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MONOTONICITY OF PERMANENTS OF CERTAIN
DOUBLY STOCHASTIC MATRICES

DAvID LONDON

Let p(A), k=1, -+, n, denote the sum of the permanents
of all & X k submatrices of the n X n matrix A.
We prove that

2n —k—1
k
where I, and P, are respectively the n X n identity matrix
and the n X » permutation matrix with 1’s in positions
a,2),28), -, (n—1, n), (n,1). Using (*), we prove that

for n =3 and A = (I, + P,)/2, the functions

p((1— O, +04), k=2, -, n,

(*) pul, + P)=—" (

’ :1,"', —1y
po— ) k n

are strictly monotonic increasing in the interval 0 =6=<1.
Here J, is the » X n matrix all whose entries are equal to
1/n.

Let A be an n X n matrix, let p(4) be the permanent of A4, let
2

p(A), k=1, ---,n, be the sum of the permanents of all <Z’)lcxk
submatrices of A and define p,(4) = 1. Note that p,(4) = p(4).

Denote by 2, the set of all » x » doubly stochastic matrices,
by J, the » X n matrix all whose entries are equal to 1/n, by I, the
n X n identity matrix and by P, the n X n permutation matrix
with 1’s in positions (1, 2), (2, 3), - --, (n — 1, »), (n, 1).

The van der Waerden conjecture asserts that if AeR,, then

]
p(4) = p(J,) = -,
with equality if and only if 4 = J,.
A stronger version of this conjecture states that the function

p(A — 0)J, + 04),

where A is any fixed matrix on the boundary of 2,, is strictly
increasing in the interval 0 <6 < 1. In [2] the above assertion was
proved for A =1, and for A= (nJ, — I,)/(n —1). In [5, p. 158,
Problem 8] the problem of finding other matrices A, for which the
above assertion holds, was posed.

In the present paper we prove this assertion for A = (I, + P,)/2.
We actually prove a stronger result: for » =8 and A = (I, + P,)/2
the functions
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hoo) =01 —60)J, +604), k=2 ---,n,

are strictly increasing in the interval 0 £ 6 < 1.
We start with the following lemma.

LEMMA 1. Let n =3 and let AcQ,. If

(1) pi(A) < Pi:(A) , i=1,--
pt(Jn) - pi+1(Jn) ’

with strict inequality for 1 <1 < mn — 1, then the functions

hyo0)=p((1—6),+04), k=2, ---,n,

-,m—1,

are strictly increasing im the interval 0 < 6 < 1.

Proof. By [4, Lemma 2],

p(4)

e [k i i
has®) = pld) X ( : ><1 O Ty

Differentiating, we obtain

’ _ k=t (b —1 _ p\k—i—1gi Di+:(A4) . pz(A)>
@) W =k 5 (- oo (2% - B

From (1) and (2) follows that
;,k(0)>0’ k=2: e, M,

in 0 <6 <1, and so the functions &, ,(0) are strictly increasing in
the interval 0 <4 < 1.

Dokovic [1] (see also [3]) conjectured that (1) holds for all Ae
2,. Lemma 1 shows that if the Dokovi¢ conjecture holds for a
certain matrix Aec®,, then the functions h,,0), k=2, ---, n, are
increasing in the interval 0 <60 < 1.

To apply Lemma 1 for a given A, p,(4),k =2, ---, n, have to be
evaluated. Although the evaluation of p,(4) is in general rather
difficult, explicit formulas for p,(A) are obvious for A = I, and can
be developed for A = (I, + P,)/2.

For A =1, we get

n
pk(In):‘(k)y k=0, n.

Noting that

n\%k!
(3) pk(J,,>=(k>W, B=0,-om,
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(1) follows with strict inequality for 1 <7 < n — 1. Hence, for n = 2,
(1 —0), +6L), k=2, ---,n, are strictly increasing in0 <6 < 1.
For k = n, we get the result of Friedland and Minc [2].

To find formulas for »,(I, + P,), it is convenient first to bring
some combinatorial results.

