓ.
Thus, (7.14) is necessary for a solution of (7.11)-(7.12) in A.

Conversely, if (7.14) is satisfied, one can solve (7.16) for the
continuous functions a and β and substitute into the formulas for
u~ and v*. It is then easy to show that u~ and v^ are continuous
and bounded in Σ. Moreover, the behavior of vΓ and v* for large
If I can be found just as in §3, simply by replacing nΩ by ζ. (See
the argument before (3.13).) Using these facts, as well as (7.11),
we arrive at (7.15). This completes the proof of Lemma 7.1.

We now use Lemma 7.1 to show that equations (7.2)-(7.9) induc-
tively define a sequence {{un, vn)} a A. The condition for this is that
heAXR1). Notice that, just as membership in Ak implies (6.3), so
too the hypothesis heAXR1) implies (6.1). Thus, we are still work-
ing within the class of bottoms satisfying (6.1).

We begin by using (7.4) to find immediately that (u°, v°) exists,
is an element of A, and, by (7.15), satisfies

Now, write wv = (uv, vv). Suppose wv e A and satisfies

\w"

Σ
3=1

for v = 0, 1, , n — 1, where, when n = 0, 1, or 2, the terms
involving wr with 7 < 0 are taken to be zero.

As in § 4, the consistency condition (7.14) is automatic in the
context of (7.2)-(7.9). We use the notation that, if X is an analytic
function of ε, then \XJn is the coefficient of εn in the Taylor series
for 1. When s, 6, and g are given by (7.7), (7.8), and (7.6), we
have, with this notation,

sr"-1 = [K(yu)y + vM + v)u\ - -Jk(Λ + y)u]

Therefore, exactly as in § 4,
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8 — l _ 5^-1 _ I gn-l^y = ^ __ - 1 Γ " ( ^ 2 + #*)
J-i 3ίclL 2

S o
udy

dx '

say. Since the transform of dK^/dx is ΐf(i£%-T(?)> it follows from
Lemma 7.1 that wn = (un, vn) eΛ and

llw ll ^ c(\\8*-% + ||6—^U + 11/- 1 Ho + \\g*-% + ΛΓ- 1),

where N""1 is a bound for | CK"*"1)^) | in a neighborhood of zero.
On the other hand, the definition of Kn~x gives (recall that h does
not depend on e)

n-2

i/=0

%-3

where we have written wv = (u\ vv), and cf is a fixed constant,
depending only on F and ft. It follows, then, that

Hw ll ^ c(\\8*-% + Hδ-ML + Iir-Ίlo + Il^-Ίlo + ||w-2H

μ=0

Notice that the constant c here depends only on F and h, and not
on n.

Finally, we return to the definitions (7.5)-(7.9) and use them in
(7.18) to conclude

n = 0,1,2, , where, again, a w having a negative superscript is
understood to be zero. Thus, we have

LEMMA 7.2. Let h e Λ\Rι). Then, if F > 1, the equations (7.2)-
(7.9) define a unique sequence {{un, vn)} c A and, if we write wn =
(un, vn), wn satisfies (7.19).
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8* Analytic solutions in the space A. We now use a method,
first introduced in [8], and then used in [9, 6, 7], to show that the
series (7.1) converge. The method is based on

LEMMA 8.1. There exists a positive constant C such that

f 1 ^ C
s (v _j_ ±)\n ~ v + I)2 ^ (n + I)2 *

The proof is easy and can be found in [8] and [9]. Hence, we
omit it here.

A simple corollary is

LEMMA 8.2. Let {an} and {bn} be two sequences satisfying

\an\ ^ — — and \bn\ ^ — — .

Then,

Vίi b ^ c&Cr*
»=0 (n + I)2 '

where C is the constant of Lemma 8.1.

Now, let {wn} = {(un, vn)} be the sequence of Lemma 7.2. Write
c0 = ||w°|| and suppose, as an inductive hypothesis, that

Using this inequality in (7.19) and applying Lemma 8.2, we find

R L i=ι \(n — j + I) 2 {n — 3 + If

where, when n — 1 or 2, the terms with (w — i + 1) or (n — i ) ^ 0
in the denominator are understood to be zero. All of the constants
are independent of n. Thus, the induction can be completed by
choosing R large enough. It follows, then, that

, (n + I)2 '

for some constants c0 and R. From this, it is a triviality that the
series w = ΣSU wnεn converges in A if only ε is small enough. The
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limit, w = (u, v), is a solution of our problem (2.9)-(2.16), by the
way {(%*, vn)} was constructed. It is also unique since {(un, vn)} is
unique (Lemma 7.2). Thus, we have proved

THEOREM 8.3. Let heA\Rι). If F > 1 and ε is small enough,
there exists a unique solution of (2.9)-(2.16) in A that is analytic
in ε in a neighborhood of ε = 0. This solution can be calculated
to any desired degree of accuracy by expanding u and v in a series
of powers of ε and solving the resulting sequence of equations
(7.2M7.8).

This same method can also be applied to the case when h is
periodic. One then reproduces the existence result of Corollary 5.4,
and a slightly different uniqueness result from that of that part of
Theorem 5.2. In Theorem 5.2, we proved the solution found there
is unique if \\(u, v)\\ is small enough. Using the method of this
section, we can conclude that there is a unique solution within the
smaller class of functions which are analytic in ε, regardless of the
size of ||(w, v)||. The argument is the same as that which led to
Theorem 8.3 and, as can be seen from that theorem, what is needed
is F ' Φ Fn and ε small enough. Nothing need be said about the
size of \\(u, v)\\. We state these facts as

THEOREM 8.4. Let heΛ\(Rι). Then, for every F Φ Fn, n =
1, 2, •••, the problem (2.9)-(2.16) has a periodic (L) solution in
ΛL if ε is small enough. This solution is analytic in ε in a neigh-
borhood of ε = 0 and is unique in the closs of elements of ΛL that
are analytic in ε.
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