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BASE CHANGE LIFTING AND GALOIS INVARIANCE

JOE REPKA

Let G be a quasi-split connected reductive group de-
fined over the reals. Every irreducible representation π of
GR has a base change lifting 77, a representation of Gc, such
that 77 is equivalent to its conjugate Π\ We prove that
if G=6L(w), every 77 which is equivalent to Πσ is the lift-
ing of some π, but show by examples that this is not always
true for general G. Finally we discuss the analogous global
question and show that there are global cusp forms on
PGL(2) which are Galois invariant but not liftings.

()• The relationship between a representation π of GR and its
base change lifting 77 has been studied for various groups G by-
several authors, starting with Langlands [6], whose work on the
global problem for GL(2) includes the archimedean case, almost in
passing. It is expected that the characters of π and 77 are related,
in a specific way, via the norm map, at least when π is tempered.
This relation has in fact been proved by Shintani [8] for GL(2, R),
by Clozel [2] for representations of GL(n, R) induced from unrami-
fied quasicharacters of a minimal parabolic subgroup, and in a for-
thcoming paper by the present author [7] for arbitrary tempered
irreducible representations of GL(%, R).

In this paper we address the question of whether a given re-
presentation 77 of Gc is the lifting of some π. We first interpret
the action of the Galois group of C/R on representations of Gc in
terms of the Langlands classification for these representations. Then
we use our results to study liftings. We shall work directly with
the L-homomorphisms corresponding to π and 77, rather than the
representations themselves, and do not here broach the more diffi-
cult question of the relationship between π and 77.

We use the notations and terminology of [5], except that, fol-
lowing [1], we write LG° for the dual group. Thus LG° is a con-
nected complex Lie group. Since G is defined over R, there is an
action of Γ = Gal(C/Λ) on LG°', and if σ is the nontrivial element
of Γ we denote this action by gy-*σ-g. The Weil group WR also
acts on LG°, and we form the real dual group LGR = LG° x WR and
the complex dual group LGC =

 LG° x Wc.

1* An irreducible representation 77 of Gc is associated to a
(class of) L-homomorphisms Φ: WC^

LGC (see [5]). We define the
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representation Π° of Gc by Π\g) — Π{g°), where ga is just the com-
plex conjugate of g eGc. Then Πσ is associated to a (class of)
L-homomorphisms Φσ: Wc —> LGC, which we now describe. As usual,
identify Wc = CK, and write Φ(z) = α(^)x^ eLG° x Wc. Then

PROPOSITION 1. A representative of Φ° is

Φ\Z) = [ff α(2)]X2! .

Proof. We may assume that the image of Φ is contained in a
maximal torus LT° x Wc of LGC such that σ{LT°) = LT°. Following
[5], form I/, ZΛ as usual. There is an action of Γ on L, given by

(1) σ(X)(tσ) = "λ(t) , (λ 6 L, t e Γc) .

It induces a dual action on L", which is compatible with the action
on LG°.

Next we restrict scalars; i.e., find groups S, H so that SR = Tc,
HR = GC. Then L S o = L T ° x z Γ ° and LH° = LG° xLG°; Γ acts by
transposition:

( 2 ) σ\gu g2) = (gt, gx) .

Corresponding to S, form U = LxL, L'~= L~xL~, with the
natural duality: <(λx, λ2), (λΓ, λΓ)> = <λx, λ̂ > + <λ2, λΓ>.

From the action (1) of σ on L we get an action on U by σ(λ') =
σ(Xlf λ2) = (<7λi, σX2). If ί e Γc, λ' e L', this action satisfies the ana-
logue of (1), namely

( 3 ) <7(λ')(*σ) = λ ' ( t ) .

By duality, there is an action on Z/~ = LΓxLΓ and also on ZS°
and LH°; both actions are componentwise: σ(gl9 g2) = (σ gu Gm9ϊ)> if
(gl9g2)eLHo~LG°xLGo.

Now from the action σr given by (2), we get another action σf

on L'", and by duality on L', the latter given by σ'(Xlf λ2) = (λ2, Xj.
If λ' eL\ t = (ίx, • , ί j e Γc = (Cx)w, and t = (ί l f , ί J , then this
action satisfies

( 4 ) <j'(λ')(t) = λ'(t) = V(ί) .

The automorphism g\-+ gσ of Gc, regarded as the reαϊ group ifΛ,
induces an automorphism of the (real) dual group LH° (and hence
of LHR). We wish to calculate this dual automorphism, Lσ.

