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If W(z)=1 is defined on the real line and satisfies (1),
a discussion is given of the regularity assumptions which
must be imposed on W in order to guarantee the existence
of nonzero entire functions ¢ of arbitrarily small exponential
type making W(x)¢o(x) bounded on the real axis. It is known
that such ¢ exist provided that log W(x) is uniformly Lip 1.
An example is given which shows, among other things, that
this is no longer the case if we merely suppose that
log log W(x) is uniformly Lip 1.

1. Introduction. Suppose we are given a function W(zx) > 1
(henceforth called a weight), defined for — < 2 < « and satisfy-
ing '

* log W(x) -
(1) | e Mgy < o .

In connection with various problems, it is important to know when
there exist nonzero entire functions @(z) of exponential type for
which W(x)p(x) is bounded, or belongs at least to some L, class,
on the real axis. Some of these problems involve the completeness
of sets of exponentials on finite intervals ([12], p. 50ff, [1]) or other
aspects of approximation theory ([4], pp. 2564-288). Let us also
mention the question of nonuniqueness for the best H.-approxima-
tions to certain functions of unit modulus related to W ([5], §4),
and a closely related one concerning the existence of nonzero posi-
tive functions w(x) such that

O F a2 = [f@)

| Farowds < | 1L
for the Hilbert transform f of each bounded function f having its
spectrum in (—c, —alUla, =), a > 0 ([5], [6]).

If, besides (1), W(x) satisfies certain regularily conditions, there
are nonzero entire functions @ of arbitrarily small exponential type
making W(x)p(x) bounded for real x. It has long been known, for
instance, that this is the case if W(x) is even and increasing for
x > 0 (see, inter alia, [10], p. 81, [7], §5); the theorem on the mul-
tiplier, due to Beurling and Malliavin, furnishes the same result

105



106 PAUL KOOSIS

whenever W, satisfying (1), ¢s itself an entire function of expo-
nential type, or has a logarithm wuniformly continuous on the real
axis ([2], [8], [11]). The mere relation (1) is certainly not sufficient
by itself for the existence of such ¢, and it seems very difficult to
get a simple description of minimal regularity conditions whose im-
position on W(x) would ensure that existence.

For this reason the following question seems natural:

If there is some nonzero entire function @ of exponential type,
with (for imstance)

(2) | Jo@Weds < =,

are there monzero entire functions @ of arbitrarily small exponenti-
al type such that

(3) |” i@ Wz < co?

The simplest examples show that even here W(x) must have
some regularity in order for there to be a positive answer. Take,
for instance,

W) = (Z2-),

sin 7w

then (2) holds with

D(z) = (sm 7rx2sm 7790)‘ ’
x

an entire function of exponential type 27 + 27. Any entire function
@ satisfying (3) must, however, have a double zero at least at each
of the points +1, =2, *3, ---, and this, by Carlson’s theorem ([3],
p. 153), cannot happen for a nonzero ¢ of exponential type < 27.
This example, which works because W(n) = « at the nonzero inte-
gers n, seems to have an artificial character; it would be excluded
from our discussion by requiring W to satisfy an inequality like

W) = (W(x))

whenever |’ — x| =< [, with two positive constants ¢ and [. This is
a kind of uniform semi-continuity, much weaker than the uniform
continuity of log W(x) which, as noted above, is already enough to
ensure existence for nonzero @ of arbitrarily small exponential type
satisfying (3).

Let us agree to henceforth only comsider weights W(x) having
at least the following regularity:
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There are two positive constants ¢ and 1l such that, for each wx,,
we hawve

(4) W(x) = (W(x,))

throughout some interval of length 1 containing x,.

This condition, milder than the one mentioned previously, holds
whenever, starting from any function 2(x) = 1 satisfying

?

S“MdoKm
- 1+ o*

we form the geometrically smoothed weight

(5) Wi(x) = exp{zilgl_llog Qx + t)dt} .

Indeed, for any x, at least one of the two relations

511‘&, log Q@ + t)dt = % log W(a) ,

1{ 1
—\ log Q(x + t)dt = — log W(x)
21 Jo 2

must hold. So, since log 2 = 0, we have W(') = Vv W(x) on at least
one of the two intervals # — Il <o’ <2, <2’ <2 + 1, giving us
(4) with ¢ = 1/2.

