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MONOTONICITY OF PERMANENTS OF CERTAIN

DOUBLY STOCHASTIC MATRICES

DAVID LONDON

Let pk(A), k = 1, , n, denote the sum of the permanents
of all & X & submatrices of the n X n matrix A.

We prove that

where In and Pn are respectively the n x n identity matrix
and the n X n permutation matrix with l's in positions
(1, 2), (2, 3), , (n - 1, n), (n, 1). Using (*), we prove that
for n Ξ> 3 and A = (Jn + PJ/2, the functions

are strictly monotonic increasing in the interval 0 ̂  θ :g 1.
Here / n is the n X n matrix all whose entries are equal to
1/n.

Let A be an n x n matrix, let p(A) be the permanent of A, let

pk(A), k = 1, , n, be the sum of the permanents of all ί V* j kxk

submatrices of A and define po(A) = 1. Note that pn(A) = p(A).
Denote by Ωn the set of all n x n doubly stochastic matrices,

by Jn the n x n matrix all whose entries are equal to 1/n, by In the
n x n identity matrix and by Pn the n x n permutation matrix
with l's in positions (1, 2), (2, 3), , (n - 1, n), (n, 1).

The van der Waerden conjecture asserts that if A e Ωn, then

p(A) ^ p(JJ = -21 ,

with equality if and only if A — Jn.
A stronger version of this conjecture states that the function

p((l - θ)Jn + ΘA) ,

where A is any fixed matrix on the boundary of Ωn9 is strictly
increasing in the interval 0 <Ξ θ <̂  1. In [2] the above assertion was
proved for A = In and for A = (nJn - In)/(n - 1). In [5, p. 158,
Problem 8] the problem of finding other matrices A, for which the
above assertion holds, was posed.

In the present paper we prove this assertion for A = (In + PJ/2.
We actually prove a stronger result: for n ^ 3 and A — (In + PJ/2
the functions
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KM = p4((l - θ)Jn + ΘA), k = 2,

are strictly increasing in the interval 0 ^ θ ^ 1.
We start with the following lemma.

L E M M A 1. Let n^Z and let A e Ωn. If

\ L ) —7TV — 7ΊΓ\ > ^ ~" L> > γι >

with strict inequality for 1 ^ i < n — 1, ί/iew ίfee functions

hAtk(θ) = p4((l - β)J# + βA) , fc = 2, ., n ,

are strictly increasing in the interval 0 ^ θ :g 1.

Proof. By [4, Lemma 2],

Ju / k \ _ ........ p(

Differentiating, we obtain

(2) hue) = W J Σ (* 7

From (1) and (2) follows that

W , * ( 0 ) > 0 , fc = 2 , ••-,%,

in 0 < θ < 1, and so the functions hAtk(θ) are strictly increasing in
the interval 0 ^ 0 ^ 1.

Dokovic [1] (see also [3]) conjectured that (1) holds for all A e
Ωn. Lemma 1 shows that if the Dokovic conjecture holds for a
certain matrix AeΩn, then the functions hAtk(θ), k = 2, ••-,%, are
increasing in the interval 0 ^ θ ^ 1.

To apply Lemma 1 for a given A, pk(A), k — 2, , n, have to be
evaluated. Although the evaluation of pk(A) is in general rather
difficult, explicit formulas for pk(A) are obvious for A = In and can
be developed for A = (In + PJ/2.

For A = In, we get

P » ( / . ) = ( ,. ] , k = 0, ••-,

N o t i n g t h a t

( 3 )
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(1) follows with strict inequality for 1 <̂  ί ^ n — 1. Hence, for n ^ 2,
pfc((l — 0)JΛ + 0JΛ), & — 2, ••-,%, are strictly increasing in 0 ̂  θ 5g 1.
For k = n, we get the result of Friedland and Mine [2].

To find formulas for pk(In + P J , it is convenient first to bring
some combinatorial results.

