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THE TORSION GROUP OF A RADICAL EXTENSION

DAVID GAY AND WILLIAM YSLAS VELEZ

The torsion group of a radical field extension is defined
and its structure determined using a theorem of Kneser. In
the case of a number field, a representation theorem is proved
characterizing all abelian groups that can appear as torsion
groups of a radical extension.

Let F be a field with multiplicative group F*. Let K be an
extension of F' and let T(K*/F*) be the torsion subgroup of K*/F*.
In this paper we will determine the structure of the group T(K*/F*)
in case K = F(a) where a is a root of irreducible 2™ — a € F[z] and
char F' )y m. In particular, we shall prove the following:

THEOREM A. For a positive integer q, let {, denote a primitive
qth root of unity. Let x™ — a <€ F[x] be 1rreducible with root a and
m = 2"m, with m, odd. For p a prime let T, denote the p-torsion
of T = T(F(a)*|F*). Let 9y = (o + (it Define N to be the largest
integer, if such exists, so that n.v € F'; otherwise, let N = co. Then

T = (" F* x T, x H

where
(a) H= {l,eFla):if p is prime and p|k, then {,& F}F*),
(b)y If ¢ F(a\F, then T, = {a™F*);
(¢) If e F(a)\F, then
(1) 2f N=co, T, = {a™ L1 F*) X {Coe: all t}F*) = Zp—1 X Zy;
(ii) if n EN< oo, T, = {a™1 + L) "F*) % {1 + L) F*) =
L1 X Loy,
(ii) if N<mn, T, = {a™F*) x {a™ "1+ L)F* = Zyw X Zyv-1.

The following questions concerning the group 7(K*/F*) have
already been examined for various extensions K/F":

(1) Let M be a subgroup of T containing F'* such that M/F*
is finite. When is it the case that [M: F*] = [F(M): F]? Kummer
theory [6, p. 218] says that this equation holds when the exponent
of M/F* is m and a primitive mth root of unity {, is an element
of F. Besicovitch [1], Mordell [9], and Siegel [13] found necessary
and sufficient conditions for this equation to hold in case the only
roots of unity in F(M) are +1. Kneser [5] has generalized all of
these results by proving the

THEOREM. The equation [M: F*] = [F(M): F'] holds iff, for every
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prime p, {,€ M implies {,€ F and 1 + {,€ M implies {,e F.

(2) Let 6c¢T. What is the general wvelationship between
[6F*: F*] and [F(8): F1? (The former is called the order of 6 over
F; the latter, the degree of 6 over F.) Risman [11] has shown the

THEOREM. There exist integers m and t so that nt = [6F*: F*],
n|[F6): F1, (n,t) =1 and, if p is prime with p|t, then {,, € F(O\F.

(3) Suppose L, ¢ F. Then what 1is the two-torsion T, of
T(F)*/F*)? May |8] has answered this with

THEOREM. Suppose £, ¢ F and char F %= 2. Then N = o implies
T, = {Com: all M}F*) = Zyo; N < oo implies T, = (A + {n)F*y = Zyn.

The remainder of this paper is organized as follows. In §1 we
prove Theorem A using the theorem of Kneser above. Along the
way, we will also characterize T,(F((,,)*/F*) and obtain some results
relating [aF'*: F'*] with [F(a): F]. Moreover, we will give a new
proof of the exact version of Kneser’s theorem that we need here.
This should make §1 relatively self-contained.

In the final section (§ 2), we will characterize for a given algebraic
number field F' those abelian groups that can arise as T(F(a)*/F*)
for a a root of irreducible x™ — a ¢ Flx].

1. Kneser’s theorem and proof of Theorem A. We assume
the notation of the introduction. In addition, for « ¢ K we denote
o(a) = ox(@) = [aF*: F*]. For p a prime, we recall that T,(K*/F*)
denotes the p-primary subgroup of T(K*/F*).

Both Kneser’s theorem and Risman’s theorem suggest that special
things happen when {,, € F(a)/F. Accordingly, our first results are
concerned with the group 7,(F(L,,)*/F*). This group plays a major
role in the final determination of the torsion group of a radical
extension.

LEmMMA 1.1. (a) Suppose p s odd, {,¢ F and ac F({,) with
ola) = p". Then acl, F*.

(b) Suppose {,¢ F and aeF({,) with ola) =2". Then r =1
implies a € (L F* and r = 2 implies {;-€ F(L) and a1 + L) F*.