If condition (4) on W is fulfilled and there exists any nonzero
@ of exponential type satisfying (2), we can find another entire ¥
of exponential type (perhaps larger than that of @), having only
real zeros, and such that

(6) S°_° |0 + 3)| Wx)ds < o .
To see this, start with the Hadamard product representation

—_ Dpiaz — ﬁ 2/2 .

(7) D(z) = Aze g(l N)e ;

here, » runs through the zeros @ has away from the origin, and p
is a nonnegative integer. Since W =1, (2) implies S_ |@(x) | dx < oo,
so |@(x)| is bounded for real x ([3], p. 98). This makes the constant
« in (7) real. In the right-hand side of (7), let us now throw away
all factors corresponding to purely imaginary zeros A, and replace
each remaining A by a real one, X, related to it through the formula

1% = RAN) .
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This procedure gives us a new entire function @,z) of exponential
type which is easily seen to satisfy the inequality |@,(x) < |®(x)|
for real x, and hence also

| le@IWe)ds < =,

(According to [10], p- 30, the type of @, is less than or equal to
that of @; here, the boundedness of @ on the real axis makes the
two types equal. See [12], pp. 55-56 and [3], p. 115.)
Calling A the type of @, in the upper half plane, we have, by
Poisson’s formula,
1

(8) lwWM+W=A+—S
T

= _log |0,(2)|dt
(@ — & + 1

’

because @, has only real zeros ([3], p.92). Jensen’s inequality, com-
bined with (8), now yields

. IS” log W(x + t)
log |® =\ == ¢
og|l@+ il + ) —a g

° |q)o(t)|W(t)dt}
o (w — 1)+ 1

Slwmmmq,

éA—I—log{-l—g
T
éA—l—log{—l-

T

)
. 1(= log W(x + t)
R e

is bounded for —o < < oo,
Condition (4), however, yields

lgw log W(x + t) dt > ¢l log W(x)
Tl 241 - nP+1)

80 |@y(x + 1)|(W(x))* = K on the real axis with two positive constants
k and K. Since W(x) =1, we see that |@,(x + 4)|” W(x) is bounded
for real z if N is any integer > 1/k, and the formula

’

ww=“?@mw

now provides us with a nonzero entire function ¥ of exponential

type having only real zeros and satisfying (6).
Suppose that we merely have some function 2(x) > 1 and a non-

zero @ of exponential type such that

S:I@(x)lﬂ(x)dx < .
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An argument like the preceding one can then be carried through
with 2 instead of W, up to the point where an inequality

1 S°° log 2(x + ©) 4,

Tl £+1 }<K’_w<x<oo’

|0y + i)]eXp{
is obtained. However, if W is the smoothed weight obtained from
2 by (5), we have

1 S"" log 2(x + t) dt > 2l log W(x)

Tl +1 =Tzl + 1)

’

and we see that (6) still holds with a suitable entire ¥ having only
real zeros.

On account of (6), the existence of entire ¢ of arbitrarily small
exponential type satisfying (8) is seen to boil down to existence of
such ¢ for which

lp@)|  — e -
(9) TiCE) =< const., <z < .
Taken generally, this statement has a converse:

If, for every weight W fulfilling (4), the existence of one entire
@ of exponential type satisfying (2) implies that of entire ¢ with
arbitrarily small type satisfying (3), then, for every entire ¥ bound-
ed on the real axis and having all its zeros there, we do have entire
@ of arbitrarily small type satisfying (9).

To see this, let ¥'(z), having only real zeros, be of exponential
type A in Jz > 0 and satisfy [T (x)| £ 1, —o < 2 < . A Phragmén-
Lindelof theorem ([3], p. 82) makes |Z'(x + 7/2)| < e¢*?, and we can
take the weight

eA/2

W)= —0— .
|¥(x + 1/2)|

A relation similar to (8),

o) = L a4 4 2(° log|T(®)dt
log | (2 + i/2)] 2A+ﬂs_w4(x_t)2+1'

yields, on differentiation,

dlog |¥(x + i/2)] e
dx ] = 2log ' T + i/2)

b4

because log |¥(t)] = 0. Our W thus satisfies (4) with, say, I =1 and
¢ = 1/é.