LEMMA 2. Let | and m be positive integers, m =< 1l. The number

l can be represented as a sum of m positive integers in <ml, B i)

different ways. (Two representations differing in the order of the
summands are regarded different.)

Proof. The lemma can be proved easily by induction. We prefer
to use power series technique.
Consider

x
1—=x

22_]190', x| < 1.

It is obvious that the requested number of representations is equal

to the coefficient of «' in the power series of [x/(1 — x)]™, which is

. l—1
easily found to be equal to < m — 1).

LEMMA 3. Let k,1 and n be positive integers, k < m. Then

min(,n—k) l ’n—k—l n—‘k+l—1
(4) mz=“1 <m><n—k—m>:< n—k >’

L (m—m—1\ /n —k+m—1 2n — k — 1
(5) Z‘o(n—k—l)( n—l—1 >:< 2 >

Proof. We use again power series.
To prove (4), we consider

L[l
<1+x)’=2< )x
r

r=0 /

(l—l-x)”"‘“:zl](n_k_l)w’.

=0 r

The sum in the lefthand side of (4) is equal to the coefficient of 2"*

in the power series of (1 + x)*~**'~!, which is (n _:; ¥ ;lc_ 1)-

To prove (5), we consider

k-1 o < r

- n—k—1

T = r=n§_‘%_1 >9c , el <1.
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The sum in the lefthand side of (5) is equal to the coefficient of

2% in the power series of ["~*~/(1 — x)*~*]?, which is <2n —]f o 1>.

The proof of the lemma is completed.

Let n and [ be positive integers, I < n. Let (n, ---,n),1=
N <Ny < - <M =n, be a l-combination of 1, ---, n. Let m be
the number of »’s, » =1, ---, [, for which n,,, # n, + 1, where n,,
is taken as », and n + 1 as 1. We say that the l-combination
(g, -+, n;) has m gaps. Obviously, m <! and m + 1 < n; i.e,, 0=
m = min(l, n — ).

Take I < » and arrange 1, ---, » in increasing order (clockwise)
in a circle. Then the set (n, ---,n,) and its complement have the
same number of (connected) components. This number is the number
m defined above as the number of gaps of (n,, ---, n).

For example, if » =6 and [ = 8, then the number of gaps of
(1,2,8) and (1,2,6) is 1, of (1,8,4) is 2 and of (1,3,5) is 3. If
n = 1, then m = 0.

We denote by < l,nm> the number of [-combinations of 1, ---,n
having m gaps.( lnm
l, m,n satisfying’ 0<l=n,0=m=min(,n —1). We also define

(0?0) = 1. From the definition of <l nm> follows that

’

min(l,n—1) n n
2 <lm> -(7)-

In the following lemma we obtain a formula for (l nm>

) is thus defined for all nonnegative integers

LemMMA 4. Let I, m, n be positive integers satisfying 0 <l =
n—1,0<m < min(l,n — ). Then

n nf l—1\/n—-1-1
(6) (l,m>za<m—l><m~l>'

Proof. <l %) is equal to the number of l-combinations of 1, - - -,

n with m gapé. We first find the number of Il-combinations of the
form (1, n,, ---, n;) with m gaps.

Arrange the numbers 1, ---, n in a circle and take a l-combination
1, ny -+, ) with m gaps. As Il < n, the set (1, n, ---, n;) and its
complement have each m components. Let m; and m}, ¢ =1, ---, m,
be the number of elements in the ith component of (1, n,, ---, n;)
and its complement respectively. We have
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It is obvious that there is a 1 — 1 correspondence between the
l-combinations of the form (1, n,, ---, »;) with m gaps and the 2m-
tuples (m,, m;, - -, m,, m,) of positive integers satisfying (7). ]{Sy

. . -1\ /n—-1-—
Lemma 2, the number of these 2m-triples is (m _ 1)( m—1 >
Hence, the number of /-combinations of the form (1, n,, - - -, n;) with
(-1 /n—-1-1
mgapsxs(m_1)< m—l)' Nl 1

For each of the numbers 1, ---, » we get <m _ 1>< m—1 )

l-combinations with m gaps. Assembling all these combinations, each

combination with [ gaps is repeated m times. Hence, to get the

number of these combinations, (,::L _ i) <n m i’i 1) has to multiplied

by # and divided by m. Formula (6) is thus proved.
In the following lemma we obtain formulas for p,(I, + P,), k =
0’ cee, M.

