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RATES OF DECREASE OF SEQUENCES OF POWERS
IN COMMUTATIVE RADICAL BANACH ALGEBRAS

JEAN ESTERLE

Every element b of a radical Banach algebra <7 satisfies
lim,—.. 167||¥»=0. We are concerned here with the existence
of a lower bound for the rate of decrease of the sequence
(116%]]) under various assumptions over b and %, when b is
not nilpotent and <2 commutative.

If the nilpotents are dense in <2 then for every sequence
(1,) of positive reals there exists a nonnilpotent b € &2 such
that liminf,-. ||6”||/2,=0. A stronger result holds if <2 pos-
sesses furthermore a bounded approximate identity. On
the other direction if < has no nilpotent element and if
some element of <2 which is not a divisor of zero acts com-
pactly on <2 then there exists a sequence (1,) of positive
reals such that liminf,.. ||b”||/2,=-+c for every nonzero
be . Also there exists universal lower bounds for the
rate of decrease of |la”|| if (a’) is an analytic semigroup
over the positive reals or over some open angle. Such lower
bounds do not exist for infinitely differentiable semigroups
over the positive reals.

1. W. G. Badé and H. G. Dales observed recently in [3] that
given any sequence (n,) of positive reals there exists a nonnilpotent
element b of the Volterra algebra L.(0, 1) such that [[b"| <, for
every m € N.

On the other hand they showed in [3] that if @ is a continuous
positive function over [0, + [ satisfying

lim[0@]" =0, o+ 9) < 0@o)

for every z, y €0, + o[ then there exists a sequence . () of posi-
tive reals such that

lim inf ”’2—” =+ oo

for every nonzero elements b of L'(R*, w). Precise estimations of
this sequence A\, (w) are given in [3] (also Badé and Dales obtain in
[3] a characterization of the “standard” closed ideals of L'(R*, w) in
terms of rates of decrease of the sequence of powers of their
elements).

We first study in §2 commutative radical Banach algebras which
possess nilpotent elements. The Theorem 2.1 shows that if be[b_s]~
for some nonnilpotent element b of a commutative algebra <2, where
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4" is the nilradical of .2, then for every sequence (A,) of positive
reals there exists a nonnilpotent element ¢ of <2 such that

lim inflzi“ —0,bec[? @ Cel .

n—00
n

We obtain a stronger result when &2 possesses bounded approximate
identities: if the nilpotents are dense in such an algebra <Z and if
& is separable then for every sequence (A,) of positive reals there
exists be.# such that [b#Z]" = & and such that ||b"| <\, for
every n € N. Using results recently obtained by the author in [9]
we incidentally deduce that if the continuum hypothesis is satisfied
then for every commutative complex algebra A without unit which
is an integral domain of cardinality 2™ and for every sequence (\,)
of positive reals there exists a faithful algebra homomorphism
¢: A— 2 such that limsup,..|®(@”)|/», =0 for every nonzero
acA.

In §3 we study the behavior of ||a*|| where (a*) is a (nonzero)
analytic semigroup in a commutative radical Banach algebra <2 de-
fined over an open angle U, = {zcC — {0}] |Argz| < 6} where 0 <
0 < w/2. (A.M. Sinclair proved in [12] that if <#Z possesses bounded
approximate identities then .2 contains analytic semigroups (a®) de-
fined over U,, which are bounded over 10, +[.) We prove that
for such an analytic semigroup we have lim log,_.. ||a™||/»” = 0 for
every v > /20 and for every @ €]—46, 6], the convergence being uni-
form over [—a, a] for every ac[0, 6[. (This result is related with
the Ahlfors-Heins theorem for continuous bounded functions over the
closed right-hand plane which are analytic over the open right-hand
halfplane). In fact these estimates work for any continuous algebra
seminorm ¢ over .2 such that ¢(a) = 0. In particular, the notations
being as above, we have lim inf,_., [¢(a™)]"/*/exp[—n""']= + o« for every
v>mx/20 if ¢ is a continuous algebra seminorm over <#Z such that
qla) = 0. We also obtain lower estimates for the rate of decreasing
at infinity of the function »— | a"|| where (a"),., is a (nonzero)
analytic semigroup in <2 defined over ]0, +o[. Such lower esti-
mates do not exist for infinitely differentiable semigroups (a7),., over
10, +[. We show in the Theorem 3.6 that for every continuous
positive function g over [1, 4 oo[ there exists a commutative Banach
algebra <# and an infinitely differentiable semigroup (a’),., in .#
defined over ]0, + o[ such that 0 < ||a"|| < g(r) for every » = 1.