There is certainly a nonzero entire @ of exponential type satis-
fying (2), for instance, @(z) = (sin’z/z)? (¢ + 1/2). Suppose now that
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@ is any entire function, of exponential type equal, say, to a. Then
([3], p.93),

1 oy < & _2_§°° log [p(t)|dt
gl D=5+ 7Y e i 1

S0, since

A

log [¥(w +i)| = 2 + _2_8‘” log|¥(¢ + 1/2)] 4
T

- Ax — )2+ 1

’

we have, by Jensen’s inequality,

Plet+ i) —a 2 ({= 1@ W)
log‘ T T ) ’éz A+10g7z S_w4(x_t)2+1dt},

in terms of our weight W. If, now, ¢ satisfies (8), we see that (9)
holds with @(x + i/2) standing in place of @(%).

Truth of the

AFFIRMATION. For every nonzero ¥ of exponential type bound-
ed on the real axis and having all its zeros there, there exist mon-
zero entire @ of arbitrarily small exponential type such that
@)U (x + 1) 1s bounded for real x

is thus both necessary and sufficient for the validity of the following

PROPOSITION. For weights W having the regularity property
(4), existence, for any particular one of them, of a nonzero entire
@ of exponential tyve satisfying (2) implies that of monzero entire
@ with arbitrarily small tyve satisfying (3).

This makes proof or disproof of the affirmation rather import-
ant, in spite of the special nature of the factor 1/%(x + %) appear-
ing in its formulation. In the following section an example is con-
structed which shows the affirmation to be false. Therefore the
proposition is also false.

2. The example. Starting with some large value of p, say
p = 8, let us put
(10) x, = exp p*.
Take 4, = x,, and, for p > 8, write
11) 4, =x, — Xpy .
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We form the even function

F(z) _ H <1 _ zz >[J,,]
=8 x5

([4,] means the greatest integer < 4,); convergence of the infinite
product on the right is easily verified, and F(z) is an entire fune-
tion having a zero of multiplicity [4,] at each point +«,, »p = 8.

For t > 0, denote by n(t) the number of zeros of F(z) (counting
multiplicities) lying between 0 and ¢. If »p > - and ¢ lies between
2, and %44,

n(t) = [4e]+- - +[4,]

lies between x, — » and «,, where, by (10), p = (log«,)’. Since
x,,ﬂ/oc,,? 1, we clearly have

n(t)

Y —1, t—>

t

’

and this implies, as is well known ([3], p. 186), that F(z) is of ex-
ponential type .

Given any 7 > 0 (which we now choose and fix once and for all),
let us show that there is a nonzero even entire function g(z) of ex-
ponential type < 7 having only real zeros with F(z)g(z) bounded on
the real axis. This we can do by appealing to the old result (about
even weights W(x) increasing on the positive real axis) mentioned
near the beginning of the introduction. For z, <t < x,4,, we have
tze,znt) =22, —p=t —p— 4,4,. By (10)and (11), for large p,

1 1 x
12 A~ 4 ~ = p Wy = P ,
( ) P p+1 3 p » 3 (log xp)z

SO’ if xl’ é t < x;o+1’

1 T, . 3
t— <§ + 0(1)>m (logz,)}=nlt)=t,

where the term o(1) tends to zero as p — . We can thus surely
write

f_ ¢
(log t)

for all sufficiently large values of ¢ (n(f) < ¢t for all ¢ > 0).
The above definition of the function F can be rewritten as

log |F'(x)| = S:ologll — 2*/t*|dn(t); after integrating by parts and chang-

13) <n@) St




112 PAUL KOOSIS

ing variables ([7], pp. 127-128), this becomes, for z > 0,

(ICIIN— )
log |F(x)| = 28: z Tn(f) dr .

2

1—7
Since n(t) is increasing, the integral on the right is

) _ oy, <£>

1 L T
<2 = d
< 2n(x)log s + 280 e T

for any positive number A less than 1. Substituting (18) into this
expression, we find

g dr

o [log(x/0)F(1 — 7

log |F(2)| < 2x log % + 2908
and, taking » = 1 — 1/(log x)?, we get

(14) log | Fx)| < Cx log log «
(log x)*
for large x, C being a constant. (The same result may also be ob-
tained directly by just plugging H(x) = x/(log x)* into Theorem 51,
p. 35 of [12].)
The right hand member of (14) is increasing for large =, and
satisfies

S“’ Cz loglog « @<
e (log x)* x?

