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HOMOTOPY DIMENSION OF SOME ORBIT SPACES

Vo THANH LIEM

The homotopy dimension of a compact absolute neigh-
borhood retract space X is defined to be the least dimension
among all the finite CW-complexes which have the same
homotopy type of X. We show that actions of finite groups
or actions of tori (with finite orbit types) on a finite-dimen-
sional compact absolute neighborhood retract X do not raise
homotopy dimension if the homotopy dimension of X is not
two.

1. Introduction and preliminaries. Through this note, all ac-
tions are of finite types.

In [7], Oliver gave an affirmative answer to Conner’s conjecture:
“The orbit space of an action of a compact Lie group on a finite-
dimensional AR is an AR”. From West [10], it follows that every
compact absolute neighborhood retract X (CANR X) has the homotopy
type of a finite complex. So, we can define the homotopy dimension
(h.d.) of a CANR X by

h.d. (X) = min {dim K| K is a finite complex and K = X} .

On the other hand, Conner [5] has shown that the orbit space of
an action of a compact Lie group on a finite-dimensional CANR is a
CANR. It is natural to wonder whether the actions of a compact
Lie group on a CANR can raise the homotopy dimension. We will
show that the homotopy dimension does not increase when h.d. (X) = 2
and when the action comes from either a finite group or a toral
group.

Combining a well-known result of Wall (Thm. F, [8]) and the
result of West [10] (mentioned above), we can easily obtain the
following lemma that will be needed in the sequel.

LEMMA 0. A CANR has the homotopy type of a k-dimensional
finite complex if and only if Hy(X;Z)=0 for all ¢ >k and
H*Y(X; B) = 0 for every coefficient bundle B of Zw,(X)-modules over
X if k # 2. Moreover, if H(X;Z) =0 for ¢ > 2 and H¥X; ) = 0;
then h.d. (X) < 8.

2. Orbits of action of finite groups. Let G be a cyclic group
of order p with a genertor g. The notation in [1] will be used as
follows 1 — g and 1 + g + --- + g** will be denoted respectively by
zand o. If one of these is denoted by p, the other will be denoted
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by 0. If B is a sheaf of Z,-modules over X/G, let A denote the sheaf
{H'(m'y; 7Bz "y) |y € X/G} over X/G,

where 7*3 is the pull back of B associated with the orbit map
7w: X — X/G. If U is an open subset of X/G, let A, denote the sheaf

[U{H(z'y; *Blz'y) |y e U U [{0,]y € X/G}]

and let A, (F closed in X/G) denote A/A ,_r (vefer to page 41 of
[1D.

It will be convenient to establish the following preliminary lem-
mas before we begin the proof of the main result.

LEMMA 1. Let G = Z,, p prime, act on a CANR X with fixed
point set F. Assume that m = dim X < oo and that 8, is a bundle
of coefficients of Z,7,(X/G)- modules over X/G. If h.d. (X) =k, then
HY(X/G;B,) =0 for all ¢ =k + 1.

Proof. Think of p and p as endomorphisms of the sheaf 4 and
denote their images respectively by pA and pA. Since Z, is a field,
it follows that the following sequence of sheaves over X/G

0— pA— AP oA 4, —0

is exact, where pA — A is the inclusion and where 7: A — A, is the
quotient homomorphism (Lemma 4.1 of [1]). This sequence induces
an exact cohomology sequence

- — H"(X|G; pA) — H*(X/G; A)
— H"(H|G; pA) @ H(X/G; Ap) — - -

Let H™(p) denote H™(X/G; pA). Observe H™(X/G; Ay) = H"(F}
B, F); then, from the above cohomology sequence and the fact that
H"(X/G; A) = H*(X; n*j3,) (see page 35, [1]), there are the following
exact sequences:

HY(X;z*B,) — H'o) @ HY(F;B,|F) — H™\(z),
H(X; 7% 8,) — H'(0) © Hq+1(F By F)— H"”(o)

H™X; = WED) ——*H’”(.O) GBH’”(F By F7) H”‘“(P)

Since h.d. (X) = k, it follows from Lemma 0 that H"*(X, z*3,) = 0,
for all n=qgq=k+ 1. On the other hand, H™*'(0) =0 since
dim X = m < . Thus, we can show inductively that

(1) HYX/G, F; B, = H(o) =0, and

(2) HUF;B,|F)=0.
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Hence, from the exact sequence of the pair (X/G, F),
- — HY(X/G, F; B,) — HUX|G; B,) — H'(F; B,| F) — - - -,
it follows that H(X/G; B,) = 0; and the proof of lemma is complete.

LEMMA 2. Let G = Z,, p prime, act on ¢ CANR X with fixed
point set F + @. Assume that dim X = m < o and that B s a
bundle of coefficients of Zrm,-~modules over X|/G. Then HY(X|/G;B) =0
for all g =k + 1, if hd. (X)) Z k.