In §4 we study the rate of decrease of sequences of powers in
commutative radical Banach algebras which are integral domains and
in which some nonzero element acts compactly. We prove that for
every continuous algebra norm ¢ defined on such an algebra <#
there exists a sequence )\,(q) such that
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lim inf 4@ |
noe Ng(Q)
for every nonzero element b of <2 W. G. Badé and H. G. Dales
showed in [3] that every element of L'(R*, w) acts compactly if @
is a continuous weight over [0, o[ such that w(x + %) < w(x)w(y) for
every x, ¥y =0 and

lim [w(x)]"* = 0

provided the function x — [w(x)]'* is decreasing over [0, +[. We
thus obtain in a very simple way the existence of a lower bound
for the rate of decrease of sequences of powers in the weighted
algebras L'(R*, ) for every weight ® which is continuous over
10, 4+ co[ (even if the weight is unbounded at the origin), but of
course we do not obtain a concrete estimate for this lower bound.
Note that G.R. Allan and A. M. Sinclair proved in [2] that if a
commutative radical Banach algebra .&# has a bounded approximate
identity then for any sequence (\,) of positive reals such that
lim, . A\, = 0 there exists b €.22 such that lim inf, ... || 0" [|""/\, = + oo.
In other terms the sequence (||b"]|) may decrease as slowly as pos-
sible in this case. It was also recently proved by the author in
[8] that the rate of decrease of the sequence (||b"]|) is usually very
irregular. If be[b#]- for some nonnilpotent element b of a com-
mutative radical Banach algebra .22 then there exists ¢e.<# such
that
cn”l/'sz

lim inf L™ — 0. lim sup !
P ” bn Hl/n N—roo [I b'n. ”l/n

+oo .

I must thank W. G. Badé and G. H. Dales for sending me pre-
prints and Paul Koosis and A. M. Sinclair for several valuable dis-
cussions.

I thank also the referee who checked very carefully the original
version of this paper.

2. Rate of decrease of sequences of powers in commutative
radical Banach algebras which possess nilpotent elements.

THEOREM 2.1. Let &2 be a commutative radical Banach algebra
and let 1" be the set of milpotent elements of #. If belb.+]~ for
some nonnilpotent element b of B then for every sequence (\,) of
positive reals there exists a monnilpotent element ¢ of B such that

limint 1€ = o .

n—oco Ay
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Proof. Add a unit e to <Z. We will construct by induction a
sequence (e,) of elements of .#; a sequence ({,) of positive reals and
a2 strictly increasing sequence (g,) of positive integers satisfying the
following conditions, where we denote by X, the product
b(te + e), -+, (e +e,) (we put for convenience X, =0b, /M, =1,
¢o = 1).

(1) || Xk, — XJe[] < 27"\, for every k <mn and every n=1.
(2) || X < 2"\, for every m=1.
(3) || Xpms — Xall <271 + [I(1e + €))7 -

oo (U4 [ (¢aese + €, D7 for every n=1.
We can choose a nonzero element e, of 47 such that

|5 — be, || < 1/2 max(1, M) .
Let g, be some positive integer such that e®* = 0. Then

lim b%(e, + pte) = 0
10

#>0

(use the Newton polynomial). So taking /, > 0 small enough we can
arrange the conditions (1), (2), (3) to be satisfied for » =1. Now
suppose that we have constructed a finite sequence (e, - -+, e,) of
elements of _/", a finite sequence (f, -, /%) of positive reals and
a finite increasing sequence (g, * -, qx) of positive integers satisfying
the three conditions. As be[b.#"]- we have also X,e[X,. 1 and
there exists a sequence (f,) of elements of .7~ such that

lim || X, — X.fall = 0.
So
lim || Xg* — X2 f|| =0
for every k <mn and taking €, = fa for m large enough, we can
arrange that
| X — Xikesk, || < 277N,
for every k < n and

I X, — Xaeall <27 7[1 + [ (te + €7 {17 -
L4 e eI

Then
lim sup || Xt — XHeass + )| <27 N,
lin

>0



RATES OF DECREASE OF SEQUENCES OF POWERS 65

limsup || X, — X, (e,4, + t)|| <27 '[|| (e + e)~*|| + 1]+ --

=0
>0

S [ (2R el I §
Also if ¢,+, > ¢, is some integer such that e[ = 0,

lim sup || Xt (e + e,) 51| = 0,
1t—0
1t>0

(use again the Newton polynomial).

So choosing ., > 0 small enough we can arrange the conditions (1),
(2), (8) to be satisfied by the finite sequences (e;, - - -, €,+1), (@1, ***, Quts)
and (z, ---, #,+.). We thus see that we can construet by induction
three infinite sequences (e,), (¢,) and (g,) satisfying the three con-
ditions.

Using the condition (3) we see that the sequence (X,) is Cauchy.
Denote by ¢ its limit. We have, for every n e N:

o = || X + 35 (Xim, — X

< Xl + 31X — Xee

Using the conditions (1) and (2), we obtain:

e ]| = 277,
So

lim inf L1l — ¢ .

n—co N

Also
e(te + e)™ -+ (e +e,)" — bl
S X (e +e) e (e + e) "t — Xp(the + o) -

m=n-+1

<

o (e + 0

.