Proof. (a) We prove this by induction on . For » =1, a is
a root of a” —a® € F'[x] which must be reducible since ([F'((,): F], p) = 1.
Thus a = {,b, for some be F. If » > 1, then o(a?) = p"~* and by the
inductive hypothesis a? = {,»-ic for some ce F. Let o be a generating
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automorphism of the Galois group G(F(,)/F). Then (a/o(a))” =
(€, /o(C,n)" so that ajo(a) = {,((,-/o(,-)). Since there exists a primitive
pth root of unity ), such that {}/o(C},) = {,, we have a/o(a) = (,-/o((r)
for some primitive p"th root of unity (.. Thus ael, . F*.

(b) Suppose » = 1. Then a is a root of irreducible x* — a* € F'[z].
Thus F(a) = F({,) so that ae{ F*.

For » = 2, we prove this by induction. In case 7 =2, o(la) =4
and « is a root of the new reducible polynomial x* — a'e F[x].

Thus by Capelli’s theorem ([4], p. 60f), a* = —4b* for some be F
or a =41 2be(l + )F*. For »>2, a*= (1 + {y-1)e, for some
ce F, by the inductive hypothesis. Thus, if ¢ is complex conjugation
(where 0({y-1)-Lp—1 = 1), we have (ajo(a))? = (1 + Lp-1)/o(1 + Lp-1) =
{w—1. Therefore a/o(a) == (1 + {»)/o(1 + ) and consequently
ae(l + G)F*. ]

As an immediate consequence of this lemma we have the follow-
ing result characterizing the structure of T,(F((,,)*/F*).

COROLLARY 1.2. Let T,= T,(F((,)*/F*) and suppose (,, ¢ F.
Then

(@) T,is infinite iff T, = {Lr: 7 > O)F*), in which case T, = Z7;
(o) if T, is finite and R is largest such that {,re F((,,), then
(i) p odd implies T, = L ,rF*) = Z,r and

(ii) p = 2 implies

B j<(l + Cor)F*) = Zyr—1, 1r¢F
T A+ G FFY = Ze, preF.

Proof. The proof is obvious from Lemma 1.1 except for (b)(ii).
The proof of the latter follows from (1 + £,z)* = Lr(7,2 + 2) and from
the fact that n,r-1 e F. 1

The next result tells the complete story about the relationship
between the order of an element and its degree in the extreme case
when the two numbers are relatively prime. We will use the fol-
lowing result.

1.3 (Norris-Vélez, [3] or [10]). Suppose ac K and o(a) = [aF*:
F*| =m. Let k= max{n:n|m and {,€ F(a)} and suppose F(a)2
L 2 F(,) with [ = [F(a): L]. Then L = F(a).

COROLLARY 1.4. Suppose (o(a), |[F(a): F']) = 1. Then ael, F*,
i.e., a is “essentially” a root of unity.

Proof. Let m = o(a) and n = [F(a): F']. Weclaim that (n, m) = 1
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entails m odd. For if m were even, then n would also be even con-
tracting (n, m) = 1. Thus m must be odd.

We will prove the corollary by induction on the number of dis-
tinet primes dividing m. If m = p*, then it follows from 1.3 that
F(a) = F(,) for some [ =<k. Since [F((»): F]|(p —1p'~ and
([F(a): F'], p) = 1, it follows that F({.) = F({,). The lemma then
implies the truth of the corollary in this case.

Now suppose m = m,p* with (m, p) = 1. By what we have just
seen a™ = ¢{,» for some ce F. Let {,x be a primitive p*th root of
1 as well as an m,th root of {,». Then (a/l,x)™ = ¢ and o(a/(}:) = m,.
Thus by the inductive hypothesis a/{x = {,b for some be F' so that
o = Eopd. O]

We begin the proof of Kneser’s theorem by deriving another
result concerning the relationship between the order of an element
and its degree. This is a sufficient condition for the two numbers
to be equal, a result at the opposite extreme from the one just
proved.

LEMMA 1.5. For every prime p dividing o(a) suppose that
(op € F(@)\F. Then [F(a): F] = o(a).

Proof. It is sufficient to prove this in case o(a) = p* for some
prime p.

Suppose p is odd. If [F(a**™)): F] < p, then F(a**™) = F(C,),
contradicting (., ¢ F(a)\F. Thus z* — ar* is irreducible and econ-
sequently so is #?* — a?*. Hence [F(a): F'] = o(a).