Proof. Consider the following diagram

- — HY(X/G; 8) =5 HY(X|G; g) — HY(X/G; 8,) — - -

AN /
G
H(X;z*8) = 0

where p¢* is the transfer map [1] and where the horizontal exact
sequence is from the exact sequence of bundles of coefficients over

X/G:
Xp
0—p—>p—p3,—0.

So, it follows easily that HY(X/G;B8) =0 if ¢ =k + 1, since HY(X;
7*B) = 0 by Lemma 0 and H(X/G;3,) = 0 by Lemma 1. The proof
is now complete.

LEMMA 3. Let a finite group G act on X with fixed point set
F+ @. If X has the homotopy type of a simplicial complex KF,

I~
then H(X/G; Z) =0 for all ¢ > k.

Proof. Let 71:*(3{7(}{) be the pullback of the universal covering
space p: 3{\/6 — X/G associated with the orbit map 7: X — X/G. Then,
the induced map P: n*(j(/\é) — X is a covering map and the lifting
map 7* of « is the orbit map of the induced action of G on n*(jf/\é).
Now, since X = K*, it follows that Hq(ﬂ*(%), Z)y=0forq=k+ 1.
Then, the Smith theorem in the integral homology theory shows that

Hq(ﬁé, Z)=0 for q=Fk + 1. (Similar to the proof of Lemma 2
above by use of the transfer map p, on page 119 of [3].) Hence,
the proof is complete.

THEOREM 1. Suppose that a finite group G acts on a finite
dimensional CANR X. Ifh.d.(X) <k and k # 2, then b.d. (X/G) < k.
If k=2, hd. (X/G < 3).
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Proof. Step 1. G = Z,, p prime.

Case 1. F = @. See Lemma 2 of [6].

Case 2. F =+ . It follows from Lemma 2 and Lemma 3 above
that

(1) HYX/G;B8) =0, g =k + 1 and for any bundle coefficient B
over X/@G,

(2) H(X/G;Z)=0,qg=Fk+ 1.

So, it follows from Lemma 0 that b.d. (X) < k.

Step 2. G 1s cyclic of order p", p prime. We prove inductively
on |G|, the order of G. Let H be a subgroup of G of order p"
then, h.d. (X/H) < k by induction hypothesis and the proof is com-
plete by Step 1.

Step 3. G is a finite p-group. First, by an inductive proof as
in Step 2 we may assume that G is abelian, since G is solvable.
Therefore, we can write G = Z» @ --- @ Zr+. Then, again an induc-
tive proof as above will complete the proof for this case.

Step 4. General case. The proof will be similar to that of
Theorem III. 5.2 in [1].

Suppose that |G| = p¥ - -- prs and that K; is a p;-Sylow subgroups
of G, and denote 7, ; the canonical map X/K; — X/G for 7 =1,2, ---, s
as in [1]. Define n": H*(X/G; B) — D)= H*(X/K;; w¥,;8) by

=+ - + 7, .

Observe that H(X/K;;n*8) =0 forg=k +1landj=1,2, ---,s
by Step 3 above. Hence, if we can show that 7’ is injective, then
HY(X/G;B) =0 for ¢ =k + 1. Therefore, the theorem will follow
by Lemma 0 and Lemma 3 above.

Now, let pj: H*(X/K;; n¥;8) — H*(K/G; B8) be the tranfer map
[1] such that pg}z*; is the multiplication by |G|/|K;|. If reKera’,
then we have |G|/|K;|)-r = tiz¥;(r) =0 for each j=1,2 --- s,
since 7¥; = 0. Therefore, for each §=1,2, ---, s

(p?l e p:lel p;'i-;-l e p:‘s).q' =0.

Since the family pi ... pr—tpm+ ... p%s, §=1,2, ---, s, is relatively
J+1 J+1

prime, it follows that » = 0, and the proof is now complete.

3. Orbits of actions of total groups.

LEMMA 4. Suppose that the circle group S' acts on a finite-
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dimenstonal CANR X. If h.d.(X) <k, then HY(X/S'; 8) = 0 for all
g =k + 1 and for all bundles of coefficients B over X/S*.

Proof. Assume that H, ---, H, are finite isotropy subgroups of
the action. Let G be a finite cyclic subgroup of S' such that
H, ---, H, are subgroups of G. Then h.d. (X/G) =< k by the theorem
above. So, we may assume that the action is semi-free, i.e., it has
only two orbit types {¢} and S*. Let g8 be a bundle of coefficients
of Zz-modules over X/S!, where z, = 7,(X/S"). From Lemma 0, it
follows that HY(X;x*B) = 0 for all ¢ = k + 1, where 7: X — X/S* is
the orbit map.

Case 1. F = @. Since the action is free, {H(z 'y;t*B):y¢€
X/SY =g and {H'(w™'y; *B): y € X/S'} = 3. An observations on Leray
spectral sequence (as in Case 2) proves the lemma for this case.