LEMMA 2. Lei i ami m be positive integers, m ^ I. T%e number

I can be represented as a sum of m positive integers in ί ~ Λ

different ways. {Two representations differing in the order of the

summands are regarded different.)

Proof. The lemma can be proved easily by induction. We prefer
to use power series technique.

Consider

1 — X r=l

It is obvious that the requested number of representations is equal
to the coefficient of xι in the power series of [x/(l — x)]m, which is

easily found to be equal to ( ~ 1 ).
\m 1/

LEMMA 3. Let ky I and n be positive integers, k < n. Then

mind,*-*) I I \ In — k — 1 \ In - k + I — 1\

™=i \mj \n — k — m) \ n — k

k In — m — 1\ In — k + m — 1\ (2n — k —

( 5 ) Σ , 1 I _ , -,

Proof. We use again power series.
To prove (4), we consider

I

(l + x)1 = Σ
r=0

The sum in the lef thand side of (4) is equal to the coefficient of xn~k

in the power series of (1 + α?)*"^1"1, which is (n ~ n _ k

To prove (5), we consider

n-k—l co I γ \

_Jί V )rr r\ <r 1
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The sum in the lefthand side of (5) is equal to the coefficient of

χ2n-k-2 i n t h e p o w e r s e r i e s o f [a —*-i/(! _ a)-*]*, which is (^n ~~^ "

The proof of the lemma is completed.
Let n and I be positive integers, I ^ n. Let (nl9 , wz), 1 ^

%! < w2 < < Uι ^ n, be a Z-combination of 1, , n. Let m be
the number of r 's, r = 1, , Z, for which nr+1 Φ nr + 1, where wι+1

is taken as nx and % + 1 as 1. We say that the l-combinatίon
(nl9 - - , nt) has m gaps. Obviously, m ^ Z and m + I ^ n; i.e., 0 ^
m ^ min(Z, w — I).

Take Z < n and arrange 1, , n in increasing order (clockwise)
in a circle. Then the set (nlf •• ,/^0 and its complement have the
same number of (connected) components. This number is the number
m defined above as the number of gaps of (nl9 , nt).

For example, if n — 6 and I = 3, then the number of gaps of
(1, 2, 3) and (1, 2, 6) is 1, of (1, 3, 4) is 2 and of (1, 3, 5) is 3. If
n = I, then m — 0.

We denote by ( i n ) the number of Z-combinations of 1, , n

having m gaps/-, n j is thus defined for all nonnegative integers

Z, m, n satisfying 0 < I ^ n, O ^ m ^ min (Z, n — Z). We also define

= 1. From the definition of (/^Lj follows that

d , ) ί n \ In

\ Z, m/ \ I

I n t h e f o l l o w i n g l e m m a w e o b t a i n a f o r m u l a f o r ίΊ

n ) .

LEMMA 4. Lei Z, m, w be positive integers satisfying 0 < Z <i
— 1, 0 < m ^ min(Z, n — Z).

\l, m) ~ m\m - l) \ m - 1

Proof. (r n ) is equal to the number of Z-combinations of 1, ,
\i9 ΊΪl/

n with m gaps. We first find the number of Z-combinations of the
form (1, n29 , ni) with m gaps.

Arrange the numbers 1, , n in a circle and take a Z-combination
(1, n29 , wz) with m gaps. As I < n, the set (1, w2, , wt) and its
complement have each m components. Let m* and m , i = 1, , m,
be the number of elements in the ith component of (1, n29 , ^0
and its complement respectively. We have



( 7 )
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m

Σ wc = z,
i l

m i — n — I .

It is obvious that there is a 1 — 1 correspondence between the
Z-combinations of the form (1, n29 , nt) with m gaps and the 2m-
tuples {mum[, ---,mm,m'm) of positive integers satisfying (7). By

Lemma 2, the number of these 2m-triples is ( m Z i ) (^Λ^ __~ΐ )•

Hence, the number of Z-combinations of the form (1, n2, , nt) with

U i 1

For each of the numbers 1, , n we get ( 1 ) ( _ -, )
\7ϊb JL/ \ lib i- /

Z-combinations with m gaps. Assembling all these combinations, each

combination with I gaps is repeated m times. Hence, to get the

number of these combinations, ( n ~ -. j \ m —"Ϊ ) ^ a s °̂ m u^ίpliβd

by n and divided by m. Formula (6) is thus proved.
In the following lemma we obtain formulas for pk(In + PJ, k =

0, .--,n.