Let p =2. If k =1, then the conclusion is immediate. Assume
k=2. Then 2** — a® is reducible iff z* — a?* is reducible iff a** =
—4b* for some be F by Capelli (loc. cit.) iff a*** = +(1 + 4)b, con-
tradicting either o(a) = 2* or ¢ =, ¢ F(a)\F. Thus #** — &®* must
be irreducible and [F(a): F'] = o(a). |

The next result is of a more general nature; under certain con-
ditions it characterizes the p-torsion group of an extension given by
adjoining radicals. The proof is a modification of Kneser’s [5].

LEMMA 1.6. Let p be a prime, K an extension of F and N a
subgroup of K* such that F* S N and N/F* is a finite p-group.
Suppose that C,, & F(N)\F. Then

[F(N): F] = [N: F*] and T,(F(N)*|F*) = N|/F* .

Proof. Let .+~ & F(N)* so that _+7/F* = T (F(N)*/F*). Since
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A\F* is an abelian p-group, there exists a sequence of subgroups
F*=N,CN,<---& _# such that [N;: N,_,] = p. Consequently, for
every i, there exists 8,€ N,\N,_, such that g?e N,_,.

We claim that for all , [F(V,): F'] = p" and T,(F(N,)*/F*)= N,/F.
We prove this by induction on ». In case » = 0 this is obvious.
Assume that [F(N,_): F] = p** and T,(F(N,_)*/F*) = N,_,/F*.

To prove the claim in case n = k, we first show that 8, ¢ F(N,_).
For otherwise, since o(B,) is also a power or p, we would have
B *e T(F(N,_)*/F*) = N,_,/F*, a contradiction. Thus 3,¢ F(N,_,)
and, by Lemma 1.5, [F(N,): F(N,_,)]=». Hence [F(N,):F]=
[F(Ny): F(N_»]- [F(Ni_): F1 = p*.

To prove the remainder of the claim, let gF* e T, (F(N,)*/F*).
By Lemma 1.5 either B¢ F(N,_,) and 87 e F(N,_,) or B3€ F(N,_,). We
claim that in either case g8 = Biv for some v ¢ F(N,_,). This is cer-
tainly true in the latter case with 7 = p. To show it so in case
8¢ F(N,_,) and g? € F(N,_,), let 0 be an isomorphism of F(N,) into an
extension field of F(N,_,) fixingeve ry element of F(N,_,) but not g,.
Since [F(N,): FI(N,_,)] = p, it follows that F(N,_,)={0 € F(N,): 0(6)=4}.
Thus o(B) # B, 0(B) = LBk 0(B") = B” and o(B) = B for some
(4, ») = 1. Thus o(8'g8i) = B'B] so that g = Biv for some ~ve
F(N, ). Because o(B8) and o(B]) are p-powers, it follows that vF* ¢
T(F(N,_)*/F*) = N,_,/F*. Thus gF*e N,/F*. This completes the
induction and the proof of the original claim.

Since F(N,;) € F(N) for all ¢+ and [F(N): N] < <o, it follows that
the chain NS N, & --- & .4 is finite. Thus N, = .4 for some #%.
Hence

T(F(NY[F*) = T(F(A ) F*) = A |F*

and [F(_+"): F] = [_y": F'*]. Consequently, [F(N): F] = [F(_+"):F] =
[+ F*] = [N: F*]. But since [N: F'*] = [F(N): F'] in all cases, we
have [F(N): F] = [N: F*] and T, (F(N)*/F*) = N/F*. The proof is
complete. |

Just as Lemma 1.6 considered the p-torsion group, so does the
following theorem consider the whole torsion group.

THEOREM 1.7. Let K be an extension of F and M a subgroup
of K* satisfying F* S M and [M: K*] < . If, for all primes p,
L, € F(M\F, then [F(M): F| = [M: F*] and T(F(M)*/F*) = M/F*.

Proof. Let » be a prime and suppose p'|[M:F*|. Let
T,(M/F*)= M,/F*. Then by Lemma 1.6, [M,: F*] = p* = [F(M,): F].
Thus p!|[F(M): F'] and therefore [M: F*]|[F(M): F']. Since we have
in general (with no hypothesis) [M: F'*] = [F(M): F], it follows that
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|M: F*] = [F(M): F|.

