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COMPLETELY REGULAR ABSOLUTES
AND PROJECTIVE OBJECTS

R. F. DickMAN, JR., J. R. PORTER, AND L. R. RUBIN

The absolute (EX,rzy) is constructed for an arbitrary
space X and is shown to be unique with respect to EX
being extremally disconnected and completely regular and
7y being a 0-continuous, perfect, separating irreducible
surjection. A function f: X — Y is said to have a continuous
E-lifting if there is a continuous function F: EX — EY such
that ny o F' = foxy. A class of functions, called 7-continuous,
is introduced, shown to contain the class of continuous
functions and the class of f/-continuous, closed surjections,
and proved to have continuous E-liftings. Functions which
have continuous E-liftings are completely characterized as
being the composition of 7-continuous functions.

1. Introduction and preliminaries. In 1963, Iliadis (see [7])
constructed, for a Hausdorff space X, an extremally disconnected
Tychonoff space EX and an irreducible, perfect d-continuous surjec-
tion w: EX — X and showed that (EX, ;) is unique in this sense:
If Y is an extremally disconnected, Tychonoff space and f: Y — X
is an irreducible, perfect, f-continuous surjection, then there is a
homeomorphism g: EX— Y such that fog = z,. In 1969, Mioduszewski
and Rudolf [9] modified this construction to obtain a space aX which
has the same underlying set as EX and the topology of aX is
generated by the topology of EX plus {zz'(U): U open in X}. The
function a,: aX — X is the same as the function 7,. The space aX
is extremally disconnected and Hausdorff, and the function a, is an
irreducible, perfect continuous surjection. Also, (aX, ay) is shown
to be unique in the sense similar to the uniqueness of (KX, 7,). So,
there is a trade-off —the Tychonoffness of EX is reduced to
Hausdorff for aX, but the f#-continuity of =, is strengthened to
continuity for a,. Both EX and aX are called absolutes of X.

More recently, Sapiro [11] and Ul’janov [13] extended the con-
struction and uniqueness of (aX, a,) (aX is denoted in [11] by ¢X)
for an arbitrary topological space X. In this case, aX is extremally
disconnected and a, is a separating, irreducible perfect continuous
surjection. Also, they showed if f: X— Y is a continuous function
between spaces X and Y, there is a continuous function F:aX —
aY such that a.oF = foa,.

In the second section of this paper we characterize the projec-
tive objects in the category of spaces and perfect separating con-
tinuous functions as morphisms. As a cosequence, we obtain the
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result by Sapiro and Ul’janov [11, 13] that continuous functions can
be lifted to a continuous function between their a-absolutes. For
an arbitrary space X, (EX, m,) is constructed and proved to be
unique in the fourth section.

In the third section, we introduce the class of »-continuous
functions and show that this class contaings several large and interest-
ing classes. In the final section, a necessary and sufficient condition
for a function f: X — Y to be lifted to a continuous function between
their E-absolutes is developed in terms of a homomorphism between
the Boolean algebras of regular open sets of Y and X. It isshown
that an »-continuous function can be lifted to a continuous function
between their E-absolutes. A function between spaces is shown to
be liftable between E-absolutes if and only if it is the composition
of 7-continuous functions. An example is given of a non-7-continu-
ous function which is the composition of 7-continuous functions.

In the remainder of this section some necessary definitions and
preliminary results are presented. The concept “completely regular”
does not necessarily include Hausdorff whereas “Tychonoff” means
“completely regular and Hausdorff.” A space is said to be extremally
disconnected if disjoint open sets have disjoint closures; thus, an
extremally disconnected space is not necessarily Hausdorff.

Let f: X— Y be a function between two spaces X and Y. The
function f is irreducible if f is onto and for each closed set A & X
and A+ X, f(A) # Y, is perfect if f is closed and compact (i.e.,
fy) is compact for each yeY), is O-continuous (respectively,
weakly continuous) if for each xe€ X and open neighborhood U of
f(x), there is an open neighborhood V of x such that f(cl V) S clU
(respectively, f(V) C el U) and is separating if whenever f(x) = f(y)
and z = y, then x and y are contained in disjoint neighborhoods
of X. Clearly a continuous function is #-continuous, a f#-continuous
function is weakly continuous, and a 6-continuous function into a
regular space is continuous. Also, composition of #-continuous (resp.
continuous separating) functions is #-continuous (resp. continuous
separating). If AC X, then f%(A) is used to denote {y € Y: f'(y) S A}.
Note that f#(4) = Y\f(X\A). Thus, if A is open and f is closed,
then f#(A) is open.

PROPOSITION 1.1. Let f: X—Y be an onto function where X
and Y are spaces.

(@) Then f is irreducible if and only if for every mnonempty
open set U X, f&(U) =+ 0.

(b) If f is closed and U & X is open, then int f(U) 2 f&(U).

(e) If f1is irreducible, closed and weakly continuous and U S X
18 open, then f(U) S el fE(U).
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(d) [12] If f 1is compact, there is a closed subspace S = X such
that fls: S— Y is irreducible.

(e) [7] If f is irreducible, closed, O-continuous and separating
and Y is extremally disconnected, then f is one-to-one; in particular,
if f 1s also continuous, then f is a homeomorphism.

Proof. The proof of (a), (b), and (c) are straightforward. [

Let X, Y, Z be spaces and f: X — Y and ¢g: Z— Y be functions.
Let P={(x,2)e X X Z: f(x) = 9(&)}, Pz P— Z: (x, 2) — 2 and py: P—
X:(x,2) > x. Then (P, py vy) is the pullback of f: X—Y and
9: Z—Y, and the pullback square is the following commutative
diagram (see [5]):

j Ny

ol o

x-L.v.

Note that p, and p, are continuous.

PrOPOSITION 1.2. Let (P, p;, Dy) be the pullback of f: X — Y and
g: Z—Y where X, Y, Z, are spaces.

(a) If f is onto, then so is .