If λ' eL',te Tc, we find, using (3) and (4), that σσ'(x')(tσ) =
σ\X')(t) = λ'(t). Thus σσ' is the action on L dual to t\-*tσ on JΓC.
This allows us to calculate the action on LH° (and hence LHR),
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namely

(5 ) Lσ(glf g2) = σσ\gu g2) = (σg2, σgt) .

Now given our Φ: Wc —> LGC, we restrict scalars and find the
corresponding φ: WR-*LHR (cf. [5], p. 13). Composing Lσ with φ,
we obtain φσ. Reversing the restriction of scalars process, we
obtain Φ°.

Explicitly, following [5], pp. 12-13, we let V = {(1, 1), (1, σ)} and
find φ(z, 1) = (α(z), a(z))x(z, 1), and φσ{z, 1) = (σ-a(z), σ-a(z))x(z, 1).
From this we see that Φσ(z) = σ a(z)xz. Π

REMARK. We had to restrict scalars because the automorphism
σ of Gc is not defined over C, though the corresponding automor-
phism of HR is defined over R.

2. If φ: WR —> LGR is an L-homomorphism, its restriction to the
subgroup We has its image contained in LGC, so is an L-homomor-
phism Φ: Wc —> L6rc. I n this situation we say Φ is a "lift" of 0. It
is easily seen that for such a Φ, we have Φσ — Φ, i.e., Φσ = Ad(#)Φ,
for some geLG° (in fact, if 0(1, cr) = hx(l, σ), then g = σ-h will
work). The question at hand is the converse: suppose an L-homo-
morphism Φ satisfies Φσ ~ Φ. Must Φ be the lift of some φi We
shall see that the answer is "sometimes".

Given Φ with Φ° ~ Φ, we must try to extend Φ to an L-homo-
morphism φ: WR —> LGΛ. The difficulty is to define 0(1, σ) so that

( 1 ) i d , σ)Φ(z)φ(l, σ)-* - Φ(I)

and

( 2 ) φ{l, σf = Φ{-1) .

In light of (1), a natural first choice for 0(1, σ) is σ 0X(l, σ),
where g e LG° is an element with Φ° = Ad(ί/)Φ, but we may need to
modify this choice to satisfy (2).

At this point, two examples are in order.

EXAMPLE 1. Let G = PGL(2), so LG° = SL(2, C). Define Φ: Wc ->
LG° x T7C by

exp in arg 2; 0

0 exp( —m arg z)

Then, since the action of σ on LG° is trivial, Φσ(z) =

exp in arg , ) x ^ a n d i f » = ( - ί 0) t h e n
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However, g1— —id. If n is odd, we may define φ(z, 1) = Φ(z), 0(1, σ) ~
gx(lfσ)f and (1) and (2) will be satisfied. Thus φ is an L-homo-
morphism φ: WR-^LGR and φ\Wc = Φ: i.e., Φ is the lift of φ. On the
other hand, it won't work if n is even, and in fact it is easily-
checked that no choice of g will satisfy (1) and (2) if n is even.
Thus Φ°~Φ for all n, but Φ is a lift if and only if n is odd.

EXAMPLE 2. Let G = SL(2), so LG° = PGL(2, C). Define Φ by

φ(z) = ( e x p m

o

a r g z tyxz, where by the matrix we understand its

image in PGL(2, C). Then Φ\z) = ^ P C " " * a r £ * ) J ) χ z . If we let

j - ( i), then Adto)^) = (J e χ p i n»a r g > , = («P(-«» «« •>
M z = 0σ(2), since the matrices are in PGL(2, C). Thus Φσ~Φ. If

is even we may define φ(l, σ) — g x (1, σ) and (1) and (2) will be

satisfied. However, if n is odd, Φ(-l) = (""J J ) x ( - l ) , and it is

easily checked that no choice of g will work. Thus Φσ ~ Φ for all

n, but Φ is a lift if and only if n is even.

3* These examples can be explained, to some extent, in terms
of the corresponding representations, as follows. In Example 1, it
is convenient to think in terms of GL(2). By composing Φ with the
inclusion SL(2, C) -> GL(2, C) we get an L-class and hence a repre-
sentation of GL(2, C) and this representation is trivial on the center,
so it factors to give a representation of PGL(2, C). However the
representation of GL(2, C) is the lift of a representation of GL(2, R)
which is not trivial on the center if n is even (its value at —id is
— 1), so does not correspond to a genuine representation of PGL(2,
R). So we have a representation of PGL(2, C) which is Galois in-
variant but for which the reasonable corresponding representation
of PGL(2, R) does not exist.