An old theorem (see [10], p. 81, [7], §5, or [12], pp. 26-27—it is not
necessary to resort to the Beurling-Malliavin multiplier theorem
here) now furnishes us with a nonzero even entire function g(z)
having only real zeros and of exponential type <%, such that
F(x)g(x) is bounded for real x; putting

V(z) = F(2)9(=) ,

we have a nonzero even entire function ¥ of exponential type
<7 + 7, bounded on the real axis and having only real zeros,
among which are the [4,]-fold ones at the points +ux,.

I say now that there cam be mo monzero enmtire function @ of
exponential type a < w for which |@(x)/¥(x + )| is bounded on the
real awxis. Suppose there were. The argument used to pass from
® to @, in §1 shows that, if such a ¢ existed, there would be a
nonzero entire f, also of exponential type a, but having only real
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zeros, such that

(15) (@) l <1

’Zlf(x + 1)

say, for —oo < o < oo,

This, however, is impossible. We may, by a Phragmén-Lindelof
theorem ([3], p. 82), assume without loss of generality that
|¥(x + 27)] =1 for real x; then, by that same theorem,

(16) (2 + 29)] < exp{(m + DIz} .

Denote by (o, z,) the number of zeros of ¥ in the circle |z — z,| = p;
Jensen’s formula says that

log | V@, + 2i)| = -=| log [¥(x, + 2i + re)|dy — | T2t > + 204, .

Because ¥'(2) has a zero of order [4,] at z,, substitution of (16) into
the last relation yields

an log [Tz, + 20) < (2 + 2;’7)? ~4)lg L, rzz2.

If f, of exponential type a < m, satisfies (15), then, since ¥(z)
has only real zeros, the ratio f(z)/¥(z + 1) is of negative exponential
type in the half plane Jz > 0. A Phragmén-Lindelof theorem ([3],
p. 82) now implies that

(18) |f (@, + )| = (2, + 29)] .

Calling N(p, 2,) the number of zeros of f(z) in the circle |z — 2, = p,
Jensen’s formula reads

19) log |f(x, + 7)| = ——S log |f(x, + © + re¥’)|de — S —JY(p’—x"iL)dp .
2w 0 0
Because the zeros of f are real,
STM’Li@—dp < N(r, z,)logr, r=1.
0 o
We can represent f(2) as a Hadamard product like the one on the

right in (7), putting, without loss of generality, &« = 0. From such
a representation, it is easy to see that

If @) =z [f(R2)] .

Using this relation and the previous one in (19), one finds
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log [f(x, + 7)| = lgr log (f_(oc_,,z-{—_s)[ ds — N(r, z,)logr, r=1,
Tl Vit —g

which, combined with (18) and (17), yields

1(" log|f(z, + 8)| ;. 27 ]
(20) 7'[,'8—1- Y/ ds=<2+ n_)’r—i—[d,,] og 2

+ N(r, x)logr — [4,]logr, »r=2.

This inequality will force f to be identically zero. Fix a para-
meter A < 1, and, with R, = 4,/2, integrate the » in (20) over the
range [MR,, R,], noting that, for large p, MR, is >2 by (12). After
this integration, the left side of (20) becomes

S: log | f(x, + 8)|J(s/R,)ds ,

where

Ep
(,,.2 . 82)—1/2d,,.
max(isl,AR,)

Js/R,) = =
_1 arg cosh(R,/|s|) — %arg cosh max(\R,/|s|, 1)
T

is bounded above by a positive constant C; independent of R, for
0<|s|< R, (We may take C; = (1/x) arg cosh (1/»).) According to
(15), there is no loss of generality in assuming that |f(z) =1,
—oo < x < oo, 80, if p is large, our integration of (20) yields
R, 1 7
< _ 2 Pl d 2
C;S_Rplog f@, +olds = @ —(+ +-L)g

@1) + 1 S N 4.14,]log 2

+ LM N (2L, 0, )log (2) — [4,og(222) Ja,

One verifies that 4,;, > 4,, hence the intervals [z, — R,, z, + R,] do
not overlap. Since R, = o(x,), it will clearly be enough to show,
with the help of (21), that

1 (%
527 tog 17, + 9lds =~ ,
p» XpJRBp

P
for this will imply that

S‘” log |[f®)] gr— _ oo
—o 41 ’
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making /=0 by a well known theorem ([3], p. 85).
To this end, observe that the right side of (21) is, for large p,
bounded above by

AL + B{N(%, x) — [Ap]}Ap log 4,
with two positive constants A and B, and that
3wy < oo

by (12). We therefore need only establish

2

22) by %{N("E x) — [4,1}4, log 4,=—<= .

