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THE HOMOTOPY GROUPS OF KNOTS I. HOW TO
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Dedicated to the Memory of R. H. Fox

Let K be a CW complex with an aspherical splitting,
i.e., with subcomplexes ϋΓ_ and K+ such that (a) K—K-UK+
and (b) iΓ_, K0=K-ΠK+1K+ are connected and aspherical.
The main theorem of this paper gives a practical procedure
for computing the homology H*K of the universal cover K
of K. It also provides a practical method for computing
the algebraic 2-type of K9 i.e., the triple consisting of the
fundamental group πxK, the second homotopy group π2K
as a TΓilΓ-module, and the first /^-invariant kK.

The effectiveness of this procedure is demonstrated by
letting K denote the complement of a smooth 2-knot (S4, JcS2).
Then the above mentioned methods provide a way for com-
puting the algebraic 2-type of 2-knots, thus solving problem
36 of R. H. Fox in his 1962 paper, "Some problems in knot
theory." These methods can also be used to compute the
algebraic 2-type of 3-manifolds from their Heegaard split-
tings. This approach can be applied to many other well
known classes of spaces. Various examples of the computa-
tion are given.
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0* Introduction. Let K be a CW complex with an aspherical
splitting. An aspherical splitting of a CW complex K is a triad
(K, iΓ_, K+) of CW complexes such that (a) K = K_ U K+ and (b)
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K_f Ko — iΓ_ Π K+, K+ are connected and aspherical.1 The main
theorem (Theorem 7.1) of this paper gives an effective procedure
for computing the singular homology H*K of the universal cover
K of K from the groups πxK_, π Ά , π1K+ and the morphisms
g±\π1K^->π1K± induced by inclusion. It also provides a practical
method for computing the algebraic 2-type2 of K, i.e., the triple
consisting of the fundamental group πλK, the second homotopy group
π2K as a T îf-module, and the first A -invariant kK lying in the
cohomology group H^iπ^K-, π*K).

The effectiveness of this procedure is demonstrated by letting
K denote the complement of a smooth (or locally flat piecewise
linear (PL)) 2-knot (S4, hS2). Then the above mentioned method
provides a way of computing the algebraic 2-type of 2-knots from
their hyperbolic splittings (def. 2.1). This solves problem 36 of
R.H. Fox in his 1962 paper [22], and substantially more.

The effectiveness of this procedure is also demonstrated by
letting K denote a closed connected 3-manifold. Then the algebraic
2-type of K can be computed from any one of its Heegaard split-
tings (of positive genus). The methods of this paper apply to
complements of unsplittable 2-links and to many other types of
spaces. Various examples of this computational procedure are given
in Appendix B.

A 2-knot is said to be quasi-aspherical (QA) if the third homology
group of the universal cover of its complement K vanishes (def.
10.1). It is demonstrated that the homotopy type of the complement
K of a QA 2-knot is completely determined by the algebraic 2-type
of K. This suggests a possible analogue in dimension four of
Papakyriakopoulos' theorem on the asphericity of 1-knots [53]. (See
Problem 1 in § XII.)

It is demonstrated that, for every homology 1-sphere K (hence,
for all w-knot complements), Hs(π1K) = π2K/^π2K=(Z<^πiKπ2K)f where
&~ denotes the augmentation ideal of πxK. (This can be thought of
as a generalization of the Kervaire condition H^icjί) = 0. See [36].)
It follows that the first jfc-invariant of a homology 1-sphere K does
not vanish if Hz{πxK) Φ 0; hence, that the first ft-in variant of a
fibered 2-knot is nonzero if its commutator subgroup is nontrivial
and finite.

NOTATION. Throughout this paper (unless stated otherwise)
(Sn+2, kSn) will always denote a smooth w-knot, (if n = 2, it can be

1 In [43] K is called a "generalized Eilenberg-MacLane (GEM) complex. From [43],
the homotopy type of the GEM complex K is completely determined by the group
system G={π1K-<-π1K-+π1K+}. Hence, the notation K=K{G, 1). For details, see [43].

2 In [48] S. MacLane and J.H.C. Whitehead call this the algebraic 3-type.
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locally flat PL). By the exterior of an w-knot (Sn+2, kSn) is meant
Sn+2 with a small open tubular neighborhood of kSn removed. The
complement is Sni~2 with kSn removed.