In Example 2, for even n, the representations π of GR which
correspond to φ are the discrete series representations corresponding

to the characters (__l^ c o s ^ ) ^ e x p ± ί n^2θf w h i c h a r e n o t d e "
fined for odd n.

It should be noticed that other similar examples are not diffi-
ficult to find; it is easy to mimic the construction of Example 1 for
G = PGLO) or when LG° = Sp(rc, C).

4* We now discuss some criteria which will help decide whether
Φ is a lift in certain cases.

PROPOSITION 2. // G is split over R and Φa = Φ, then Φ is a
lift.
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Proof. Since Φ° = Φ, rather than just Φσ ~ Φ, we may take
any geLT° and set 0(1, σ) = gx(l, σ) to satisfy (1). And to satisfy
(2), we need only take g so that Φ(—l) = g2x—l. (Note that since
G is split, σ acts trivially.) •

Taking a cue from the above proof, we look for cases in which
g can be found so that g(σ-g) has the right value.

PROPOSITION 3. Suppose G is split and suppose g e LG° is such
that

( i ) Φσ = Aά(g)Φ
( ϋ ) 92 = 1
(iii) (LT°)9, the subset of LT° fixed by Ad(βr), is connected)

then Φ is a lift.

Proof. Let Φ( — 1) — ax — 1 , with a e (LT°)g. Since square roots
exist in a connected complex torus, there exists c e (LT°)9 with c2 = a;
let fir' = C0. Then Φ° = Ad(#')# and (#')2 = cflrcflr = cgrc^-1 = c2 = a. •

Proposition 2 applies, for example, to the ̂ 's which arise as lifts
of φ's corresponding to principal series representations induced from
minimal parabolic subgroups.

5* We are now able to prove that there is no trouble for
GL(n).

THEOREM. IfG = GL(n) then Φ is a lift if and only if
Φσ ~ Φ.

Proof. We know that lifts are Galois invariant. For the other
direction we shall apply Proposition 3; we need to verify that it is
possible to find a g satisfying (i), (ii), (iii).

Assume LT° is the diagonal torus. Thus Φ and Φσ are each
specified by an ordered w-tuple of quasicharacters of Wc (the dia-
gonal entries of the projection of Φ into LG° = GL(n, C)). Since Φ
and Φa are equivalent (i.e., conjugate by an element of GL(w, C))
they must involve the same n quasicharacters. In other words, Φ°
is obtained from Φ by a permutation of the diagonal entries. So
we may choose a g in the normalizer of LT° so that Ad(g)Φ = Φ\
Moreover, since (Φσ)σ = Φ, the permutation must be of order 1 or 2,
so we may choose g with g2 = 1.

Now Ad(βr) acts on LT° as a product of (disjoint) transpositions,
so that the fixed set (LT°)9 consists of all elements with certain
pairs of entries equal. Such a set is isomorphic to (Cx)m for some



210 JOE REPKA

m ^ n, so is certainly connected.
Thus Proposition 3 applies and the theorem is proved. •

6* The preceding analysis can be applied in other situations.
If, for example, the group G is not quasi-split, then similar consid-
erations apply, with the additional difficulty that a Galois invariant
Φ could be the lift of a φ which is not "relevant" (examples are
easily constructed for Ϊ7(2)).

The work with 1,-homomorphisms can also be done for p-adic
groups, though in the absence of the classification theorem for re-
presentations, it lacks the representation-theoretic interpretation.
On the other hand it may serve to suggest examples.

We turn now to the analogous global question: if a global cusp
form is Galois invariant, must it be a lift? Of course for GL(2)
Langlands ([6]) has shown the answer is yes. It would be very
interesting to know the answer for GL(n)—especially in light of
our earlier local result for GL(n, R).

The purpose of this section is to show that for PGL(2) the ans-
wer is no. The idea is similar to our Example 1 above, especially
the representation-theoretic discussion in § 3. We observe that it is
possible to find a representation of GL(2) which is not trivial on the
center but whose lift is trivial on the center; the lift factors to a
Galois invariant representation of PGL(2) which is not a lift.