(b) If f is compact, then so is p,.

(e) If f is separating, then so is .

() If f is perfect and g is continuous, then p, is closed.

Proof. The proof is left to the reader. O

The category of all topological spaces with separating continuous
functions as morphisms is denoted by TOP,; the subcategory of all
spaces with perfect separating continuous functions as morphisms is
denoted as TOP,,. If .o is a class of morphisms of a category &,
then an object P in & is called .o~projective if for X, Y e ob(¥),
and feMor (X, Y)N .o, and geMor (P, Y), there is a h € Mor (P, X)
such that foh = g, i.e., this diagram commutes:

P
s
X— Y.

f
If .o~ is the class of onto functions, then .%“projective objects are
called projective, and < is used to denote the class of perfect,
onto functions. An excellent survey about .“-projective objects in
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categories of topological spaces has recently been written by Woods
[15].

Let X be a space and LX the set of all open ultrafilters on X
that converge. Let EX = {(%, #) e LXX X: x cad%’} where ad% =
N{cl U: Ue %}, and for each open set U of X, let oU = {(%, x) €
EX:Ue%}. Foropensets UandV in X, we have oUNoV=0(UN V),
oUUoV=0UUYV), o) =¢, 0X=FEX, EX\oU = o(X\cl U), and
oU = o(int (el U)). Thus, {oU: U open in X} forms an open basis
for a topology on EX. Define the function n,: EX— X by
w7, x) = x. Also, {oUnNzz*(V): U, V open in X} is closed under
finite intersection and is an open basis for a topology on EX; EX
with this topology is denoted as aX. The function a X — X: p — 7w(p)
is denoted as a,. If X is Hausdorff, then EX and ¢X can be
identified as spaces with LX as the underlying set. So, aX and EX
extend the construction of Iliadis [7] and Mioduszewski and Rudolf
[9]. Note that for open U in X, w,(0U) = cly U = a,(oU).

ProrosITION 1.3. Let X be a space.

(a) [11] aX is extremally discommected and ay:aX— X is a
separating, perfect, irreducible continuous surjection.

(b) EX is extremally disconnected and completely regular and
T EX—>X 18 a separating, perfect, irreducible 0-continuous
surjection.

Proof. The proof of (b) parallels the proof of part (a) (see
[11]). Ll

An open set U in a space X is called regular-open if U =
int (cl U). The set of all regular-open sets is a basis for a topology
on the underlying set of X; X, is used to denote this new space.
A space X is said to be semiregular if X = X,; in particular, it
follows that X, is semiregular. If A € X, then int, A(resp.cl, 4) is
used to denote the interior (resp. closure) of A in X,.

PROPOSITION 1.4.

(@) For a space X, (¢X), = EX.

(b) An extremally disconnected, semiregular space is completely
regular (not necessarily T).

(¢) A space X is extremally disconnected if and only if X, is
extremally disconnected.

Proof. Part (a) follows from this easily proven result: If U
and V are open sets in X, then az(UNV)ZS oUNaz (V)S o(UNYV)
by Proposition 1 of [11], and cl,;az(U) = oU. Part (b) follows since
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a regular-open set in an extremally disconnected space is cl open.
The proof of (¢) is easy. ]

Thus, for a space X, the identity function s,:aX — EX is a
continuous bijection and s3' is f-continuous. So, a function F: aX —
Y induces the same function G: EX — FY such that s,c F = Gos,
and conversely, a function G: EX — EY induces a function F: aX —
oY such that s, o FF = Gos,. If f: X— Y is a function, then foa, =
ayo F if and only if 7wyoG = fox,. If foa, = a,oF, F is called an
a-lifting of f, and if fow, = w, oG, G is called an E-lifting of f.

ProposITION 1.5. Let X and Y be spaces and F:aX —aY and
G: EX — EY be functions such that syoF = Gos,. Then

(a) F' is O-continuous if and only if G 1is continuous.

(b) If f: X — Y is continuous, and G is a continwous E-lifting
of f, then F 1is also continuous.

Proof. If G is continuous, then F' = sy'cGos, is the composition
of O-continuous functions and, hence is f-continuous. If F is 0-
continuous, then G = s, o Fost' is the composition of #-continuous
functions and so is @-continuous. Since EY is completely regular,
then G is continuous. To prove (b), suppose f and G are continuous
and U and V are open sets in Y. Now, oU N a;(V) is basic open
set in aY and F'oUN a7 (V) = FoU) N F (i (V) = G'(oU) N
a7 (f~1(V)) is open. Hence, F' is continuous. ]

2. Projective objects. In this section, we show that the projec-
tive objects in TOP,, and the “-projective objects in TOP, are
precisely the extremally disconnected spaces and use this result to
obtain Sapiro’s results [11] about a-liftings. First, a preliminary
result is needed.

PROPOSITION 2.1. Suppose f+ X — Y is a perfect separating sur-
jection, E s extremally disconmnected and g: E— Y is a continuous
function. There 1is a continuous jfunction h: E— X such that
foh =g.

(a) If, in addition, g is separating, then h is separating.

(b) If, in addition, f is continuous and g is perfect, them h is
perfect.

Proof. Let (P, p; py) be the pullback of f/: X —Y and g: & — Y.
By 1.2, p. is a perfect, separating, continuous surjection and p, is
continuous. By 1.1, there is a closed set C £ P such that p.;|C is
irreducible. Let ¢, = p,|C and ¢, = p,|C. Since C is closed, ¢z is
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perfect, separating and continuous. By 1.1, ¢; is a homeomorphism.
Thus, & = ¢y °(qz)~" is continuous and foh = g. If, in addition, g is
separating, then by 1.2, p, is separating. So, ¢y and % are separat-
ing. If f is continuous and ¢ is perfect, then by 1.2, p, is perfect.
Since C is closed, then ¢, is perfect. So, h is perfect. ]

The conclusion of Proposition 2.1 is very interesting. Even
though a continuous function % is obtained in 2.1, continuity of f
is not required in the hypothesis.