Using (3), we obtain: |je(tte + )™ -+ (Me +e,)" —b|| <2 Sobe
[e(# @ Ce)]~, and ¢ is not nilpotent, which achieves the proof of the
theorem.

We will now prove a stronger result for commutative radical
Banach algebras which possess approximate identities.

THEOREM 2.2. Let 2 a commutative separable radical Banach
algebra which possesses a bounded approximate identity. If the
nilpotents are dense in F, there exists for every sequence (\,) of
positive reals an element ¢ of & such that [cF]~ = F# and || c*|| <\,
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for every m e N.

Proof. To prove the theorem we can use any algebra norm
over .22 which is equivalent to the given one, and it follows from
[12] that there exists an equivalent norm over <2 for which the
bound of the approximate identity is 1. So we may assume without
any loss of generality that there exists a sequence (e,) of elements
of &2 such that ||e,]| =1 and

lim || ge, — 8[| =0

for every e .. In fact, as .4 is dense in ZZ, we may assume
that (e,) is nilpotent for every n e N. Choose any bc.<# such that
[0.2]- = <2 (the existence of such an element b follows from the
Johnson Varopoulos extension of Cohen’s factorization theorem [5],
[11], [13], as observed by G. R. Allan in [1]). Taking a suitable
subsequence of the sequence ((1 — 1/n)e,) we easily obtain a sequence
(f.) of nilpotent elements of .2 such that || f,|| <1 and ||b — bf,|| <27
for every ne N. Let (q,) be a strictly increasing sequence of posi-
tive integers such that f» = 0 for every € N. We have, for every

neN :lim (pe + f,)* =0 for every k=g, .
1t—0

n>0

So we can find for every me N a positive real , such that
(ttue + £)F <N if ¢, =k <gq,+. and such that [[z.e+ /[ <1,
1o — b(te + f)ll <27 Put: X, = b(pre + f) - - - (Mue + f,). Wehave:

1%, = Xonll S e + A1l e + £l 1 = Bttue + Fr)ll <27

So the sequence (X,) is Cauchy. Denote by ¢ its limit.
Let & be any integer = q,. There exists n e N such that ¢, <
k< q,1,. We have, for m = n:

1 Xl = N (e + S8 - - - [ (e + SFu)* 1] 110" ]]
= 0FN 1 (etme + LM = 2 [10F]]

So ||¢*|| £\, for k large enough, and taking 6 > 0 small enough
we obtain ||(d¢)*|] <\, for every ke N. Also

HC(#xe + fl)_l ce (Aune + fn)_l - bH
= lim 0(ttsie + furs) -+ (Pme + fr) — B

é Hb(ﬁen-}-le + fn+1> - b” + m%+l[|b(#n~kle + fn+1) Tt
° (l’!m’}'le + fm-)-l) - b(#n’i‘le —]_ fn+1) vt (Iume + f‘m) “
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< 3 [be + f) — bl s 2

So bec[# P Ce]-. As # has bounded approximate identities, ce
[e#)-, # = [bF#] = [e#]~ = [(0¢c)#]~. This achieves the proof.

COROLLARY 2.3. Let A be a commutative mnonunital complex
algebra which is an integral domain of cardinality 2% and let <&
be a commutative separable Bamnach algebra with bounded approx-
imate identities in which the nilpotents are dense. If the continu-
um hypothesis is assumed there exists for every sequence (\,) of
positive reals a faithful algebra homomorphism @ from A into &
such that lim, . sup ||@@™)||/n, = 0 for every monzero element a of A.

Proof. It follows from [9], Corollary 6-2 that if A satisfies the
above conditions and if b€ [b°#]~ for some nonnilpotent element of
a commutative radical algebra .&# then there exists a faithful al-
gebra homomorphism @ from A into [),.xb0" <2 when the continuum
hypothesis is assumed. It follows from the Theorem 2.2 that there
exists be.<Z such that [b#] = &, ||b*|| <\, for every = e N.
Then b € [b>°<#]~ and there exists a faithful algebra homomorphism
@ from A into ,.x0"<%. As lim,.ysup | y"]|/||]6"]] =0 for every
YEMNuex ", this proves the corollary.

3. Lower estimates of the rates of decrease at infinity for
analytic semigroups in commutative radical Banach algebras. Let
0 be any element of 10, 7/2] and let <2 be a commutative Banach
algebra. We will say that a function z—a* over the open angle
U, ={zeC — {0}/|Arg z| < 0} is a semigroup in & defined over U,
when a*t*2 = q*a* for every z, z,€ U,, and the semigroup will be
said to be analytic when the function z— a* is analytic over U,.
Such nonzero semigroups exist an abundance in <2 when <Z posses-
ses bounded approximate identities. A. M. Sinclair proved in [12]
that it is then possible for every be < to construct an analytic
semigroup z — a° defined over U,, such that | a*] is bounded over
the positive reals and such that bea*- 2 for every z¢ U,,.