Note to reader. This paper has been written to be read in any
one of three modes, i.e., as

Mode 1. A mathematical treatise. Read §§ I through XII. To
understand only the main theorem (Theorem 7.1), read the caveat
below and §§ III through VII.

Mode 2. A "handy man's manual" for computing algebraic
2-type. In this mode only a rudimentary understanding of [11] is
needed. To compute the algebraic 2-type of:

( i ) 2-knot complements, then read only § II, Theorem A 2.1,
Observations 1 through 3 and the Hint (all of Appendix A), and
Appendix B.

(ii) 3-manifolds, then read only Theorem A 2.1, Observations
1 through 3 and the Hint (all of Appendix A).

(iii) Arbitrary spaces with aspherical splittings, then read all
of Appendices A and B.

Mode 3. A paper to browse through on a lazy Sunday afternoon.
Use the table of contents and begin by browsing in any section.
All terms not defined within a section are referenced back to their
place of definition.

This paper started out to be a condensed and revised version
of [41, 42]. To the author's surprise, it has developed into much
more. It basically contains all the material of [41, 42] with the
exception of the section on identities. It also contains as its main
theorem, Theorem 7.1, a distillate of the computational method
hidden within the recesses of [41, 42]. This clarification makes it
possible, not only to compute the entire algebraic 2-type of 2-knot
complements, but of a much larger class of spaces.

Caveat. The direct limit functor lim defined in § V does not
commute with the homology functor.

ACKNOWLEDGMENT. I would like to thank John Harper for his
helpful discussions on the A -invariant. I would also like to thank
John Milnor for pointing out that, as an immediate consequence of
[23], all the hyperbolic points of a smooth (locally flat PL) 2-knot
can be pushed into the same 3-dimensional hyperplane (see Theorem
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2.1). Finally, I would like to thank the referee for his helpful
comments.

I Brief historical development* The development of the
work on the homotopy groups of knots had its beginnings in the
early 1900's when Dehn and Wirtinger found a method for comput-
ing the fundamental group of 1-knots. Later in 1957, Papakyriako-
poulos [53] determined all the higher homotopy groups of 1-knots
by proving his famous theorem on the asphericity of knots. This
theorem essentially says that all the higher homotopy groups of
1-knots vanish, and hence, that the homotopy type of a 1-knot com-
plement is completely determined by its algebraic 1-type (i.e., by its
fundamental group).

Mathematicians then turned to higher dimensional knots, seeking
methods for computing their homotopy groups and looking for a
higher dimensional analogue of Papakyriakopoulos' theorem on the
asphericity of knots. In 1962 Pox [21] gave a way to compute the
fundamental group of 2-knots from their motion picture representa-
tions. He then asked in problem 36 of [22] for a method for
computing the second homotopy group (as a πrmodule) of locally
flat PL 2-knots.

In this paper, a method is given for computing the second
homotopy group as a T -̂module of smooth (or locally flat PL) 2-knots,
thus solving problem 36 of Fox. We then ask if the homotopy type,
of a 2-knot complement is determined completely by its algebraic
2-type. Some evidence (Theorem 10.1) is given suggesting that this
might indeed be true. A method for computing the complete
algebraic 2-type of smooth (or locally flat PL) 2-knots is given.

REMARK. Please refer to the bibliography for a more complete
historical development. (Also see [37] and [62].)

II* The diagram of a 2-knot* If we are to compute the
algebraic 2-type of a 2-knot, we will first need a convenient way
of representing such knots. We will utilize Fox's motion picture
representation of knots, i.e., a representation in terms of a para-
meterized family of 3-dimensional cross-sections [21]. We will then
carry this method one step further by showing that essentially
only one single 3-dimensional cross-section, the so called 0-level, is
needed.

As mentioned in § 0, (S\ kS2) will denote a smooth (or locally
flat PL) 2-knot. Throughout this section K will denote its ex-
terior, i.e., S4 with a small open tubular neighborhood of kS2

removed.
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For a given function τ: (S4, ©o) —> (S1, oo) and for each point t
in the 1-sphere S\ define the t-level as

If the time function τ is suitably chosen, then the ^-levels Kt are
the 3-dimensional cross-sections mentioned above.