THEOREM 2.2. The projective objects of TOP,, are precisely the
extremally disconmected spaces.

Proof. Let X be a projective object in TOP,,. Let U be an
openset in X, V= X\dV, Y the topological sum of e¢lU and clV, and
fiY—X:t—t. Now, f is perfect, separating, continuous and onto.
Also, the identity function 1,: X — X is a perfect, separating con-
tinuous function. So, there is a perfect, separating continuous
function h: X — Y such that foh = 1,. It easily follows that h(x) = =
forxe UUYV, hicly U) S el U, and h(cl, V) Z el V. Since cl, UN
cly, V=@ in Y, then it follows thatcl, UNecl, V= @ in X. Thus,
X is extremally disconnected. Conversely, suppose E is an extremal-
ly disconnected space. Let f: X —Y be a perfect separating con-
tinuous onto function and g: E —Y be a perfect separating continuous
function. By 2.1, there is a perfect separating continuous function
h: E — X such that foh = g. O

COROLLARY 2.8. The SP-projective objects of TOP, are precisely
the extremally disconnected spaces.

Proof. The proof of one part of this corollary uses the same
proof as in the first part of 2.2. The other part of this corollary
follows from 2.1. ]

The sufficiency part of the next result was established by
Ul’janov [13] and Sapiro [11] by entirely different methods; they
failed to record the reverse implication.

PROPOSITION 2.4. [11] If X and Y are spaces and ¢: X — Y 1is
a function, then @ has a continuous a-lifting if and only if @ is
continuous.

Proof. Suppose @ is continuous. Let f = ay gnd g =@ocay. By
1.8, f is a perfect separating continuous surjection. Since g is con-
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tinuous, then by 2.1, there is a continuous function h:aX —aY
such that foh =g, i.e., ayoh = @oa,. So, @ has a continuous a-
lifting. Conversely, suppose h:aX —aY is a continuous function
such that ayoh = @oay;. To show ¢ is continuous, let A be a closed
set in Y. Since a, is onto, then ¢o*(4) = ay(h (a7 (A))); since ay
is a closed map, @~ '(A4) is a closed set. Thus, ¢ is continuous. [

A function @: X — Y is called a c-function if inte'(bdU) = @
for each regular-open set U. Sapiro [11] showed that a continuous
function has unique a-lifting if and only if it is a e-function. He
proved that being a c-function is sufficient for uniqueness in a straight-
forward manner but needs his multifunction technique to prove it
is necessary. We now use the technique developed in the proof of
Proposition 2.1 to prove the necessity for the following result.

PropoOSITION 2.5. [11] Let X and Y be spaces. A function
@: X—Y has a unique a-lifting if and only if ¢ 1is a continuous
c-function.

Proof. Assume @ is continuous and there is a regular-open set
U C Y such that int ' (bd U) = @. Since a, is continuous and onto,
then int g~*(bd U) # @ where g = poa,. Let f=ay,. To show o
has distinet a-liftings, it suffices by the proof of 2.1 to find distinet
closed sets C and C’ of P such that p,,|C and p,,|C’" are irreducible.
Thus, it suffices to find closed sets P, and P, of P and some z€aY
such that p2@R) N P NP, = @ and p.x(P,) = p.x(P,) = aX. Let P, =
P\(oU x int g7"(bd U)), and for V = Y\el U, let P, = P\(oV x
int g=*(bd U)). The closed subsets P, and P, of P and any z€aY
such that a,(z) € g(int g~*(bd U)) have the desired properties. 1

3. 7-continuous functions. In this section we introduce the
class of %-continuous functions and show that several important
classes of functions are 7-continuous. At the end of this section,
we develop a characterization of %-continuous functions that will
be used in §5 to show that 7-continuous functions have continuous
E-liftings.

For a space X, RO(X) is used to denote the set of all regular-
open sets of X and for Ue RO(X), X\cl U is denoted by U°. Thus,
RO(X) is an open basis for the topology on X,.

PropPOSITION 3.1. Let f: X — Y be a function and U be open set
in Y. Then

(a) eclint f(bd U) nintel fY(U) = &,

(b) int f~'(cl U)\elint f~*(bd U) < intcl f~(U), and
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(e) if f is weakly continuous, f(cl f~*(U)) S el U.
Proof.

Ad(a). Since f*bdU)n f(U)= @, then intf(bdlU)N
el f~(U) = @. Thus, clint f*(bdU) Nintel f4(U) = @.

Ad(b). It suffices to show int f~*(cl U)Z el f~Y(U) U int f~(bd U).
Now, int f~*cl U)\el f~%(U) S f el U\fY(U) = f~(bd U). Thus,
int f=(cl U)\el fY(U) S int f~(bd U) and int f(clU) S el fF(U)U
int f-*(bd U).

Ad(e). Let xzeclfY(U). If flx)eV =7Y\elU, then =ze
int £l V) & X\el f(U), a contradiction. So, f(x)eeclU.

PrOPOSITION 3.2. Let f: X — Y be a weakly continuous function.
The following are equivalent:

(@) fY(U) < intel f71(U) for every Ue RO(Y),

(b) flelint £~(bd U)) S bd U for every Ue RO(Y),

(¢) flelint f~*(bd U)) S el U for every Ue RO(Y), and

(d) flelint f~*(cl U)) S el U for every Ue RO(Y).

Proof. To show (a) implies (b), let z eclint f~*(bd U) and assume
fx)ebd U. Then =zef* (UUU’). By (a), xzeintel f~(U)U
intel £~4(U°). 8o, zeeclint f~(bd U) N (int el f~*(U) U int el f~(T?)),
a contradiction by 3.1(a). Hence, f(x)ebd U.