We will now give, using the classical Ahlfors Heins theorem,
some lower bounds for the rate of decreasing of ||a*| along half
lines. (The proof works also in the semi-simple case, but our esti-
mates are vacuous if <2 is not radical.)

THEOREM 3.1. Let <2 be a commutative radical Banach algebra,
and let 0 be any element of 10, ©/2]. Put: U, = {z € C — {0}\|Arg z| < 6}.
If a nonzero semigroup (a%),.y, in F# ts analytic over U, we have
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lim log ﬂu

r—co Pl

=0

Jor every v > /20 and every @ €—40, 0, and the convergence is uni-
form over [—a, a] for every ac|0, 0]. Similar results hold for
[[4(ba?)|| where b is any element of & such that ba =0 and  any
homomorphism from % into a Banach algebra such that +r(ab) # 0.

Proof. For 6 >0 and a €0, 4] put

M;.=1+ sup [a*] .
0=Rez=25
IArg 2/ <a

If |Argz| < a, Rez =0 then |[Arg(d + z)] < a and there exists ne N
such that né < Re(6 + 2) < (n + 1)o.

So

5§Re<5+z><5+%, ‘Arg(azzﬂga
and

a2 £ M, @7 = (Mo = (M0

Denote by logz the determination of the logarithm for z 0,
Re 2z = 0 which is real over the positive reals and put:

T = exp [__Za log z] .
T

This function can be extended by continuity at zero and is then
continuous over [U..]~ and analytic over U.,. Letbd be any element
of 2 such that ab = 0 and let [ be a continuous linear from over
Z such that I(ab) = 0. The function

[z ——[ba""" "]

is continuous over [U..]- and analytic over U..,. We have, for
every z¢|U.,|:

,f(z)l = Hl” HbH(MLa)lq’-m?n/:
< 211161 QL 0

So f is also of exponential type in the closed right-hand half plane
[U..]-, and S‘” log*| £ |/(1 + y)dy < +-. It follows from the

Ahlfors-Heins Theorem (see for example [4], Theorem 7.2.6) that
there exists a real number ) such that lim, .. log|f(re*)|/r» = \ cos @

for “many” @, and certainly for at least one @e]—=n/2, w/2[. Put:
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8 = (2ap/w). We obtain

14reth

lim Jog [Lba )]
e T
2a

=\COoSP .

So

lim inf

r—oo

log [[ba**"|| - ;- log [Lba' )|
ERS T
2a 2
i Hog [[1]] + log [[a]]]
e .
2x

Now let 7 be any positive real number. We have:

(r + 1)e?* = rcos g [1 — %—i—}

+cos,8[1 ——t—gﬁ:lJr (r + 1)§fn—6eza.
tga sin o

Put:

5:cos;3<1—igﬁ>, 2, =6+ (r + DSBB gin

tgc sin «

We have: ||a”"|| £ M,,,- K™, where

K — (Ma )sinﬁl&sina
»a .

So
” ba(f-l-l)e":le ” é K‘r+1[4barcosﬁ(1—tgﬁltgzx){[ 'Ma .
and
[batere? || < KM, Jbar ||
where
= tga
cos B(tga — tgp) :
We obtain:
lim inf log [[ba|| > lim inf log || bater+iei? ||
T - E3
2a 20
lim 192 Mooy (r#t + Dlog K

T e T
2c 2a

= NCOSP > — oo ,

69
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pr+1 e’:ﬂ
= % lim inf log [ba +_) s
rooo (}47' + 1)»./2«

co

So

T

> —oco for every v >
y 20

lim inf

r-roo

log || ba" ||
7

which implies in fact that

lim in

r -0

£ log || ba || >0
r7’

for every v > w7/20. Now take again acl0, ] and let @ be any
element of [—a, a]. We have, for every » > 0: 27 + 1 =re* + 1 +
z,, where z, = 7[2 — cos® — ¢sin®]. So

Argzl=p=a, || =M )" = Ki- M,
where
K,=(M,)" .
For Argz| = a,z+ 0, v > /20 we obtain:

log [[ba” || - log [[ba**' || log K. _ log M,,

izl 2| |z [2]
- (z + L)” log [ba** | _ log K. _ log M,
2]/ (2lz| + 1) |z~ (2]

Now put:
k.,=1+ sup ||e*].