Here, it is convenient to denote the number of zeros of f(z) on the
interval [0, ¢] by v(¢), thus,

N<%, x,,) = v(xp + %A,,) — v(x,, — %A,) .

Take a fixed parameter v > 1 and close to 1 (the exact manner of
choosing v will be described later on), and put

(23) X,=7", m=1283, ---.

We think of {X,} as a coarse sequence of points moving out to-
wards oo along the real axis, and of {x,} as a finely distributed
sequence of points interspersed among the X,. Picking a very large
m, let us estimate the sum

(24) > {v(x,, + %AJ — v(x,, — %Ap) - [Ap]}z!p lzzg 4y

Xy <epSXpiq 2

from above.

Since f(z) is of exponential type a, is bounded on the real axis,
and has only real zeros, Levinson’s density theorem ([10], pp. 33-41;
[3], pp-136-138; [9]) implies that

2O 8 s e
t T

therefore, if X' = vX and X is large enough, we have
U(X") — p(X) < (ﬁ + s)(X' —X)
T

with an arbitrary ¢ > 0. For large enough m, this yields, on ac-
count of (23),



116 PAUL KOOSIS

(25) x <acp§)im+l{ (x + _A ) <w" - %—AP>}

< (% + 26 ) (X — Xa)

because the intervals [z, — 4,/2, z, + 4,/2] don’t overlap and 4, =
o(z,) by (12). According to (10) and (23),

(mlog 7)< p = ((m + Dlogv)* for X, <wx, = Xy,
so (12) gives, with an arbitrary ¢ > 0,

dylogd, ~ A+ ep™" _  (1+e)
@3, o 3X,, - 3mX, log

if X,, <z, < X,+, and m is large. Using this and (25), we find, by

(23),
1N _ 1 4,log 4,
Xm<zpz:§'.¥m+1{v<xp + 2 Ap) D(.’I?p 2 AP>} 3

= ;( +—()>mg; 7%,

(26)

where the o(1) term tends to zero as m — oo.
When m is large we obtain, on the other hand, from (23) and
(12),

> [4,14,log 4,/

Xm<op=Xpp41

@) zA-oW) S 19 =(1—o)-+log(" L)

(m log 7)3<p< ((m+1) log )3

1
= (1 — o(1))-=
=3 (1 —of ))
where, again, o(1) — 0 as m — oo.

Substituting (26) and (27) into (24) we find that that expression
is

gl{i7“1+mn—1]i
3Lxw logvy m

if m is large. The type, a, of f, was, however, supposed <m. We
can therefore fix the parameter v used to define tht X, so close to
1 that

ar=1_4
7 log
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and then, for all sufficiently large m, the sum in (24) will be

A

-<
m
with a positive constant ec.

But this implies (22). Therefore, as was already stated, f(z) = 0.
Our assertion is proved.

3. Discussion. So, there we are. We have a multiplier theorem
for weights W(x) equal to entire functions of exponential type, but
not for weights equal to the reciprocals of such functions, even
though the functions’ zeros stay away from the real axis.

One’s first thoughts are that the methods used to prove Beurl-
ing and Malliavin’s multiplier theorem, applying, as they do, to
weights W equal to functions of exponential type and satisfying
(1), should also apply to weights W(x) of the form 1/|%(x + ¢)] with
funections ¥ of exponential type bounded on the real axis and hav-
ing all their zeros there. Our example shows, however, that this
cannot be. What is going wrong?

The known proofs of the Beurling-Malliavin theorem ([2], [8],
[11]) make use of two functionals involving log W. One is the left-
hand side of (1), and the other is quadratic in log W. During most
of the remainder of this section, let us assume that W(x) =1 is
even and that W(0) = 1. Then, if

W) = | F(x + 1)

with an entire F' of exponential type having all its zeros on the
real axis,

where v(t) = (1/z)[arg F(¢) — arg F(t + )] is an increasing function of
t. (See, for instance, [8], pp. 286-287.) As Beurling and Malliavin
first observed ([11]), this formula represents (log W(x))/x as a Green
potential. The quadratic functional coming into play in proofs of
the multiplier theorem is that Green potential’s energy,

@ () [Tl (2022

x —t

This energy is always nonnegative, and the proofs require that it
be finite as well as fulfillment of (1).