Indeed, let F be a number field, E a quadratic extension, IF

and IE their respective ideles. Let X be the grossencharakter of IF

which is trivial on NE/F(IE) (the existence of X is guaranteed by
class field theory). Now let π be a cusp form on GL(2, AF) with
central character 1 and whose lift, Π, is a cusp form on GL(2, AE).
Then the central character of Π is XoNE/F, which, by the definition
of 1, is trivial (for these facts about liftings, see [6], pp. 1.14-1.15).
Thus Π factors to give a cuspidal representation Π of PGL(2, AE);
Π is Galois invariant but we shall see it cannot be a lift.

Notice that every cuspidal representation of PGL(2, AF) gives
rise to a cuspidal representation of GL(2, AF) by composition with
the natural projection. By [6] we know each such representation
has a lift, and as above the lift has trivial central character, so it
factors to give a representation of PGL(2, AE). Thus every cusp
form of PGL(2, AF) already has a lift in this way, so our Π cannot
be the lift of any of them (note that ([6], p. 1.15) Π is the lift of
at most two representations π, and that they have the same (non-
trivial) central character Z).

For an explicit example, let F = Q, K = Q(l/—2). We first con-
struct a grossencharakter of K, as follows. The field Q2(τ/—2) is a
ramified quadratic extension of Q2, with prime ideal p = (i/—2).
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The units modulo 1 + t>3 form a cyclic group of order 4, generated
by u = 1 + V^-2. Define a character ψ2 of Q2(i/^2)x, trivial on
1 + t>3, by ψ2(u) = ΐ, ψ»2(ι/^2)= —1. The rational prime p = 3 splits
in K; in the two copies of Q3 which result, the element V—2 is
congruent to 1 mod(3) in the first and to 2 mod(3) in the second.
Thus for the prime elements in these two localizations we may take
1 — V—2 and 1 + V — 2 respectively. We define a character ψ3 of
the product of these two localizations by

ψ3(a, 6) = |α/6|^ 2 1^

(here sgnθ means the character of order two of Q3

X which is trivial
on the norms from Q3(T/*#~)X). For the infinite prime, define ^ = 1.

If xeKx, we embed x in each localization, and so calculate
ψoo(x)ψ2(x)ψ3(x, x). We do this for x= - 1 , l/"11^, 1 + V~29 1 - l / ^ ,
and in each case the answer is 1. Each of these elements is a unit
in every other localization, and since K has class number 1 there is
a unique grossencharakter ψ of K which has the above local compo-
nents at the given places and is unramified at every other place.

We make three remarks. First, if we restrict <f to the diagonal
embedding of the rational ideles IQ, we get the grossencharakter
associated to the extension Q{Λ/ 3 )JQ. To see this, we check it at
the primes 2, 3, c°, and then remark as before that these data de-
termine a unique grossencharakter unramified at the other primes.
Second, we remark that the prime p = 19 splits in K, and calculate
the corresponding local components of ψ. In fact, we are interested
in the corresponding Euler factor, which we find is (1 + ίp-s)2. Third,
we remark that ψ does not factor through the norm N: Iκ —> IQ;
consider the idele which is —1 at the two places lying over 3 and
1 elsewhere. Its norm is the trivial idele but ψ of it is — 1.

Given our grΰssencharakter ψ of K which does not factor
through the norm, we make the usual construction of a cusp form
π of GL(2, AQ) (see, e.g., the discussion in [3], §7B). The central
character of π will be the product of the grossencharakter of Q as-
sociated to the extension K/Q, and the restriction of ψ to IQ, i.e.,
the grossencharakter associated to Q(V 3 )/Q. It is easy to check
that this product is the grossencharakter associated to the extension
E = Q(V^6) of Q.

Now consider the lifting Π of π to GL(2, AE). Its central char-
acter, the composition of the central character of π with the norm
N: IE —> IQ, is trivial. Moreover, Π is cuspidal. Indeed the only
way Π could fail to be cuspidal would be for π to be associated to
a grossencharakter of E (see [4], Theorem 2). But we have calcu-
lated the Euler factor for p = 19 to be (1 + ίp~s)\ which could not
come from a grossencharakter of E, since p = 19 does not split in E.
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Thus π and 77 are both cuspidal, Π is trivial on the center, π
is not. So Π gives rise to a representation Π of PGL(2, ^ ) , which
is the example we sought. It is Galois invariant but not a lifting.
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