Clearly, (b) implies (¢); since bd U =bd U* =ecl U N el U®, then
(e¢) implies (b). To show (b) implies (a), let Ue RO(Y). Since f is
weakly continuous, f~Y(U) < int f~*el U)\f(bd U). By (b) and
3.1(b), f~X(U) Sintel f~%(U). Thus, (a), (b), and (c) are equivalent.
Clearly, (d) implies (¢). It remains to show (b) implies (d). Let
zeelint f~(cl U). If zeecl f~4(U), then by 8.1(c), f(®)cecl U. So,
suppose z ¢ ¢l f(U). Then H = int f~*(cl U)\el f(U) S int f~(bd U)
and zeclH as zeclint f~(cl U). So, f(z) e flclH)Sf(elint f~*(bd U))S
bd U, by (b). Thus, flclint f~*(cl U)) S el U and (d) is true. ]

DEFINITION. A function f: X —» Y is 9-continuous if for U, Ve
RO(Y),

(i) f*U)<intel f4(U).

(ii) intel fAUNV)=intecl f~(U)Nintel f7(V).

T. Husain called functions satisfying condition (i) almost con-
tinuous functions [6]. An 7-continuous function satisfies (b), (c) and
(d) of 8.2 if we can show 7-continus functions are weakly continuous.
More in shown in the next proposition.

PROPOSITION 3.3.
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(a) A continuous function s n-continuous.

(o) If f: X—>Y is a function and f~(U) is open for all Ue
RO(Y), then f is n-continuous.

(e) Amn n-continuous function is O-continuous and hence weakly
cOnLINUOUS.

Proof. Clearly (a) follows from (b). A function satisfying the
hypothesis of (b) satisfies (i) of 7-continuity; part (ii) of 7-continuity
follows from the well-known result that if A and B are open, then
intel(ANB)=intel ANintel B. To show (c), let /1 X —Y be 7-
continuous, x € X and W be an open neighborhood of f(x). Let U=
intel W and V= U°. Then ¢ =intel f(UNV)=1intel f~(U)N
intel f~(V). Sincexe f(W)< f(U) < intel f7(U), then 2€ P =
X\clintel f~Y(V). So, el P=X\intel f~4(V)S X\f V), and f(cl P) =
Y\V=clU=cl W. ]

So, by 3.3, the class of continuous functions is a large class of
p-continuous functions. The next lemma is used to develop another
class of 7-continuous functions.

LemmA 3.4, Let f: X—Y be a weakly continuous function
satisfying these two conditions:

(a) For each Ue RO(Y), f(U) < intel f~(U).

(b) For each nonempty open set W in X, int f(W) # 4.
Then for U, Ve RO(Y), intel f(UNV)=intel f~(U)Nintecl f~H(V).

Proof. It is straightforward to show intelf(UNV)CS
intel /7(U) Nintel f(V). Let R =[intecl f~(U)Nintel fF~(V)|\
clintel /(U NV). It suffices to show that R = @. Since f(R) &
flel £~ N flel £74(V)), then by 3.1(c), f(R)SeclUNecl V. By (a),
ROfUNV)=g. So, IR)S(clUNclVI\(UNV). But (clUNelVI\(UN
V)Sbd UU bd V which is nowhere dense. So, int f(R) C int (bd U U
bd V)= @. By (b), R = @. ]

PropOSITION 8.5. Let f: X — Y be a weakly continuous, closed,
wrreducible surjection. Then

(a) f is B-continuous,

(b) 4f U is open in Y, then intecl f~4(U) = int f~cl U), and

() of W is open in X, intel W = intel f(f&(W)).

Proof.

Ad(a). Let VeRO(Y) and xe€ (V). Then there is an open
subset U of X containing x with f(U) S el V. Suppose W is a non-
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empty open subset of U. Now f#(W) =+ @ and f#(W) < eclV. So,
FAWYNV #= @ implying Wn f(V)#* @. Thus, f~(V) is dense
in U, ie., U< cl f7(V). Hence, xe U< intel f~%(V). This shows
f(V)<Zintel f7%(V). By 1.1 and 3.4, it follows that f is %»-con-
tinuous.

Ad(b). Let P=intel f~%(U) and @ = int f~*(cl U). By 3.1(e),
PZ Q. To show Q C P, it suffices to show ¢l@ < cl P since P is
regular open. Assume, clQ\cl P # @, then Q\clP= W is a non-
empty open set. But by (a),f*(U) & P; so, W< f(cl U\fY(U) =
f'(bd U) implying f(W) has empty interior. This contradicts 1.1;
so, P=Q.

Ad(c). It suffices to show that cl W = cl f~(f#(W)). Clearly,
cl W2el f(fg(W)). Suppose ¢ = T'< W where T is open. Then
¢+ f4(T) and ¢ = f'(fH(T) S TN f'(FEW)). Thus, f(f4(W)) is
dense in W implying W<el f-(f&(W)). So, clW<el f(f#(W)).

Using 3.4 again, we obtain another large class of 7-continuous
functions.

ProOPOSITION 3.6. A weakly continuous, open function 1is 7-
continuous.

Proof. Suppose f: X —Y is open and weakly continuous, and
let Ue RO(Y). Clearly, 8.4(b) is satisfied. By weak continuity,
FHU)E int f~(cl U). Now, f(int f~*(bd U)) is open and contained in
bd U. Since int (bd U)= @, then int f~*(bd U)= @. Thus, fH(U)S
int £l U)\elint f~(bd U), and by 3.1(b), f~(U)<intel f~4(U). []

LemmaA 3.7.

(@) If U is open and A is closed in a space Y, then cl, U =cl U,
int, A = int 4, and int,cl, U = intecl U.

(b) For a space Y, RO(Y) = RO(Y,).

(¢) Let © and o be topologies on a set X. Then RO(X, )=
RO(X, a) if and only if the identity functions i: (X, t) — (X, o) and
17 (X, 0) — (X, 7) are p-continuous.