There is no need to consider arbitrary time functions τ. More
particularly, we will show that we need only consider τ of the
following type.

DEFINITION 2.1. A smooth (or PL) mapτ: (S\ oo) _> (S\ oo) such
that τ~x(oo) = oo is a hyperbolic time function of an exterior K of
a 2-knot (S\ kS2) provided:

(1) τ|fcS2 has only finitely many critical points, all of which are
nondegenerate and none of which is the point at oo.

(2) All elliptic points occur at levels K_x and K+ί.
(3) All hyperbolic points occur at level Ko.

The spaces K_ = \Jt^Kt and K+ — \Jt^Kt are called the bottom and
top halves of K respectively. The triad (K, K_, K+) is called a
hyperbolic splitting of the knot.

It now follows from the work of Fox and Milnor [23] that:

THEOREM 2.1. Every smooth (or locally flat PL) 2-knot has a
hyperbolic time function, and hence, a hyperbolic splitting.

A hyperbolic time function of the trivial 2-knot is shown in
Figure 1. One of the spun trefoil is given in Figure 2.

A quick glance at Figures 1 and 2 will convince the reader that

coo κ°

FIGURE 1. Hyperbolic time function of the trivial 2-knot.
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^0.75

"0.5

-0.5

K-0.75

FIGURE 2. Hyperbolic time function of the spun trefoil.

the above method of representation is highly redundant. The entire
knot can be completely reproduced from the 0-level Ko and a set of
labels (one for each hyperbolic point) indicating how the hyperbolic
points open up above, i.e., for t > 0. We are thus led to the follow-
ing convenient and compact representation of 2-knots.

DEFINITION 2.2. Let Ko be a 0-level of the exterior K of a
smooth (or locally flat PL) 2-knot (S4, kS2) arising from a hyperbolic
time function. Then a diagram of (S\ kS2) is a regular projection
of Ko with over and under crossings indicated in the standard way
and with hyperbolic points labeled as shown in Figure 3.

By Theorem 2.1, all smooth (or locally flat PL) 2-knots have a
diagram. Diagrams of the trivial 2-knot and of the spun trefoil are
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Labeled Hyperbolic Point

X
Meaning

t > o

t = 0

t < o

t >

t = 0

t < o

Labeled Hyperbolic Point Meaning

FIGURE 3. Interpretation of hyperbolic point labels.

ooo
FIGURE 4. Diagram of trivial 2-knot.

babab b a b

FIGURE 5. Diagram of Example 1, the spun trefoil.

Γ=(α> b: α6α6-1α-16~1=l)
: (l-a+ba)dUD=0)

; π2K)=0 and kK=Q
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ax

xz+ax

2n twists

FIGURE 6. The diagram of Example 2.

πχK~(a, x: α3, axά2x) and π2K=(dU\j: (ΪC—l)9C7α=O=(Σ
)=Z2n+1=(t: t2n+1=l) and kK=t

shown in Figures 4 and 5 respectively. Diagrams of other 2-knots
are given in Figures 6 and 7.

Ill* Group systems* In this section group systems and their
direct limits are defined. The Van Kampen theorem is also stated.
(See [10] for a more general formulation.)

A group system G is a set of three groups G_, G09 G+ together
with two group morphisms g±:G0-*G±. If g_ and g+ are both
epimorphisms (monomorphisms), then G is called an epimorphic
(monomorphic) group system. (The phrase ugroup system" is used
rather than ζ(group triad" because all definitions and results hold
for a more general class of group systems.)

I f G a n d Gf a r e g r o u p s y s t e m s , t h e n a morphism f:G -+G'
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ax

xzyaxax

xzyaxyzx
FIGURE 7. The diagram of Example 3.

π1K={a, x: ax=xa2) and π2X*=(3Z7α: (1 + α—ax)dUu —0)
; π2K)=Q and AriΓ-=O

from G to Gr is a collection of morphisms fa: Ga

such that the diagram

fir fit fit

is commutative. If each morphism in f is an isomorphism onto,
then f is said to be an isomorphism and G and Gf are said to be
isomorphic.