Case 2. F # @. Since n~'(y) = {e} or S*, we have

(1) E = HYX/S'; H(z 'y; #*B|{x"y)) = H(X/S"; B),

(2) Ef' = HY(X/SY H{(z'y; n*B|n~'y)) = H(X/S', F; ), and

(3) Ers=0if s = 2.
We now proceed by induction on ¢q. Since dim X < <o, we may as-
sume that HY(X/S'; B8) =0 for ¢ =k + 2, then we will show that
H"(X/S*; B) = 0.

Step 1. To show that H (X/S', F;8) =0 for ¢ =k + 1. By the
induction hypothesis, we observe that for each ¢ = k + 2, the E,-
term, Ef°, of the Leray spectral sequence for the map 7 (page 140,
[2]) is trivial, since E)° = HY(X/S'; B) by (1). Observing the Leray
spectral sequence {E{°} of w, we can show that for all » = 2

(@) Eror= BF

and

(b) B =0;
therefore,

(@) EL™ = H"'(X/S', F; 8) by (2),
and

(b*) EE» = 0.
Now, from the convergence of {£y*} to H*(X;7*B) and from the
fact that H**(X;7*8) =0 by Lemma 0, we can show that
H**'(X/S', F; B) = 0.

Step 2. To show that HY(X, F; n*8) = 0 for ¢ = k + 2. Consider
the Leray spectral sequence (page 140, [2]) of the map of pairs
7. (X, F)— (X/S', F). First we observe that the sheaf &=
{H'(z'y, =y N F); 7*B|n'y) |y € X/S'} and the sheaf » = {H'(z 'y,
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Ty N F); *B|n'y)|y € X/S'} are the same over X/S*, since 7' (y) =
{e} or S*. Moreover, from the definition of the relative cohomology
(Prop. II. 12.2, [2]), it follows that H*(X/S', F; B8 = H*(X/S% ).
Then, from Step 1 it follows that

_(HAX[SL, F;8) =0 if g=zk+1

? 0 if s=2.

Therefore, E2° = 0 when ¢ + s = k + 2. Consequently, for ¢ = k + 2
HYX, F; B) = 0, since {E}*} converges to H*(X, F}; B).

Step 3. To show that H(X/S'; 8) = 0 for ¢ = k + 1. First, from
the exact cohomology sequence of the pair (X, F') and from the fact
of H(X, F;7n*R) = 0 for ¢ = k + 2, it follows that HY(F; n*g|F) =0
for ¢ = k + 1. Then, we observe that H*(F;z*g|F) = H*(F; B| F),
since F is the fixed point set. So, HF;R|F) =0 for ¢ = k + 1.
Therefore, the exactness of the cohomology sequence of the pair
(X/S*, F) shows that HY(X/S; 8) =0 for ¢ = k + 1, since HY(X/S?,
F; 8) = 0 by Step 1, and the proof of lemma is now complete.

THEOREM 2. Suppose that T™ acts on a finite-dimensional
CANR X. Then

(1) hd.(X/T™ £ h.d. (X) if hd. (X) = 2,
and

(2) hd. (X/T™) =3 if h.d.(X) =2.

Proof. By induction m, without loss of generality we only con-
sider the actions of S*. By Lemmas 0 and 4, we only have to show

that Hq()ff/\S/‘; Z)=0 for all g =% + 1. Again, by Lemma 4 above,
HYXJS Z) = 0 for all ¢ =k + 1; therefore Ext (H, (X/3°:Z) =0
and Hom (Hq(ﬁg/l;Z); Z)=0 for all ¢q =%k + 1 by the universal-
coefficient theorem (Thm. 5.5.3 in [8]). Hence, for each ¢ =k + 1
Ext (H,,(E(TS{‘; Z);Z) = 0 and Hom (HQ(ECTS'/‘; Z); Z) = 0; and it follows
from Theorem V. 13.7 in [2] that Hq()?/\S/‘; Z) = 0. The proof is now
complete.

COROLLARY. Let G be a compact Lie group such that |G/G,| is
finite, where G, is the torus identity component of G. Let G act on
a finite-dimensional CANR X. Then,

(1) af h.d. (X) # 2, then h.d. (X/G) £ h.d. (X),

(2) if h.d.(X) =2, then h.d. (X/G) < 3.

We conclude this paper by some rerﬁarks.
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REMARKS. (1) Itis a well-known problem in infinite-dimensional
topology to determine whether the orbit space of an action of com-
pact Lie group on the Hilbert cube T [0, 1] is a CAR. This explains
(maybe) the condition dim X < <« in the above statements.

(2) The limitation, when h.d.(X) = 2, is from an unsettled
problem.

(8) The author does not see how to extend these results for
the case of actions of compact Lie groups on a CANR.
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