@ If 1 X—Y is a 6-continuous, closed bijection, them for
open U in Y, f=intycly U) = intycly f~(U); in particular, for
UeRO(Y), f~Y(U)e RO(X).

Proof. The proof of (b) follows from (a); the proof of (a) is
straightforward and left to the reader.

Ad(c). The necessity of the conditions follows from 3.3(b). To
prove sufficiency, suppose 4 and ¢~ are 7-continuous. By Proposi-
tion 1in [3], ¢ is a homeomorphism between (X, z,) and (X, o,). So,
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RO(X, 7,) = RO(X, a,). By (b), it follows that RO(X, 7) = RO(X, o).

Ad(d). Let z be the topology on X. We can assume Y =X
with the topology ¢ and f = 4 is the identity funection on X. Since
f is closed, then z S 6. By (e), 7, = 0,. Since 0, < 7 S 0, then by
(a) for Ueo, it follows that int,cl, U = int, cl, U = int, cl, U.

Let f: X—Y be a function. Now, {Wn f(U): W open in X,
Ue RO(Y)} is closed under finite intersection and forms a basis for
a topology on the underlying set of X. Let X* denote X with this
new topology and f*: X* —Y be defined by f*(x) = f(x). Note that
the identity X* — X is continuous. Now f* is #-continuous because
it satisfies the hypothesis 3.3(b). For A € X, let cl*A (resp. int* A)
denote the closure of A in X* (resp. interior of A in X*).

THEOREM 3.8. Let f: X — Y be weakly continuous. The follow-
ng are equivalent:

(@) f is M-continuous,

(b) the identity function h: X — X* 18 weakly continuous,

(e) (X*), = X,, and

(d) ROX*) = RO(X).

Proof. The equivalence of (c) and (d) follows from 3.7(b). By
3.7(c), (d) implies (b). Suppose h is weakly continuous. Since
h7t: X* — X is continuous, then A is also closed and irreducible. By
3.5, h is 7-continuous, and by 3.7, RO(X) = RO(X*). So, (b) and
(d) are equivalent. Suppose (¢) is true. Since topology of X<
topology of X * and (X*),=X,, then by 3.7(a), it follows that for any
open set Win X*, cI* W=ecl W=cl, W and hence int*ecl* W=intel W=
int,cl, W. If Ue RO(Y), then (f*)™(U) is open in X* and f(U)=
(fMU) S int*el* (f*)"(U) = int el f~%(U). Also, if U, Ve RO(Y),
then intel f(UNV) =int* cl* (f*)(UNV)=int* cl* (f*U)N
int* el* (f*)%(V) = intel f/~(U) Nintel f~%(V). Thus, (¢) implies (a).
To show (a) implies (b), suppose f is 7-continuous. Let xe X and
W N f~(V) be a basic open subset of X* containing h(x) = x. Since
f is 7»-continuous, we may assume that W Cintel f~4(V). We will
show that (W) S el* (W N f(V)). Let zeW and SN f~(R) be a
basic open subset of X* containing A(z2) = z; again, we may assume
that SCintel f~'(R). We will show that SN fF*R)NWNF(V)# Q.
Now, zeSnW<Cintel f~(R) Nintel f~(V)=intelf*(RNV). Thus,
dESNWNSENV)Y=SNWN RN fF(W). This completes
that the proof (a) implies (b). ]

COROLLARY 3.9. A function f is W-continuous if and only if f
18 a composition sogoh where g is a continuous function and both
s and h are O-continuous, closed, bijections.
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Proof. Let f: X — Y be y-continuous. As noted in the proof of
3.8, h: X — X* is weakly continuous, closed and irreducible. By 3.5
and 3.3(c), h is f-continuous. Now, f= f*oh. Let g:X*—Y, be
defined by g(x) = f*(x) for € X*, and let s: Y,— Y be identity
function. By the definition of f*, it follows that g is continuous.
By 3.7(a), s is 7-continuous; since s™* is continuous, then s is an %-
continuous, closed irreducible surjection. So s is f-continuous by
3.3(c). Now, f*=sog. Hence, f=sogoh where g is continuous
and s and % are #-continuous, closed, bijections. Conversely suppose
f=80goh: X—Y where g: R— T is continuous and both s: T—Y
and h: X — R are f-continuous, closed bijections. Let U, Ve RO(Y).
By 3.7(d), s(U) is open in T. Since g¢g~'(s~(U)) is open, then
intzelz g7 '(s7(U)) 2 g7 (s~(U)); it follows that int,ecl, f~Y(U) =
h(intz el g7 (sT(U)) 20 g(s™(U))) = f(U). Sinee g7 (s (UNV))
is open, then intgzel; g~ (s~ (U N V))=intzel, g~ (U)Nintz el g7 (s7(V)).
Thus, int,ecly F7(UNV) = h~*(intzclz g7 (s~ (U))) N k=Y (intg clp g7 (s™*
(V) = inty el F~(U) Nintzel, f~%(V). So, f is 7-continuous. O

4. Uniqueness of (EX, w;). In this section, we prove that the
absolute (EX, y) as constructed in §1 for an arbitrary space X is
unique with respect to EX being extremally disconnected, completely
regular and =, being perfect, irreducible, separating and #-continuous.

A major advantage of using the absolute EX as opposed to aX
is that when X is Hausdorff, EX is Tychonoff (see [7]) and has
Hausdorff compactifications. In particular, the Stone-Cech compacti-
fication 8 EX is the Stone space of the Boolean algebra of regular
open sets on X; thus, a natural link between a Hausdorff space X
and the Stone-Cech compactification of the extremally disconnected
space KX exists. In [2], this link is utilized to give a characteriza-
tion of Martin’s Axiom in the class of H-closed spaces.

For a function f: Y — X, Y’ is used to denote the underlying
set of Y plus the topology generated by the basis {f(V)NU:V
open in X and U open in Y}. Define f: Y'— X by f'(y) = f(y) for
all ye Y'. Clearly, f’is continuous. For A & Y, int’ A(resp. cl’ 4)
is used to denote the interior (resp. closure) of A in Y’. Note that
Y’ is slightly different from Y * as developed in §3 for 3.7.