If G is a group system and G a group, then a morphism
f: G —> G from 6? into 6 is a collection of morphisms /α: Ga-^G
for α = —-,0, + such that the diagram

G_

\
/o

f-\ I
G

is commutative. The image of /" is the subgroup of G generated
by the images of all the morphisms in f. The morphism f is said
to be an epimorphism if its image is G itself.

DEFINITION 3.1. A direct limit (push-out) of a group system G
is a group G together with a morphism f .G^G such that

(1) f is an epimorphism.
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(2) For every group G' and morphism f'\ G —• G', there exists
a morphism h:G-+G' such that f' = hf, i.e., fί = hfa for a=-, 0, +.
The group G will be denoted by lim G and the morphism f by

THEOREM 3.1 [10]. Every group system has a direct limit
unique to within isomorphism.

The following gives some insight into the geometric significance
of the above material. More will be said in later sections.

DEFINITION 3.2. Let (Q, Q_, Q+) be a triad of pathwise connected
spaces such that QQ = Q_ Π Q+ is also pathwise connected. Then
the group system G associated with (Q, Q_, Q+) is the group system
consisting of the groups πxQ_, πxQQ, πxQ+ together with the morphisms
induced by inclusion.

THEOREM 3.2. {Van Kampen) {See [10] for more general version.)
Let {Q, Q_, Q+) be a triad of spaces such that

(1) Q = Q_UQ+.
(2) Q_, Qo = Q- Γl Q+, Q+ cere open pathwise connected subspaces

of the pathwise connected space Q.
Let G be the group system associated with (Q, Q_, Q+). Then πλQ =
lim G and g°° is the collection of morphisms ga: τtxQa —> πxQ induced

by inclusion {a — —, 0, +).

REMARK. The main theorem of this paper {Theorem 7.1) can be
thought of as a π2-generalization of the above Van Kampen theorem.

IV* Chain complex basics* The mature mathematician pro-
bably will need only skim this section. The material in this section
comes from [15, 47, 65].

If G is a group, then ZG will denote its integral group ring;
and if g:G -+G' is a group morphism, then the same symbol will
denote the induced ring morphism g: ZG -» ZG'. By a left (right)
G-module is meant a left (right) ^G-module. For all groups (?, the
infinite cyclic group Z is considered to be a left G-module under the
trivial action. We write ®G rather than (&ZG. If M and M' are
left G-modules, then a G-morphism φ: M-+M' means a left ^G-module
morphism. If M and Mf are left G-and G'-modules respectively, then
a map under the group morphism g: G —> Gf is an additive morphism
φ:M->M' s u c h t h a t φ{xm) = g{x)φ{m) f o r a l l xeG a n d meM. (See
[65].)
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A G-chain complex C is a sequence of left G-modules Cq for
each integer q together with G-morphisms dq: Cq —> Cq_x such that (1)
Cq = 0 for q < 0 and (2) dq+1dq = 0 for all q. C is said to be free
if Cq is a free left G-module for all q. An augmentation ε of C is
a G-morphism ε: Co — > ^ such that εδ0 = 0 and ε(xc0) = ε(c0) for all
x e G and coeCo. C is said to be augmentable if there exists an
augmentation for C. An augmentable G-chain complex C together
with an augmentation is called an augmented G-chain complex (which
is also denoted by the same symbol C).

If C and C" are augmented G-chain complexes, then a chain
mapφ: C —>C defined in dimensions up to q is a sequence of G-
morphisms φi\Cτ—>C[ 0 ^ i <; q such that

9ί& = &-A(l ^ i ^ 0) and ε'̂ o = ε .

Given two chain maps^, ψ: C —>C defined up to dimension #, a
chain homotopy D from ψ to ψ in dimensions not greater than q,
written

D: φ = ψ (dim ^ g)

is a sequence of G-morphisms Z>,: Ct —> G/+1 0 ^ i ^ g such that

fi =_Φi + 3{+iA + A-A (0 ^ ΐ ^ q) ,

where for i = 0, A-i9* i s omitted. If such a chain homotopy exists,
then φ and ψ are said to be chain homotopic in dimensions not
greater than q, written φ = ψ (dim ^ g). Two chain maps homotopic
in dimensions not greater than q induce the same homomorphism
of the integral (reduced) homology groups for 0 ^ i < q.