1sizl=2
IArg zl =z«

If [z] =1, let » be the positive integer satisfying »n < [z| <n + 1.
We have:

ba? || = [[b]] lla*[* = [[bllkz = k'|[D]] -

Finally we obtain, for |z2| =1, v > /20, |Argz| < a:

logk,  log|b] - log |ba*]]

2| lzI” =zl
1 Y log || ba®*'+!|| logK, loghM,,
> (2 + — - — )
2+ ) By T T ey
As
lim inf log [[ba | _ 0,

roco 2r + 1)



RATES OF DECREASE OF SEQUENCES OF POWERS 71

this proves the first assertion of the theorem. In fact this achieves
the proof, because if a semigroup (a*),.y, is analytic over U, then
the map z — y(a*) defines an analytic semigroup over U, in &Z if
is any continuous homomorphism from &2 into a Banach algebra <Z.

COROLLARY 3.2. Let a be a nonzero element of a commutative
radical Banach algebra F#. If there exists an analytic semigroup
z — a° defined over U, for some 0 ¢€[0, /2] then

T

lim inf [exp(n' ]| @™ ||'" = 4+ for every v > Th

Proof. Let v be any element of ]z/20[, [ and let ~ be an
element of ]z/26, v[. There exists m > 0 such that

la* [ 2 exp[—mn~1],
for every ne N. So
lim inf exp[n’~']|| a, ||

= lim inf exp[n'™ — mn""'] = + o .

We now give lower estimates for the rate of decrease at infinity

of ||a"||, where » — a" is an analytic semigroup over 0, + oof.

THEOREM 3.3. Let #Z be a commutative radical Banach algebra
and let (a"),-, be a semigroup in F defined over the positive reals.
If the semigroup is analytic over 10, + co| then there exists » >0
such that

lim log ||a" || exp(—Mr) =0

(and more generally such that

lim log [|y+(ba") || exp(—nr) = 0

for every be & and for every homomorphism qr from # into a
Banach algebra satisfying (ab) = 0).

Proof. The function » — " is analytic at 1, so there exists
7 > 0 and a sequence (a,),>, of elements of <# such that

8

af

I

a,(r — 1)* for every re[l —27, 1+ 27].
0

]

k3

So the series
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3 a,z”
n=0

is absolutely convergent for |z| < 27, and its sum f(z) is analytic
for |z] < 27.

We have, for every t,, t,e[—7, 7] ft)f(t) = a*tha*+2 = af(t, + &,).
This implies that the equality f(2,)f(2z.) = af(#, + 2,) holds for every
2, 2,€C such that |z,| =7, |2, <%. Now take any zeC such that
Rez=2, |Imz|<7n. Put: g&) = f[1Imz]a®*'. Using the ana-
Iyticity of f and the multiplicative properties of the semigroup we
see easily that ¢ is analytic in the interior of the set 4= {z¢
C/Rez=2, Imz <7} and continuous over 4. If 2z =z, + iy, €4,
2, = X, + 1Y, € 4 and if the sum 2z, + 2, belongs also to 4 we have:

92 + 2,) = [y, + 1yp)a™
= af(iy, + 1y,)a" "
= fly)f(iy)a™+*
= g(2)9(z,) .

Also if z is real and if Rez = 2 we have g(z) = f(0)a** = a-a*' = a*.
For Rez > 0 denote by Log z the determination of the logarithm
which takes real values over the positive reals. The function

z— 2 + 2;7]Log(z + 1)

maps the closed right-hand half plane [U,,]- into 4. Now let b be
an element of <2 such that ab + 0, let 4 be a continuous homo-
morphism from &2 into a Banach algebra < and let [ be a con-
tinuous linear form over <z such that I[y(ab)] # 0. The function

h:iz—1 I:'\/J‘l:b -g<2 + —27%7Log(z + 1))]]

is analytic over U,, and continuous over [U,.]~. As
lim ||| =0,
there exists M > 0 such that ||a”|| = M for every x €[1, + o[, which

implies that g is bounded over 4. So % is bounded over [U.,] .
Using again the Ahlfors-Heins theorem we see that

liminfl—(—)—glw > —oo for some 06\:0 s 1;-[ .
r—00 r

So
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liming LY LS Togll + re’) ||

r—oo r

06[0,—75[.
2

We have:

H > — o for some

g[2 + 2 Log(1 + re“’)jl =f [————2”7 Arg (1 + re"")]al“””‘ log |1 4+zetf]
T T
Put:

K = sup|f(2)| .

1zl<n
We obtain:
[ (vo(2 + Zog + 1)) | = Kl [y @amese .
For » > 1, log |1 + re?| = log(r — 1) and
1+ 2og |1 + re| = Zlog(r — 1) + =, ,
T T
where z, = 1. We obtain, for every » > 1:

|v]b0(2 + ZLogt + 1)) ||| < Ka || [pfbasn=xe-2])

So
Iim inf 10g H 'll/‘[ba;”/ﬂ log(r—l)] H > — oo,
r—00 r
lim inf [log || y[ba’] H]exp[—z% t] — lim inf 1021 %”(b‘y‘; )l
t—co t—o0 1 [_ t]
+ exp 27
— lim inf 108 [ Ga™ )|
r—00 r

So

lim inf [log || (ba) ll]exp[-—% t:] >0.
As

lim || (ba)]| = 0, lim sup [log || +(ba")]|lexp [—%t} <0.
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So

lim [log || (ba®)]] exp[—%t] ~ 0,
t—co
which proves the theorem.