PROPOSITION 4.1. Let f: Y — X be a closed irreducible, 6-con-
tinuous surjection.

(@) If W is open in Y and V is open in X, then int’'cl’ (W N
FHV)) = intel (W N FXV)).

() (Y, =Y,

(¢) If f is compact and separating, then f' is a perfect irredu-
cible separating continuous surjection.
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Proof. Part (b) follows from (a), and part (c¢) is straightforward
(even through many details must be checked). To show (a), first
note that by using the proofs of 3.5(a) and 3.4(b), we can show that
f is slightly stronger than 7-continuous, i.e., for arbitrary open
sets U, V in X, f satisfies:

(i) fU)<Zintel f~Y(U) and

(ii) intel F(UNV) =intel f~4(U) Nnintel f~V).

Now, we will show for an open set W in Y and open set V in X,
" (WNfAV)=c(Wn f4(V)). Clearly el’ (W N f V) S el (WnN
FHV)). Let yeel(WNn fYV)) and ye TN f*(R) where T is open
in Y and R is open in X. Since f~(R) S intel f(R), then TN
intel fARYNWNFNV)#= @. Assume fEHT)NRNFEW)NV = @.
Then by (i), intel f7(f#(T)) Nintel f~Y(R) Nintel F(FEHW)) N
intel f~(V) =@, and by 3.5(c), intel TNnintel f~%(R) Nintel W N
intel f/~(V) = @. This latter equality contradicts the fact that
TNnintel fR)YNWN f(V)+# @&. To complete the proof of (a), it
suffices to show that int’ (cl (W N f~%V))) < int (el (W N f4(V))).
Suppose ¢ = TN fH(R) S el (WN f~4(V)) where T is open in Y and
R is open in X. By (i), TN f RS TNintel f(R) S intel (TN
AR Sintel (W N F(V)). Thus, int’ (cl (W N FY(V))Sintel (WN
VY. O

THEOREM 4.2. Let X be a space. If Y is extremally discon-
nected, completely regular and if f1' Y — X 1s a perfect irreducible
separating O-continuous surjection, then there is a homeomorphism
h: EX —Y such that foh = m,.

Proof. By (4.1), f': Y'— X is a perfect irreducible separating
surjection and (Y’),=Y,. Since Y is completely regular, then
Y,=Y. Byl.4, Y'is extremally disconnected. By 2.1, there is a
perfect separating continuous funetion %:aX — Y’ such that f’o
h = ay. Since a, is irreducible, then it follows that # is onto and
irreducible. By 1.1, h is a homeomorphism. Thus, h: (aX,) — (YY),
is a homeomorphism. But EX =(aX), and Y =(Y"'),. So, h: EX—Y
is homeomorphism, and since f’oh = a,, it follows that foh=m,. []

REMARK. 1. The Stone-Cech compactification 8Y can be con-
structed for a completely regular space Y which is not necessarily
Hausdorff. This can be accomplished by using the same construe-
tion in 3.8 in [7]. This extension BY will be compact, completely
regular, and Hausdorff except for Y (i.e., if a,bec Y, a b, and
a¢ Y, then a and b are contained in disjoint open sets in 3Y—see
[8]). Now, BY has this maximal property: If bY is a compact,
completely regular extension of Y, there is a continuous function
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f: BY —bY such that f(y) for ye€ Y. This maximal property shows
that @Y is the usual Stone-Cech compactification of Y when Y is
Tychonoff. Also, if bY is Hausdorff except for Y, then f is onto.
Thus, for a non-Hausdorff space X, SEX is compact, completely
regular and Hausdorff except for EX.

Let GX be used to denote the Stone space of the complete
Boolean algebra RO(X) of regular open sets of X. Then EX can
be enlarged by defining 06X = {(%Z, x): ¥ €eGX and zxzcad Z}U
{(#, ).z eGX and ad ¥ = @} with the topology generated by
{oU: U open in X} where oU = {(%, 2)€6X: UecZ}. Now 60X is an
extension of EX, and BEX and 6X are equivalent extensions of EX,
i.e., there is a homeomorphism between SEX and 06X which fixes
the points of EX.

Also, if Y is a completely regular space, there is an equivalence
relation on Y and a topology on the induced partition Y, such that
Y, is Tychonoff and Y and Y, have the same ring of real-valued
continuous functions via the induced quotient function ¢: Y —Y,,
i.e., if f is a real-valued continuous function on Y, then there is a
unique real-valued continuous function g on Y, such that goo = f
(see 3.9 of [4]). It follows that (#X), = GX, and by the previous
paragraph, (BEX), = GX.

Thus, when X is not Hausdorff, there is a theory of completely
regular, compactifications of EX which is similar to the Hausdorff
compactifications of (£X), and there is a natural link between BEX
and GX.

2. We are indebted to the referee for noting that another ap-
plication of Proposition 4.1 is that the existence and properties of
(aX, ay) follows from the existence and properties of (KX, my); in
particular, in the notation of 4.1, aX = (EX)’. This construction
of aX seems more natural even though aX was discovered first.

5. Continuous E-liftings. In this section, we give a necessary
and sufficient condition for a function f: X — Y to have a continu-
ous E-lifting in terms of a Boolean algebra homomorphism +: RO(Y)—
RO(X).

We show that every »-continuous function has a continuous E-
lifting and that a function has a continuous E-lifting if and only
if it is a composition of »-continuous functions. Also, we give an
example of 7-continuous surjections whose composition is not -
continuous. Finally, we prove that a necessary and sufficient con-
dition for an 7-continuous function to have a unique continuous K-
lifting is being a c-function.