To prove the second part of the theorem, we show that
T,(F(M)*|F*) = T,(M/F*). Thus, let gF*e T, (F(M)*/F*). As a
consequence of the equality proved in the preceeding paragraph,
we have

p' = [M,: F*| £ [{B, M,y: F*| = [F(M,, B): F] < p'
thus [M,: F*] = [(B, M,): K*] and hence gF* e M,/F*. ]

We now apply these results to the determination of T(F(M)*/F*)
in case M = aF'* where 2™ — a™ is irreducible in F[x]. It is clear
that Theorem 1.7 implies Theorem A for the case {,, ¢ F(a)\F for all
primes p. Thus we turn to an examination of the case when {,, e
F(a)\F' for some prime p.

THEOREM 1.8. Let m = m»* with (m, ») =1 and suppose {,, €
Fla). Then

(@) Fla™' ™ = F(&)=FW a) in case p =2 and k = 1;

() T,(F(a)*[F*) = (a™F*, T,(F()*/F*));

() (a™F*y N T(F(C,)*/F*) = F* if p is odd;

(d) <La™F* N TJ(FC)*F*) = LF*) if p=2 and k = 1.

Pioof. (a) Let m = 2'm, with m, odd. If {, e F(a)\F, then
22 — @ is reducible over F(Z). The latter is true iff 2* — a is re-
ducible over F({,) iff a = —4b* for some be F(,). Thus a = (2%,
and a? '™ = ¢, for some ¢c F(Z,). Since the square of a® '™ is in
F, it follows that ce F.

(b) First we claim that p*||[F(,,, a™): F']. Indeed, in case p is
odd, this follows from the facts that ([F((,): F], [F(a™): F]) =1,
F(,,)/F is Galois and p* = [F(a™): F']. In case p = 2, we have seen
from (a) that F({) € F(a™); furthermore [F(a™): F'] = 2*.

Now let gF* e T (F(a)*/F*). We claim that ge F((,,, a™). Other-
wise, we would have [F((,,, a™)*: F(C,,, a™)*]=p', I =1. Thus from
Lemma 1.5 it would follow that [F(,,, a™, B): F({,,, a™)] = p’, im-
plying p"**|[F(a): F'], a contradiction. So B¢ F((,, a™) and con-
sequently

BF(G)* € Ty(F (G am)*/F(G)") .

By Theorem 1.7, T,(F(L,,, a™)*/F(L,,)*) = {a™F((,,)*). Thus g =
v(am™)i for some je Z and ve F({,,). Hence vF*e T,(F(,)*/F*) and
(b) follows.

(¢) If p is odd, then the degrees [F(a™): F'| and [F(C,,): F'] are
relatively prime implying that {(a™F*) N T(F(,,)*/F*) = F*.

(d) From (a), F(a™* ™) = F(Z,). Thus a™' ' = {,¢ for some ce F.
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The conclusion then follows from the fact that [aF({)*: F({)*] =
k-1, O

An immediate consequence of this theorem is

COROLLARY 1.9. Let m = m2* where m, 1is odd. Then
T(F(a)*[F*) = T(F(a™)*/F*).

We also have the following bonus.

COROLLARY 1.10. Suppose p is odd and C,, (€ F(a)\F. Then
L€ F(L,).

Proof. Since (s € T,(F(a)*/F*), Corollary 1.2 and part (b) of the
theorem imply &, = (a™)”?'(,b for some be F* and integers j, I,
r such that (j, p) =1 and {,r€ F(&,). Thus (a™)# = ({70 = (b~
where ¢ =k —l. By 1.8(c), we have {a™F*) N T (F((,)*/F*) = F*
implying 5 = 0 and {,s € F(,). 7

The proof of Theorem A will be complete once we determine the
structure of T,(F(a™)*/F*) (m = 2%m,, m, odd). This we accomplish
in the following technical lemma.

LEmMA 1.11. (@) Let G be a group with G = {o) X (o),
0) = Zyy {0) = Zp, b=a=1. Let H= (0", 0 ")) and D, & the
images of o, o respectively in G/H. Then G/H = {p6* ") x (&),
(P& = Zya1, and (&) = Zy.

(b) Let G = {0y X Z,~ where {p) = Zy. Let o¢c Z,- be the unique
element of order 2". Then G = {00) X Zy. Let H = {(0™, 6*" ).
Let p, 6, Z,~ be images of 0, 0, Zy respectively in G/H. Then
G/H = {p6) X Zy where (PG = Zy—1 and Zo = Zy-.