( 8 )

L E M M A 5. Let n ^ 2.

,̂ / 2 ^ — k — 1
, fc = 0, •••, w - 1 ,

n - k\ k

2 , k = n .

Proof. Formula (8) is easily verified for k = 0 and k — n.

Let 1 •<* fc <£ w — 1. pail* + P») is equal to the number of different
diagonals of Γs of length k in In + PΛ . (Where diagonals of length
A; in the n x n matrix In + PΛ are defined in the obvious way.) Each
such diagonal is composed of Z elements of In and k — Z elements of

Let (wlf ••-,%,) be a Z-combination of 1, ••-,% with m gaps.

The number of Γs in PΛ belonging either to the rows nu -- ,nι or

to the columns nlf , n3 is Z + m. Hence, the diagonal of length Z

consisting of Γs in positions (nu %), (n2, n2), , (n^ î?) can be aug-

mented, using elements of Pn, to ί w T _~^ m j different diagonals of

Γs of length k. As there are ( i^L) Z-combinations with m gaps,

the number of diagonal of length k which originate in a Z-combination

with m gaps is (-J1 j (n T __~̂  m J . Summing up over all possible

m and Z, we obtain



130 DAVID LONDON

n \ In -I - m
pk(A) = Σ Σ L 7

ι=o m=o \l9 mj \ k —

Noting that (Q™0) = 1 and, as k < n, (fy = 0 for I = 1, - -, fc,

it follows that

/%\ fc mina,n-k)ί n \ In — I — m

pk(A) = + Σ Σ L 7 7

Using now Lemma 4, we obtain

Pk(A) = _ + Σ Σ ^ J 1 7

As

^ / I — 1\ In — I — 1\ In — I —

m\m -1)\ m -1 ) \ k - I

f
I \n — k — 1/ \m/ \n — k — m)

it follows that

n\ k \ I n — I — 1 Winα,*-*)/ ϊ \ /w — fe — 1
. H Σ y 7 - Σ 7 i ,

fc / ι=i I \n — fe — 1 / m=i \m/ \n — k — mj

and using (4), we obtain

ΛΣ4 II

\ / ι = i ί \ w - l 5 - l / \ n — k

But

- k + Z ~ 1\ 1 In - k + I - 1I \ n-k j n-k\ n-k-1

So

I n\ n kin — I — ϊ\ln~k + l — 1

( 9 ) * \ f c/ n-kι=i\n-k-l)\ n-

- I - 1\ In - k + I - 1

^ — k ι=o\n — k — l) \ n - k - 1 /

Formula (8) follows from (5) and (9).
We bring now our main result.

THEOREM. Let n ^ 3 and let A = (In + PJ/2. Then the functions
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~ Θ)J% + ΘA), k = 2,...,n

are strictly increasing in the interval 0 ^ θ ^ 1.

Proof. By Lemma 1, it is sufficient to show t h a t

+ P.) ^ P < + 1 ( 7 . + P J ί = l . . . Λ β

with strict inequality for 1 <Z ί < n — 1.
For i = n — 1, (10) holds with equality sign.
For i = 1, - -, n - 2, (3) and (8) imply

pi+ι(Jn) (n-i-

From (11) follows

pi+1(In + P J 2^(1, + P J

= - j - 2)\[(n - i- l)\f(n - i - 1)
(w!)2(2w - 2ί - 1)!

Hence (10) holds with strict inequality for 1 ^ i < n — 1, and the
proof of our theorem is completed.

We note that the theorem holds also for all n x n matrices A
which can be obtained from (JΛ + PJ/2 by permutations of rows and
columns.
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