In our present case, where W(x) = |F(x + i) = 1, the fact that
v(t) increases means that
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(1) < [ 2 e

But, F' being of exponential type, we have y(x)/x = const., so here
finiteness of & (log W(x)/x) follows from (1), because |F(¢)] = W(0) =
1 and the evenness of W(x) make log W(x) = O(x*) near 0.

Suppose, however, that W(x) = 1/|%(x + ¢)| with an even ¥ of
exponential type having only real zeros such that |[Z'(3)] =1 and
|¥(x + 7)] = 1 for « real. Then,

where, here, v(t) = (1/n)[arg ¥ (i) —arg ¥'(t + 1)] is again an increasing
function of f£. Relation (28) has been exactly turned around! The
energy & ((log W(x))/x) is again given by (29) but here, because of
the change of sign, we have

(31) & (Log W) < ["log W) gy )

with, in fact, both sides finite or infinite together, because their
difference,

S”v(w) log W(x) dac
o x? ’

is always finite in the present circumstance.

The difference between the two choices for W(x), as |F(x + 1)
or as 1/|]¥(x + )|, is thus that in the first case the energy is bound-
ed by a multiple of the left side of (1), while in the second it must
be estimated by the right side of (31). Regarding the second case,
where W(x) = 1/|¥(x + 1)|, it turns out that if Z ((log W(x))/x) is
finite, any of the proofs of the multiplier theorem can be pushed
through, yielding the existence of nonzero entire @ of arbitrarily
small exponential type satisfying (3). Here, the right side of (31)
equals

L("Ljog| T _|(dlog [Pt i) g,

Thw T+ ) oy

8o, if this expression is finite, we have a multiplier theorem.
The example of §2 shows that the expression just written can-
not be replaced by

S:O%zloglq?z—(@_;:)—i)—‘dx

Some kind of regularity of log |¥'(x + ¢)| is thus needed in addition
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to the property

dlog |¥(x + 7)]
dx

‘élogl const. l

U(x + 1)

which that function always has in the present circumstance (see the
end of §1). It would be interesting to know exactly how much is
needed.

That some kind of smoothness is involved seems indicated by
another phenomenon. If W(x) =1 is any continuous weight tending
to « as ¥ — *+c and satisfying (1), the weighted exponentials

e W) with —A<A=A

are certainly not dense in the space of continuous functions vanish-
ing at + for any finite A. The ingenious extreme-point method
of de Branges ([4], pp.270-280) now provides us with an entire
function S(z) of exponential type exactly equal to A (in both the
upper and lower half planes), having only simple real zeros—call them
x,—such that

W(x,)
o =TS =
whilst
(33) [ e Swlr < o

For any a > 0, the theorem on the multiplier furnishes, thanks
to (83), a nonzero entire @ of exponential type =a, bounded on the
real axis and satisfying |S(x)p(x)| = 1 there. Since the product is
of exponential type <A + a, by Bernstein’s theorem ([3], pp. 206
and 210 ff),

4 (S@p@)| cA+a, —o<< oo,
dx

Putting « = x, and using (32), we see that
(34) |W(x,)p(,)| = A+ a

for all n. Here, by Levinson’s density theorem which was already
applied in §2, the zeros «, of S(z) have density A/x on both the
positive and negative real axes. That is, assuming the x, indexed
according to their natural order on the real line,

x x,

. . T
lim & = lim == = — .,
n—oo N, n——oc0 N, A
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This makes (34) seem close to the uniform bbund
|W(@)p(2)] < const., —oo <2< oo,

especially since A can be chosen very large to begin with. (Note,
however, that the function S(z), and hence the ¢ of type < the
given number a will depend on A!) The idea here is that if W(x)
is regular enough, (34) perhaps does imply a uniform bound on
W(x)p(x). Again, exactly how much regularity would be needed to
draw this conclusion is not clear.

The trouble is that de Brange’s method does not give very
precise information about the location of the points z,. Essentially
all that is known about them is that they have density A/z in both
the positive and negative directions.