Proof. (a) The element (o, 0* ) is of order 2° in G. Also
(0, ™ = (07, 0® ). It is easy to see that (o, 0” %) and (1, 0)
generate G and that ((p, 6* ")) N {1, 6)) = 1. Thus G = {(p, 6° %)) x
(1, a)).

(b) Analogous to (a) since H < {p0). O

Proof of Theorem A. We only need to prove (¢). If N < oo,
let b = max (n, N), a = min(n, N). Then (ii) and (iii) follow from
Lemma 1.11 (a) and Theorem 1.8 (d).

If N = co, then (i) follows from Lemma 1.11(b) and Theorem
1.8(d) with (o) = (a™F*) and Z,. = {{F"*: all ¢}. O

2. A characterization of H for algebraic number fields. As
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in the previous sections let 2™ — a € F'[x] be irreducible with root a
and char F'ym. Let .&7= {p:p prime and {,€ F'}. For an integer
n let (n) be the set of primes dividing n.

In general, the group H = <{{, € F(a): Z(q) N .&° = ¢}F'*) of Theo-
rem A can be quite large. For example, if F' is the field of real
numbers and a = {,, then H = {{{,: ¢ 0odd}F*). However, if F' is an
algebraic number field, then H is a finite eyclic group. Henceforth,
we assume F is an algebraic number field. Thus we have H = ({,F'*)
for some ¢ satisfying . (q) N & = ¢. Infact, H= Z,. We can show
more: Let S denote the set defined by ge S iff

(1) F@OnNF=g;

(2) F(,) (respectively, F((,)) is the splitting field of an irre-
ducible binomial;

(8) if C, e F(C,) (respectively, {, € F((,)) and &(r) N & = ¢, then
rlq.

Then we can prove the following.

THEOREM B. Let H = {{,F*) be the group of Theorem A with
QNP =¢. Then q€8S.

Theorem B is an immediate consequence of the following.

LemMmA 2.1. Let K/F be abelian with F(a)2 K2 F and n =
[K: F].

(a) If L, ¢ F(a)\F, then K 1s the splitting field of x* — a.

(b) If L, e F(a)\F, then K(L,) 1s the splitting field of z" — a or

" — a.

Proof. (a) Let k= max{l:l|m and { e F(a)}. By 1.3, K(,) is
the splitting field of ' — @ where |l = [K({,): F']. The group of 2! — a
is abelian so that, by a theorem of Schnizel ([12], Theorem 2) and
the fact that {, ¢ F(a)\F, its Galois group is also cyclic. Thus K is
the splitting field of z™ — a.

(b) By Theorem 1.8 (a), F({) = F(V/a) and « is a root of the
irreducible binomial 2™ — '@ over F({). Let n' = [K(): FC)].
By (a) K(C,) is the splitting field of &* — 1 a over F({). Thus K(&,)
is the splitting field of 2™ — a over F. It is easy to see that2n’ = n
or 2n. ]

If ge S and F({,) is the splitting field of irreducible #” — b, then
call  — b an associated binomial for q. If F({,,) is the splitting field
of an irreducible binomial 2" — ¢ and (, € F(,) with . Z@r)N .7 =4
implying 7|q, then call 2™ — ¢ an associated binomial for ¢. Then
we have the following converse to Theorem B.
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THEOREM C. Let qeS with " — b an associated binomial for q.
Let K be the splitting field of " — b. For any positive integer s,
theve exists cc I so that

(i) 2™ — be" 1s 1rreducible;

(ii) the group H of Theorem A for x™ — bc" is equal to (L, F™*);

(iii) ¢ F(a)\K.

Theorem C is an immediate consequence of the following more
general result.

LEMMA 2.2. As above, assume F is an algebraic number field.
Let a* — be Flx] be irreducible with root 3. Then for any integer
s there exists ce F' so that (1) x™ — be” is itrreducible; (2) if v is a
root of the latter with v* = B¢, then F(B) & F(v) and {, € F(v) implies
C.e F(B).

Proof. Let s be an integer, s > 1. For every rational prime p,
the binomial x°* — p is irreducible over Q. Moreover, for distinct
primes p, ---, 94, [Q(Vp, -+, Vp,): Q] = s* by [1]. Thus, if F is
an algebraic number field, there are infinitely many primes so that
«* — p is irreducible over F.