A chain map 9: C-^C" defined up to dimension q is said to be
a chain equivalence in dimensions not greater than q if there
exists a chain map ̂ ':C'~>C defined up to dimension q such that

φψ ~ V (dim <̂  q) and φ'φ = 1 (dim <: q)

where 1 and 1' denote the identity chain maps on C and C respec-
tively. Such a chain equivalence induces an isomorphism of the
integral (reduced) homology groups for 0 <£ i < q.

DEFINITION 4.1. Let C be a (augmented) free G-chain subcom-
plex of a (augmented) free G-chain complex C. Then C is a proper
free subcomplex of C or C is a proper extension of C provided for all q

(1) Cq is a G-direct summand of Cq, and
(2) CJCq is a free left G-module.
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(Note: The boundary operator d of C does not necessarily respect
the direct sum decomposition Cq = Cq φ (CJCq).)

The following two theorems are a relativized versions of those
found in [15].

THEOREM 4.1. (Relative extension of chain maps.) Let A, B, C
be free G-chain complexes such that B is a proper subcomplex of A.
Let φ: A —• C be a chain map defined up to dimension q and ψ: B—>
C a chain map defined up to dimension q + 1 and such that Φi\B =
ψi for i ^ q. Then φ extends to a chain map defined up to dimen-
sion q + 1 such that φq+1\B — ψq+i if and only if the q + 1 cocycle
VqψgdΛ\A/B lying in Zq+1(A/B, HqC) vanishes, where rjq: ZqC —> HgC
denotes the natural morphism.

THEOREM 4.2. (Relative extension of chain homotopίcs.) Let
A, B, C be free G-chain complexes such that B is a proper subcom-
plex of A. Let φ, φ': A—> C be chain maps defined for all q and
let ψ, ψ': B—> C be chain maps defined for all q such that φ\B = ψ
and φf \B = ψf. If D: B~>C is a chain homotopy from ψ to ψ' defined
up to dimension q + 1 and if D*: A—> C is a chain homotopy from
φ to φ' defined up to dimension q and such that D*\B — D, then D*
extends to a chain homotopy from φ to φf defined up to dimension
q + 1 and such that D*+1 \B = Dq+1 if and only if the obstruction

Vq+i(Φ'q+i - φq+i - Dqdq+1)\iA/B)q+1 lying in Z*+\AjB, Hq+1C)

vanishes, where ηq+1: Zq+1C —> Hq+1C denotes the natural morphism.

V* Free resolution systems* A more general and slicker for-
mulation of this material is given in [43]. The definitions of §§ III
and IV are assumed.

By a free resolution over a group G is meant an augmented
free G-chain complex C such that

/-* °Q fi ^ ^ ^ si £ y r\

is exact. (The infinite cyclic group Z is considered to be a left
G-module under the trivial action.)

DEFINITION 5.1. Let 6? be a group system. (See § III.) A free
resolution system C over G is a set of free resolutions C~, C°, C+

over G_, Go, G+ respectively together with maps 7*: C° —> C± such
that

(1) ZG±(&GQCQ is a proper subcomplex of C*. (See Definition
4.1.)
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(2) 7f:Cq-+Cq

± is the map under the morphism g±:GQ->G±

defined as the composition of the map of Cq into ZG± ®Go Cg° given
by

together with the inclusion map of ZG±(ξξ)GQC° into C*.

DEFINITION 5.2. Let C and C" be free resolution systems over
a group system G. A c k w map Φ:C-+C is a collection of chain
maps φa: Ca-±C'a (a = - , 0, +) such that

c-<—c°—>c+
φ-\ φ°\ \φ+

C'~ < C'° • C ' +

is commutative. If ΨιC-+C is also a chain map, then a c k m
homotopy Δ from Φ to ?Γ, written Δ\ Φ ~ Ψ, is a collection of chain
homotopics Δa\ φa = α/rα such that

is commutative. If there is a chain equivalence from Φ to Ψ, we
say that Φ is chain homotopic to Ψ, written Φ ~ Ψ. A chain map Φ:
C->C is a chain equivalence if there is a chain mapΦ'\ C —>C such
that ΦΦf = Γ and ΦfΦ ~ 1, where 1 and 1' denote respectively the
identity chain maps on C and C". C and C" are said to be ώαm
equivalent if there exists a chain equivalence from C to C".