COROLLARY 3.4. Let ZZ be a commutative radical Banach algebra,
and let a be a nonzero element of #. If there exists an analytic
semigroup (a”),-, over |0, + o with a' = a, then

lim inf || a” || explexp(\n)] = + = for some X\ > 0.

Proof. It follows from the theorem that there exists two posi-
tive numbers ¢ and ¢ such that log|a"|| = — cexp[pun] for every
n=1. So ||a*|| = exp|[—cexp(un)] for every » =1 and

liminf || o || explexp(2£n)] = lim inf exp[exp(2un) — c exp(tn)] = + oo .

REMARK 3.5. In the proofs of the Theorems 3.1 and 3.3 we only
used the fact that the mapzi— l(ba®) is analytic for at least one
continuous linear form [ over .&# such that l(ab) = 0, so the theorems
remain true under this weaker notion of analyticity. Note also that
in the proof of the Theorem 3.3 we only used the fact that the
function » —a” is analytic at 1. In particular if lim, . ||b"|explexp
(nlogn)] = 0 for every nonzero element b of a commutative radical
Banach algebra <2 then the only semigroup (a),., which is analytic
at 1 is the zero semigroup.

We will now show that there are no general lower bounds for
the rate of decrease at infinity of the function ¢— | a’| for infinite-
ly differentiable semigroups (a'),., over 0, +co[ such that a’==0
for every ¢t > 0.

LEMMA 3.4. For a > 0, denote by f, the function defined over
[0, + oo by the formula:
J2) =0 3f z=a

2

o a
% exp(-
V(e — ) p( r —

The function a— f, defines in LY R*) an infinitely differentiable
semigroup over the positive reals.

Jfox) =

) if x>a.

Proof. Put:
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2

g.(x) = vﬁ—exp@i“x—)
for * >0 and g¢,0) =0. Then f, = g.,%0,, where §, is the point
measure at a. A calculation given in [7], p.63 shows that the
Laplace transform of g, is the function z— exp(—21 2z ) where V' z
is the detemination of the square root over the closed right half
plane which takes real positive values over the positive reals.

We have:

Flo.l(z) = Sjga(x)eXp(—zoc)dx .

Put: w = z/a®>. We obtain:

Ll9.)(2) = Sm exp(—u:)?g)(;/—zazzu) du = £ (g)|[a*z] = exp[—2aV 2] .
0 TU

So  AlGu+s]l = L(9.).L(9s) = F(9.79s) and using the uniqueness
theorem for Laplace transforms we see that g,.;, = g.*g; for every
a, B0, +oof. 80 forp = Garp*0aip = (gu*0a)*(gs*0;5) = foxf; for every
a, B€0, +[. So the map ai f, defines in L'(R*) a semigroup
over the positive reals.

It is easy to see that the nth-derivative of f, with respect to
a has the form fP[x] =0 if z =< a, fP[x] = v.(a)[x]exp]—a?/x] if
x > «a where

P,(a, x)

v (@) (x) = m—

for some polynomial P,(a, x) in two variables whose degree with re-
spect to xz is 2n. So f& e L'(R*) for every a > 0 and every ne N
and it is not difficult to prove that f{(x) depends continuously of
a for every x =0 and every n€ N. Also for every a >0, 7¢]0, of
and every n € N there exists a continuous positive integrable funec-
tion u,,,, over [0, + o[ such that |f{"(x)| < u,.., for every x =0 and
every Bela — 7, a + 7[. We have

“f(m(a + h})b- S (@) f(,,+1,(a)|l

= | 1 enm@ — £ @) da

where 0 < 0,(h, x) <1. Let (h,) be any sequence of nonzero real
numbers such that lim, .2, = 0. We have, for p large enough:

|f & oatn gy () — F& (@) = 20, ,02()
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for every x = 0. As lim, .0,(h,, )k, = 0 for every x = 0, it follows
from the dominated convergence theorem that

Fitlh, — £
lim [ L222 — f
P

P—roo

|=o0.

So

(m) . £(n)
a+h a (n+1)

lim ks =0

h—co

and the semigroup (f.)«>o 18 infinitely differentiable, which proves
the lemma.

THEOREM 3.6. Let g be any continuous positive function over
[1, o[such that g(1) = 1. There exists a positive continuous function
® over [0, + oo such that w(x + y) = w(@)w(y) for every z,y =0,
lim, . [@@)]"* = 0 and a semigroup (a),s, in L'(R*, ®) which is in-
finitely differentiable over [0, [ and satisfies 0 < |a'|l < g(t) for
every t=1.