Now, if 7 is an algebraic number with [F(y, B8): F(8)] = s and
Cw€ F(n), then [F(B, {): F(B)]ls. Thus let & = {{: [F(&, B): F(B)][s}
and consider the field L = F(B, .%°). Because the number of solutions
to ¢(x) < x, for fixed =z, is finite, the set & is finite and thus L is
an algebraic number field. (¢ is Euler’s ¢-function.)

Choose p to be a prime so that 2° — p is irreducible over L(V 3).
Then we claim that " — bp™ is irreducible over F. We will prove
the claim by showing that the degree of a root is sm. Let v be a
root with v* = 8p. Then v is also a root of 2° — 8p over L(Vpg).
Furthermore, there exists a root 9 of &° — p so that L(V g, v) =
L(V3,9). Thus [LVYB, 7): L(VR) =s, * — Bp is irreducible over
L, and hence [L(v): L] = [F(v): F(B)] = s. Since [F(B): F'] = n, the
degree of v over F is sn. This proves the claim.

Now let {,e F(v). Then by the definition of L, {,€ L. But by
the fact that [L(v): L] = [F(v): F(B)], it follows that F(v) N L = F(p).
Thus {, e F(8). This completes the proof of the lemma. ™

Our final result is a characterization of the set S.

PROPOSITION 2.3.
(1) If »,seS and Fr) = .F°(s), then r = s.
(2) |8 < oo

Proof. (1) follows from the fact that if geS and pe.Z(g),
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then p’||q implies (by Corollary 1.8) {,.e F(,) and C 1 ¢ F(C,).

(2) Let &A(S) = {p: pcF(q) for some qgeS}. By Lemma 2.1,
» € Z(S) implies that either F({,) or F({,,) is the splitting field of
an irreducible binomial. We can show that F({,) is always the
splitting field of an irreducible binomial. For, suppose 2™ — b is
irreducible, has splitting field F({,) and that {, ¢ F({,). Since F((,)
is abelian, 2* — b must be a normal polynomial. Hence {, € F({,) and
thus 4 n. If n is odd, then 2™ + b* is irreducible with splitting
field F(L,,). If 2||n, then 2™ + 27b* is irreducible with splitting field
F(,,). Thus

F(S) = {p: p prime, p¢.F, F(,) is the splitting field
of an irreducible binomial}.

We claim that Z2(S) is finite. This and (1) would show |S| < .

To prove this claim, let % be the number of roots of unity in
F(¢). By the argument in the proof of Lemma 2.2, the set {p: p prime
[F(&,): F(£)] < n} is finite. Thus let p € Z2(S) so that [F((,,): F({,)] =
m > n. Therefore F({,,) is the splitting field of an irreducible and
abelian binomial ™ — b for some be F. Thus {, € F(,) and, by [3;
Proposition 1], &(m) = &< Z(n). Hence, since m > n, we have
Fl.) NFE») 2 FCE). Thus also F(C,) N F((,2) 2 F(). But the
number of primes p so that the latter occurs must be finite since
[F(C,2):Q] < . Thus Z(S) is finite. . OJ

REMARK. The set S is closely related to the set N = {n: there
exist be F so that 2" — b normal}. In fact, if ne N, then there
exist n,, ¢, with n = n,.,, FPn,) = &, q,|q for some geS.

More precisely, suppose (, e F. If pe.# define A(p) =1 by
lpam €F, Cam-1€¢F. For qe8S, pe., define B(p,q), alp,q) by
Copma €F), Copwar € F(C,) and p*»?||[F(): F]. Let &, =
FP(peo p*PPCP[FC): F]) and m(g) = [[,ee p*™?**?.  Then a
typical element of N is of the form

Qo[ F C): F Im.(q)m.(q)

where g € S, ¢, ¢ with F(C,)) = F(,), Z(m\(q)) & F°\F, and m.(q)| m(q).
The case {, ¢ F' is similar (modulo 2!). See [2] for details and proof.

We conclude with some examples of the set S for various alge-
braic number fields:

(1) F=Q, S={1,3} (see [7]);

(2) F=QK), S=1{1,8,5} (see [14]);

(3) F=Q&), S=1{1,T (see [2]);

(4) F=Q(V(B+15)/2). Since Q) =QLV (G +15)/2), it
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follows that F({,) = F({;). Thus z* + 36 is irreducible with splitting
field F(C,) = F({;). Hence S = {1, 8, 5, 15}.
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