THEOREM 5.1. Any two free resolution systems over the same
group system G are chain equivalent.

Proof. Let C and C" be any two free resolution systems over
G. Since C° and C'° are free resolutions over Go, there exists a
chain equivalence φQ: C° -* C'° which induces a chain equivalence
φ° from Z(r± 0 ^ C° to ZG± ®α o C

/o. Since all of the obstructions of
Theorems 4.1 and 4.2 vanish, φ° extends to a chain equivalence from
C± to Cf±. •

DEFINITION 5.3. Let G be a group system and C be a free
resolution system over G. Let G = lim 6? and let C be an augmented

G-chain complex. A chain map Φ: C —> C is a collection of chain
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maps φa: C" ~> C (α=—, 0, +) under the respective group morphisms
9a': Gα -> G(α = - , 0, +) such that

c-
\

c+

\
c

is commutative. The image of Φ is the smallest G-subcomplex of
C which contains the image of every morphism in Φ. The chain
map Φ is an epimorphism if its image is C itself.

DEFINITION 5.4. Let C be a free resolution system over a
group system G with G = lim (?. A direct limit (push-out) of C is
an augmented G-complex C and a chain mapΦ': C-^C such that

(1) Φ is an epimorphism and,
(2) For every augmented G-complex C and chain map Φ':C->

C", there exists a chain map p: C —> C" such that Φ' = pΦ.
Such an augmented G-complex C will be denoted by lim C and Φ by

Φ~.
The direct limit defined universally above will now be defined

constructively.

DEFINITION 5.5. Let C be a free resolution system over a group
system G with G = lim 6?. The associated triad (C, C~,C+) of C is

a triad of augmented G-complexes formed as follows: Let C*1 =
^G® G ± C^. Hence, C°-^G® ί ? 0 C 0 =C-nC + . Let C = (C~®C+)IΔC\
where AC — {cφ (—c)\ce C0}. C is called the associated complex
of C and C° the associated intersection. The associated morphism
Φ: C-> C is defined by φa(c) = lzβ ®Gα c(α= —, 0, +), where 1^ denotes
the identity of ZG.

THEOREM 5.2. Let C be a free resolution system over a group
system G. Then the direct limit of C exists and is unique up to
isomorphism. Moreover, the associated complex C together with the
associated morphism, Φ forms the direct limit of C.

THEOREM 5.3. Let C and C be free resolution systems over the
same group system G. Every chain equivalence Φ from C to C
induces a chain equivalence φ: lim C to lim C such that
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φ

c—>σ

lim C- 2-* lim C

is commutative. Moreover, Φ induces a chain equivalence from the
associated triad of C to the associated triad of C". Hence, by
Theorem 5.1 the direct limit of any free resolution system over G
is, modulo chain equivalence, an invariant of G.

The following theorem will be of use in the calculation of the
algebraic 2-tyρe of 2-knots.

THEOREM 5.4. Let C be a free resolution system over a group
system G with G — limG. If φa: Ga—>G is an epimorphism and if
Ga is of homological dimension at most q, then

ZG <g> Ker 3? = Ker 9? ,

for i *z q + 1, where da and da denote the boundary operators of Ca

in C and of Ca in the associated triad of C respectively.

IV* Completions of chain complexes* The material given in
this section will be used to define and to compute the first fc-invar-
iant. (See [15].)

DEFINITION 6.1. Let G be a group and C an augmented free
Cr-chain complex. Let q be a nonnegative integer such that 72 (̂7=0
for ί < q. Then a q-completion C of C is a free resolution over G
such that

(1) C is a proper extension of C (see Def. 4.1.).
(2) C, = Ct and 9, = 9< for i ^ q.

DEFINITION 6.2. Let G, C, C, and q be as in the above defini-
tion and let id: C —> C be the identity chain map defined in dimen-
sions up to q. The obstruction k(C, C) to extending id to Cq+ι is
the (q + l)-cocycle

lc(G, C) = y]cd\ 0q+ι > ZqC = ZqO > HqO

lying in Zq+1(Cy HqC). (See Theorem 4.1.) Let k(CyC) denote the
cohomology class in Hq+\C, HqC) = H9+1(G, HqC) represented by
k(C, C).