For a space X, let RO(X) denote the set of all regular-open sets
in X and O(X) the set of all open sets in X. Let S(RO(X)) denote
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the Stone space corresponding the Boolean algebra RO(X) (see [14]).
The elements of S(RO(X)) are regular-open ultrafilters on X; the
topology on S(RO(X)) is generated by {N(U): Ue RO(X)} where
MU) = {z e S(RO(X)): Ue #%}.

LEMMA 5.1. Let X and Y be spaces and f: X —Y be a func-
tion. If there is a continuous function F:SRO(X))— S(RO(Y))
such that for Zzx € S(RO(X)) and xcad Z, f(x)cad F(Z), then f has
a continuous KE-lifting.

Proof. For z € S(RO(X)), z' ={UecO(X):intel Ue %} is an
open ultrafilter; for each open ultrafilter %7~ on X, %7 N RO(X) is
a regular-open ultrafilter and (%7 N RO(X))' = % (see [10]). Define
G:EX— EY by G(%7, ) = (F(%# N ROX)), fx)). G is a well-
defined function since ad Zr = ad %’ for % ¢ S(RO(X)). It is left
to the reader to show that G is continuous and 7y oG = forw,. []

LEMMA 5.2. Let X and Y be spaces. If ¢ +#S < RO(Y) such
that Y\el Ue S whenever Ue S and @: S — RO(X) satisfies:

(1) UesS implies (Y\cl U) = X\clp(U) and

(2) for U, ---,U0,eS,Un---NU, = impliesp(U)N --- N
o(U,) = @, then @ has a wunique Boolean algebra homomorphism
extension to the Boolean subalgebra generated by S.

Proof. This follows from 2.15 in [1].

THEOREM 5.3. A function f: X — Y between spaces has an E-
lifting if and only if there is a function @: RO(Y)— O(X) such
that for Ue RO(Y),

(1) flelp(U)) SelU,

(2) pU)Nne(Y\elU) = @ and cl (@(U)U @(Y\cl U)) = X, and

(8) for U, ---,U,eRO(Y), un---nU, =9 implies
p(U)Nn - NeU,) = 3.

Proof. Suppose f has a continuous E-lifting G: EX — FY. Let
UcRO(Y). Then oU is clopen in EY and there is a unique regular-
open set V in X such that oV =G *oU). Let o(U)= V. Then @
satisfies (1), (2), and (8). Conversely, suppose there is a function
@: RO(Y) — O(X) satisfying (1), (2), and (8). Define : RO(Y)—
RO(X) by 4(U) = intelo(U). By (2), it follows that (Y\cl U) =
X\ely(U). If UNn---NU,=0, then ¢=intel(p(U,)N - N@(U,)) =
intele(U) N --- nintelp(U,) = 4(U) N - -+ N 4(U,). By Lemma 5.2,
o is a Boolean algebra homomorphism. By Stone’s Duality Theorem,
there is a continuous funetion F: S(RO(X)) — S(RO(Y)) such that for
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7z € S(RO(X)), {v(W): We F(Z)} < Z. Suppose Z € S(RO(X)) and
zead Z. For UcRO(Y), cly(U)=clo(U)< f(clU). So, xe
N{ele(W): WeF(z)} = N{f "l W): We F(%)} = f*(ad F(%)). By
Lemma 5.1, f has a continuous E-lifting. O

COROLLARY 5.4. Suppose f: X —Y is a function. Then f has
a continuwous E-lifting if and only if there is a Boolean algebra
homomorphism : RO(Y) — RO(X) such that for Ue RO(Y), f~Y(U)<
HU) S dy(U) S £ T).

Proof. Let @: RO(Y)— O(X) be the function generated in
Theorem 5.3. Then as in the proof of 5.3, ¥: RO(Y) — RO(X) given
by (U) = intel o(U) is a Boolean algebra homomorphism. It then
follows that for Ue RO(Y), f(U)S4(U)Secly(U)S f~ el U). []

The Boolean algebra characterization in 5.4 is used to develop
a corresponding characterization for 7-continuous surjections.

THEOREM 5.5. An 7n-continuous function has a continuous K-
lifting.

Proof. Let f: X — Y be 7-continuous. Since the composition of
functions each with a continuous FE-lifting has a continuous E-
lifting, then by 8.9, we need to check when f is continuous and
when f is a f-continuous, closed, bijection. By 2.4 and 1.5, a con-
tinuous function has a continuous E-lifting. So, suppose f is a 0-
continuous, closed, bijection (so, f is irreducible and perfect). Then
fomy: EX —Y is f-continuous, perfect, irreducible surjection. So,
(fory): (EX) — Y is continuous. By 2.1, there is a continuous
function h: (FX) — EY such that 7,0h = (fomy)'. By 4.1, (EX)"), =
(EX), = EX since EX is completely regular. Thus, the identity
function j: EX — (EX)' is f-continuous; hence, hoj: EX — EY is 0-
continuous. Since K'Y is completely regular, then ko 5 is continuous.
So, Tyohoj = (formy)oj. But, (fomy)oj = fomy. This shows that
wyo(hoj) = form, and f has a continuous E-lifting. O

COROLLARY 5.6. A function f: X — Y has a continuous E-lifting
if

(@) f is a weakly-continuous, closed irreducible surjection,
or

(b) f 18 weakly-continuous and open.

Proof. The proof follows from 3.4 and 3.5.
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If X and Y are spaces, then X@P Y is used to denote the
topological sum of X and Y; the underlying set of XY is X X
{tuY x{2. If :X—Z and g: Y— Z are functions, then f + g:
X@Y—Z is defined by (f + 9)(w, 1) = f(&) and (f + 9)(¥, 2) = 9(»).
Ifth: YW, thenfOrXPY—ZP W is defined by (fDh)(x, 1) =
(fx), 1) and (f P h)(y, 2) = (h(y), 2). The next lemma is used in the
proof of the characterization theorem for continuous E-liftings.