Proof. Let I be the positive continuous function over [0, + oof
defined by the formula:

l(x)=1 if 0=¢=<1
I(x) = inf(1, g(z)) if x=1.

Put, for x = 0: @(x) = inf l(y,) - - - I(y,) the infimum being taken over
all finite families (y,, ---, ¥,) of nonnegative real numbers such that
x =1y, +--+y, It follows immediately from the definition of @
that 0 < p(x) £ 1 for every =0, o(x) < g(x) for every £ =1 and
p(x + y) < p(x)p(y) for every x,y = 0. Let >0 andlet (y, ---, y.)
be any family of nonnegative reals such that z = y,+---+y,. De-
note by p, the greatest integer such that p, <. At most p,

elements of the family (v, ---, ¥,) are greater than 1, so

Wy -+ Uya) = [m(x)]P=
where

m(x) = inf I(y) .
0sysa
So p(x) > 0.

Also for every ¢ > 0 we have:

PO + @) = WOy - -+ Wy.) = Uy -+ Uya) -

As this inequality holds for every family (y, ---, ¥.) of nonnegative
reals such that z = y,+---+v9,, we have ¢ + 2) < @(x) and @ is
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decreasing over [0, +<o[. Now let me N and let ¢ > 0. There ex-
ists a > 0 sueh that |I(y,) — U(y,)] < ¢/2 for every v, y,€[0, m] satis-
fying |y, — ¥.| < @, and we may assume a < 1. Let z,, z, be two
elements of [0, m] such that 0 =a, — 2, <a. If @o(x,) =1 then
o(x) = 1, @(x,) — p(x,) = 0. If ¢(x,) < 1 there exists a finite family
(¥, ---, ¥.) of nonnegative reals such that

@y = Yyt ey, W) - Uy,) < inf [1+—2¢(xz)_, P.) + —g—] .

So y, > 1 for at least one v, say v,. Then vy, — (x, — 2,) > 0 and
we have:

=Y Yoy + Y. — (@ — )],

P@) < Uy -+ 1Y) [uyn) + g]

= Uy - Uy + g < pla) + €.

So 0 < p(x,) — @) < & and @ is uniformly continuous over [0, m]
for every m e N, which shows that ¢ is continuous over [0, + o[.
Put, for 2 = 0: w(x) = p(x)exp(—2?). Then w(x + ¥) < w(x)w(y) for
every z, y<€]0, + <], and

lim sup [@(x)]'* < limsupe* =0,

0 < wx) =1 for every =0, w(x) < g(x) for every x =1 and o is
continuous over [0, + oo].

Clearly LYR*)< L*R*, ). Put, for ¢ > 0:a' = f,, where f, is
the function defined in the lemma. As the injection from L'(R*)
into L'(R*, w) is continuous, the semigroup (a'),., is infinitely differ-
entiable over [0, + <[ with respect to the norm of L'(R*, w).

Also
=00 | g e (G2 )

= o) | =L exp(=E Jaw = 007 (0000) ,

/

where g, is the function

t —¢
Xr— = ex .
VvV wat? P
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As £(9,)(z) = exp(—2tV z), we obtain: ||a'|| £ w(t) for every
t>0. So |la'] = g(t) for every ¢ =1, which proves the theorem.

REMARK 3.7. The example of the Theorem 3.6 has the property
that a'¢ [a" LR+, w)]~ if ¢ > t'. It is also possible, given a positive
continuous funetion g over [1, + o[, to find a continuous weight ®
and an infinitely differentiable semigroup (a%);,., over ]0, +co[ in
LYR*, w) such that 0 < ||a’]| < ¢g(t) for every ¢ =1 and such that
[’ LNR*, w)]- = L*(R*, w) for every t >0, but these examples in-
volve much more difficult computations (which will be given in [10])
and we will not do this here.

4. Lower bounds for the rate of decrease of sequences of
powers in weighted convolution algebras.

THEOREM 4.1. Let < be a commutative radical Banach algebra
without nilpotent elements. If the map a— ba is a compact endo-
morphism of # for some element b of F# which is not a divisor
of 0 then for every continuous algebra norm q over A there exists
a sequence (A,),=, of positive real nmumbers (the sequence depending
on the norm) such that

lim inf 497 — 4 o,

n—ro0
n

for every monzero element a of A.
Proof. For peN, put: E, = {ac.A#||ba|l > 1/p]|lal]}. Put, for
n € N:

Moy = inf 2@
’ cery || @l

Suppose that A, , = 0 for some %, p € N.

Then there exists a sequence (a,),.y of elements of K, such that
la,ll =1 for every ke N and lim,_..g(a}) = 0.

As b acts compactly in <2, it would be possible to find a sub-
sequence

(aki)ieN
of a, such that the sequence
(balci)zeN

is convergent. Denote by ¢ its limit. As a,e &, for every ke N,
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Ibell = tim fjbay | =, so o=0.