LEMMA 5. Let n = 2. Then

n 2n-—k——1>
, k=0, —1,
(8) p(,+P)= %—k( 2 "

2 , k=mn.

Proof. Formula (8) is easily verified for £t = 0 and k& = n.

Letl1<k=n-1. p,,+ P,) is equal to the number of different
diagonals of 1’s of length % in I, + P,. (Where diagonals of length
k in the n X » matrix I, + P, are defined in the obvious way.) Each
such diagonal is composed of I elements of I, and k& — I elements of
P,.

Let (m,, ---,n;) be a l-combination of 1, ---,n with m gaps.
The number of 1’s in P, belonging either to the rows =, ---, n; or
to the columns #,, ---, n, is  + m. Hence, the diagonal of length [
consisting of 1’s in positions (n,, n,), (1, %,), - -+, (n;,, n;) can be aug-

mented, using elements of P,, to (n 76 f—_l m> different diagonals of

1’s of length k. As there are (l nm l-combinations with m gaps,
the number of diagonal of length k; which originate in a l-combination
with m gaps is (l nm> <n 7” l__l m) Summing up over all possible

m and I, we obtain
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k. min(l,n—k) —1—
p(d) = 3% (”)(n ™.

iI=0  m=0 l’ m k—1

Noting that <0:n0) =1 and, as k < n, (l,nO) =0 forl=1,---,k,
it follows that

n k min(l,n—k) n n — I —m
A) = .
pi(A) <k>+lgf m=1 (l 'm,>< kE—1 >

’

Using now Lemma 4, we obtain
n E mingn—k) g [ L —1\ 'm—1—1\ /n —1—m
A) = — .
p= {3+ &7 E L D) (M ) R )
ﬁ<l—1> 'n—l—l)(n—-l—m)

m\m —1 (m——l E—1
_ﬁ<fn—l—1><l><n—k—1>
Cl\w—k—1\m)\n—k—-m/)’

it follows that
n k 1 fn—l—l min(l,n—Fk) l 'n/—k—l
A= -5 ’
puA) (ic)”;l(n—k—l) o (m)(n—k—m)

and using (4), we obtain

o= () 2SR

k =Hl\n—k-1 n—k
But
l<n—k+z—1>_ 1 <n—k+l—1>
I n—k n—k\ n—k—-1 )’
So
v Im—  — —k+l—1
(9) pk(A)z(:)+n2k§<:—llc—i><n%f:—1)

S

_ k(%—l—1><n—k+l—1>

T n—k=S\n—k—1 n—k—1 )
Formula (8) follows from (5) and (9).
We bring now our main result.

THEOREM. Letn = 3 and let A = (I, + P,)/2. Then the functions
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ha0) = p(1 — O, +604), k=2 ---,n,

k
are strictly increasing in the interval 0 < 6 < 1.

Proof. By Lemma 1, it is sufficient to show that

2p, + P) - pln+P)
(10) é , @:1,...,n_1’
pz(Jn) pi+1(Jn)

with strict inequality for 1 <7< n — 1.
For + = n — 1, (10) holds with equality sign.
Fori=1,.--,n — 2, (8) and (8) imply
m4h+P»_@+num—i—1mmM€n—i—3

A @y = - i Dy i+ 1

From (11) follows
Dir:(J,) 2(J,)

2in+2n — i — 2w —i— DIP(n — i — 1)
(n1)*(2n — 2i — 1)1 '

Hence (10) holds with strict inequality for 1 <7 <% — 1, and the
proof of our theorem is completed.

We note that the theorem holds also for all #» X » matrices A
which can be obtained from (I, + P,)/2 by permutations of rows and
columns.
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