LEMMA 5.7. Let f: X — Y be a function, j: Y — Y be the identity
function, and g =f+ j: X+ Y—Y. Then

(@) f is M-continuous tf and only if g is N-continuous,

(b) f is the composition of H-continuous functions if and only
if g s the composition of 7-continuous functions, and

(e) f has a continuous E-lifting if and only if g has a continu-
ous E-lifting.

Proof. The proof is long but straightforward and left to the
reader.

It is important to note that the function ¢ in 5.7 is a sur-
jection.

THEOREM 5.8. Let f: X —Y be a function. The following are
equivalent:

(a) f has a continuous E-lifting,

(b) f 1s the composition of nH-continuous functions, and

(e) f isthe composition of continuous functions and f-continuous,
perfect, irreducible surjections.

Proof. By 5.5 and 5.6, (¢) implies (a), and, by 3.9, (b) implies
(¢). To show (a) implies (b), suppose f has a continuous E-lifting.
By 5.7, we can assume that f is onto. By 5.4, there is a Boolean
algebra homomorphism ¢@: RO(Y) — RO(X) such that for Ue RO(Y),
FUO) S pU)S clp(U) S f*(cl U). Let X* denote the underlying
set of X plus the topology generated by the basis {p(U): Ue RO(Y)}.
Let i*: X — X* be the identity function and f*: X* —Y be defined
by fH@) = fx). For AZ X*, let cl* A (resp. intt A) denote the
closure of A (resp. interior of A) in X*. Clearly 4+ is continuous.
Next we will show that f+ is #-continuous. Let UeRO(Y). To
show (fH)(U) < int*el* (fH)(U), it suffices to show o¢@(U) <
clt (f)™U). Let xe@(U) and let (W) be a basic open set contain-
ing ¢ where We RO(Y). Then zep(U)Ne(W)=o(UNW). So,
UnW= @ implying ¢ = (f1)"(UNW) < (fH)(U)N@(W). Thus,
e(U) S el (fH(U) and (fH)Y(U) < int*el™ (f*)*(U). Also this
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shows that cl* @(U) = cl* ()~ (U) and int*cl* @(U) = intteclt fX(U).
Now, if U, V RO(Y), then int*tel* (fH)(UNV)=inttecl*(UNV) =
int* el* @(U) N int*elt @ (V) = int* el (fH)(U) N int*el* (FH) (V).
This completes the proof that f+ is 7-continuous. Since f= f*o1i™,
then (a) implies (b). O
By 3.9 and the proof of 5.8, the composition of any finite
number of 7-continuous functions is the composition fiofiofiof,
where f, and f, are continuous functions and f, and f; are f-continu-
ous, closed bijections. However as shown by the next example, the
composition of 7-continuous functions need not be 7-continuous.

ExAMPLE. Let N denote the set of positive integers, and Y =
{(0, )}u{(1/n,1/m): n,m e N}U{1/n,0): n e N}U{1/n, —1/m): n,m € N}.
The topology for Y\{(0, 1)} is the topology inherited from the plane;
a basic open set of (0,1)is U, = {(0, 1)} U {(1/n, —1/m): = > p, me N}
where pe N. Let Y, =clU, and Y, = Y\U,. Let X, be the under-
lying set of Y, with Y;\{(0, 1)} discrete and a basic open set of (0, 1)
is V,={0, D}U{1/n,0):n = p} where pecN. Let X=X DY,
Let j: Y, =Y, and j,: Y,— Y, be the identity functions and g =
i+ 72 Y. PY,—Y. So, g is continuous. Let s:(Y), P (Y. —
Y. DY, be the identity funection; since (Y, P Y,), = (Y.), P (Y,),, then
s is a O-continuous, perfect, irreducible bijection. The identity
function h: X — (Y)), P (Y,), is continuous. Let f= gesoh. By 5.8,
f: X — Y has a continuous E-lifting. Now, U, is a regular open set
in Y and bd U, = {(1/n, 0): ne N}. Now, int f~*(bd U)) = {(A/n, 0) € X;:
ne N} and (0, 1) eclint f~*(bd U,). But f(0,1)¢ bd U,, and by 3.2, f
is not %-continuous. It follows from 3.8 that gos is 7-continuous
since (Y), P (Y))*=Y,PY, So, f=(gos)oh is the composition
of two 7-continuous surjections but is not »-continuous.

This paper is concluded with a necessary and sufficient condition
for an 7-continuous function to have a unique continuous FE-lifting.
This result parallels the corresponding result for a-liftings — see
Proposition 2.5.

THEOREM 5.9. An 7-continuous function has a unique continu-
ous E-lifting if and only if it is a c-function.

Proof. The proof of the sufficiency is the same proof as for
unique a-lifting. To prove the necessity, suppose f: X — Y is an 2-
continuous with a unique continuous E-lifting. By 8.9, f=sogoh
where ¢g: X* —» Y, is continuous and h: X — X* and s: Y,— Y are
@-continuous, perfect, irreducible bijections (and separating since
one-to-one). For Ue RO(X*), int h~*(bd U) = int (h~*(cl U)\r%(U)) =
int 7*(cl U)\elh~*(U). By 8.5, inth(clU)=intelh*(U). So,
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inth(bd U) = @ and h is c-function. Similarly, s is c¢-funection.
By sufficiency portion of this theorem, ~ and s have unique con-
tinuous E-liftings H and S, respectively. By 4.2, H and S are
homeomorphisms. Assume G, and G, are direct continuous a-liftings
of g. By 1.5, there are distinct continuous E-liftings F, and F, of
¢g. Since S and H are homeomorphisms, SoF,ocH and So F,o H are
distinet continuous FE-liftings of f; this is a contradiction as f has
a unique continuous E-lifting. So, g has a unique continuous a-lifting.
By 2.5, ¢g is a c-function. Let Ue RO(Y). Then U is open in Y,,
and by 8.7, bd U =bd, U. So, int f~(bd U) < int* (f*)"*(bd U) =
int* g~*(bd, U) = @ implying ¢ is a c-function. O
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