Also
q(c") = lim g(b"at) = q(®"lim g(at) =0, ¢ =0

and ¢ would be nilpotent, which is impossible.
So \,,, > 0 for every n, »€ N, and the family

((n_,ﬂx'n,p)ne N)p enN

is a countable family of sequences of positive reals. It is then well-
known that there exists another sequence (a,),.y 0of positive reals
satisfying

—
lim inf ™ M — 4 o

n—oo an

for every pe N. Let a be any nonzero element of <Z. As b is not
a divisor of zero, ba = 0 and a c E, for some pe N. We obtain:

tim inf 290 > tim inf 2@y qfjr. 2 Ps).
noo a, B ”a” *N,p Qa,

= lim inf (|| all)”'ci_%"f)

k3

Zliminf(un) = 4 oo ,

n—r00 (44 n

This proves the theorem.

COROLLARY 4.2. Let w be a positive continuous function over

10, +oo[ such that w(x + y) < w(@)w(y) for every w, yel0, +oof,

lim,_Jw@)]* = 0. There exists a sequence (A, (®)),.y of positive
reals such that

a*||

lim inf

= 4 oo
e an(w)

for every nonzero element a of L'(R*, ).

Proof. W. G. Badé and H. G. Dales discussed in [3] the com-
pactness of the map f— f*g in L'(R*, ) where w is a continuous
weight over [0, + o[ satisfying w(z + 9) < w(@)w(y) for all z, yec
[0, + co[ and

lim [w(®)]"* =0 .
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Their result is that this map is compact iff

tim {"lg) 2P gy — 0.
200 JO a)(x)

In particular if @ is a continuous weight over [0, 4 o[ satisfy-
ing the above conditions then every element in L'(R*, ®) acts com-
pactly provided the function 2 — [w(2)]V® is descreasing over [0, + cof.

Now let @ be any continuous weight over 10, + o[, not neces-
sarily bounded at the origin. Using the same argument as in the
proof of the Theorem 3.6 we can construct a decreasing positive
continuous function % over [0, +co[ such that A(x) <1 for every
220, iz + y) < h(@)h(y) for every z, y =0 and h(x) < w(x) for
every x = 1. Put: v(x) = [A(x)]*; v is positive and continuous over
[0, + o],

lim [v(x)]"* = lim h(x) = 0,

(@ + y) = [h(x + I = [p@)] - [RW)] = v(@)v(y)

for every x, ¥y > 0. So L'(R*, v) is a commutative radical Banach
algebra and Bade’s theorem implies that all elements of L'(R*, v)
act compactly in L'(R*, v). Also LY(R*, ») is an integral domain
(this is an easy consequence of Titchmarsh’s convolution theorem,
see [6]). So there exists a sequence («,) of positive reals such that

n—>00
n

for every nonzero fe L'(R*, v) (where we denote by |-||, the norm
in L'(R*, v)). As w is bounded below at the origin, the quotient
(v(x)/w(x)) is bounded over [0, 1] and v(x) = [L(@)]* < h(x) £ 0(z) for
every x = 1. So LYR*, w) < L*R*, v) and this injection is continu-
ous, which shows that the sequence («,) defined above satisfies the
condition of the theorem.

Note that the Corollary 4.2 is in fact true for every continuous
algebra norm over L'(R*, w) if @ is continuous over [0, 4+ «[ and if
the function z+ [w(x)]¥* is decreasing over [0, +co[. Also the
corollary can be extended to every measurable weight over [0, + oof
which does not vanish almost everywhere over [a, + <[ for any
a > 0.

REMARK 4.3. The Theorem 4.1 is true for commutative separ-
able radical Banach algebras without nilpotent elements in which
every element acts compactly: let (a,) be a dense sequence in such
a Banach algebra .2#. The argument used in the proof of the
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Theorem 4.1 shows that for every m e N and every continuous al-
gebra norm ¢ over <Z there exists a sequence (@, .)..x Of positive
reals such that

lim inf 407 = 4 o

Lt £ P

for every b e <% such that b-a, = 0. There exists a sequence (\,),cx
of positive real numbers such that

lim inf $=m — 4 oo

n—ro0
k2

for every me N. Now let b be any nonzero element of <. Then
b-a, = 0 for some m e N, for otherwise b-# =0, b* = 0 and b would
be nilpotent. So

liminf 499 — o,
N

—.
Nn—ro00 n

which proves our assertion.

This result does not extend to nonseparable commutative Banach
algebras in which every element acts compactly (take the direct
sum 2 of all algebras LYR*, ®w) where @ runs over the set of all
positive continuous weights over [0, o[ such that w(x + ¥) < w(@)w(y)
for all z, ¥ = 0 and lim,_.. [w(z)]"* = 0).
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