4. An application. The construction of §2 can be used to
obtain an example of a kind of quasi-analyticity.

We shall exhibit a sequence of real numbers ., defined for
k=41, 2, +38, ---, such that

(1) A= —N; (symmetry)

(il) the exponentials e**' are complete im L,(—A, A) if A<=

(iii) the exwonentials e** are mot complete in L,(—A, A) if
A>x

iv) if u(t), defined on [0, =), is such that

(35) [ lut®) — S Aumpensredt — 0

for a sequence of finite sums X, Ay(n)e', and u(t) = 0 a.e., on any
interval [0, 2h], b > 0, then u(t) = 0 a.e., on [0, ).

What is interesting here is our being able to do the construction
with A, having the symmetry property (¢). If symmetry were not
required, we could just take the one-sided sequence )\, =%k, k =1,
2, 3, ---, and it would have properties (ii)-(iv).

Start with the sequence {z,}, » =8, 9, -+, used in §2, and
take any small positive number [ less than x; and all the 4, =
%, —®,—, for p>8. On each of the intervals [x, — 1, «,], choose [4,]
different points; the collection of all these points, enumerated in
increasing order, will be the one-sided sequence {\,}, £k =1, 2, ---.
For k£ < 0 we take A, as —a—,. It is claimed that properties (ii)-
(iv) hold with these .

Let us here use n(t) to denote the number of points A, between
0 and ¢t. As at the beginning of §2, we easily see that
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and it is well known that this implies property (ii). (See, for in-
stance, [10], p. 3; [3], p. 235; [12], p. 22.)

Just as at the beginning of §2, we verify that our present dis-
tribution function %(t) satisfies (13). As in §2, we can obtain, for
any 7 > 0, an entire function of exponential type <z + 7, bounded
on the real axis, whose zeros include all the points a,, k = +1, +2,
+3, ---. This is easily seen to imply property (iii) ([12], p. 26).

Property (iv) remains to be established. Suppose that wu(¢) is
identically zero on [0, 2h] with A > 0, and that (385) holds. It is
convenient to write

(36) v(t) = e~u(t) ,
37 Su(t) = €7 3, Ay(n)et ;

then the Fourier transforms

50 = | ertyar
and

8,00 = |Tens. vyt

belong to the space H, (for the upper half plane), and (35) implies,
by Plancherel’s theorem, that

(38) |7 150 = 8,00 pan —0.

Since v(t) = 0 a.e., on [0, 2k], we even have
(39) O(\) € ¢ H, .

From (37) we see by direct calculation that each function S,(\) is
not only analytic for Jx > 0 but also meromorphic in the whole
complex plane, with its poles lying among the points —(\, + ¢/2).

Take now any number 7 with 0 < 7 < h and use the argument
mentioned above to get a monzero entire function ¥(\) of exponen-
tial type = + 7, bounded on the real axis and having only real
zeros, among which figure all the points N, k==+1, +2, £3, ---.

I claim that

(40) g = e MET (N + 1/2)

is an entire function of exponential type =7 +7 — h <=z. For
each =,

(41) 9.00) = e M8, VT + /2)
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is equal to a finite sum

—ih2 WO\: + 7//2)
Z idum)e N+ A+ 22

which is clearly entire and of exponential type, since —\, = n—; is,
for each k, a zero of ¥(\). We see that, for each u,

(42) PRt

in fact, since [¥'(\ + i/2)| is bounded for real A, we have
So_o |9.(\)[PdN < const .

by (38), and the C, in (42) can be taken independent of m ([3], p
98). From (38) and (40) we now see that g(\) is also an entire func-
tion of exponential type, and, by (42),

[gOW)] < Cem+2=M132 in N < 0.

But the same holds for, say, Jn =1 by (39) and (40), since ¥ is of
exponential type <7 + 7. So g(\) does have exponential type <=.
However, by (40),

g + 1/2)[ _ ey 5 .
(43) Tt 0| = "o\ + 1/2)]| ,

which is bounded for real N by (39). The reasoning of §2 now ap-
plies with almost no change to the function ¥ introduced here, and,
from (43), leads to the conclusion that g(\) = 0 because g is of type
<m. This makes u(tf) = 0 a.e., by (40) and (36), and property (iv)
holds.
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