The invariance of the above cohomology class is given by the
following theorem.
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THEOREM 6.1. Let G be a group and C and C augmented free
G-chain complexes. Let q be a nonnegatίve integer such that HiC —
0 = HiC for i < q and let C and Cf be q-completions of C and C'
respectively. Then every chain equivalence from C to C' extends
to a chain equivalence from (C, C) to (Cf,Cr). Each such equivalence
induces an isomorphism of Hq+1(C', HqC') onto HQ+1(C, HqC) which
carries k(Cf, C') onto k(C, C). (See [15].)

VII* The main theorem* The main theorem (Theorem 7.1)
will now be stated and proven. (The direct limit functor lim (Def.

5.4) does not commute with the homology functor. See caveat in § 0.)

DEFINITION 7.1. An aspherical splitting of a CW complex K
is a triad (K, K_, K+) of CW-complexes such that

(1) K = K_ U K+.
(2) K_, Ko = K_f] K+, K+ are pathwise connected.
(3) K_, Ko, K+ are aspherical.3

REMARK. It follows that there exist open subsets K_, K0—K_f)
K+, K+ of K containing: K_, Ko, K+ respectively as deformation
retracts. Hence, the Van Kampen theorem (Theorem 3.2) can be
applied. (See [10].)

THEOREM 7.1.4 Let (K, K_, K+) be an aspherical splitting of a
CW complex K. Let C be a free resolution system over the group
system G associated with the triad (K, K_, K+). (See Defs. 3.2 and
5.1.) Let K__, Ko, K+ denote the respective lifts of K_, Ko, K+ to the
universal cover K of K. Then lim C is chain homotopic to the

augmented chain complex CK of singular chains of K. Hence,

H*K = H* lim C (as left Zπ\K-modules) ,

where H denotes the reduced singular homology. Moreover, if (C —
lim C, C~, C+) denotes the associated triad of C (see Def. 5.5), then

HSa - H*C« = H+faK.; Zπ,K) ,

for a = —, 0, +. Finally, if C is a 2-completion of limC (See Def.
3 In [43], K is called a generalized-Eilenberg MacLane (GEM) complex. The

collection K={K~, KQ, K+} is called an aspherical structure on K. From [43], the
homotopy type of a GEM complex is completely determined by the group system G=
{πίK-<-π1K0-^π1K+}. Hence, the notation K=K(G, 1). See [43] for details.

4 In [43], lim C is called the chain complex of the group system G={π1K^-πιKQ-^

TΓiίΓ+l and denoted by CG; and iϊ*lim C=H*(G) ZG) is the homology of the group

system G with local coefficients in ZG, where G = limGr. See [43] for details.
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6.1), then the 3-cocycle k(C, limC) given by

C3 — Z2C = Z2 (lim C) -2-> H2 lim C

lying in ZS(C, H2 lim C) is a representative of the k-invariant kK

lying in H\C, H2\ϊmC) = H*faK; π2K). (See Def. 6.2)

Proof. Let K+, Ko denotes the lifts of K±, Ko respectively to
the universal cover K of K and let K+ and Ko denote respectively
the universal covers of K± and Ko. Moreover, let σ\ denote all the
ΐ-cells of Ko and a\ all the ί-cells of K± — Ko. Then the i-cells of
K, K±y Ko, K±, KO are respectively

{gσl U gσi U gσ\ \ g e π.K} ,

{gσilgeπ.K} ,

{gσi U gσi \ g e ^K±} ,

Let CK, CK±, CKQ, CK±, CKQ denote the corresponding augmented
G-chain complexes and let 7*: CK0 -> CK+ denote the maps induced
by the covering maps. Then

C = {{CK_, CK0, CK+}, {7

is a free resolution system over G and (CK, CK_, CK+) is the
associated triad of C. Hence, by construction

HqK= HgCK= HqlimC

and

HqKa = HqCKa = Hq(πxKa; ZπxK)

for all q and for a = —, 0, +.

Next let C be a 2-completion of lim C; then from § 6 an obstruc-

tion k(C, lim C) in H\C, H2 lim C) = H*faK; π2K) is defined. This

construction of &(C, lim (7) is precisely the geometric definition of
the k-invariant kK given in [14, 15] except that the resolution C
is used instead of the bar resolution.

This proves the theorem for a particular free resolution system
over G. Let C" be any other free resolution system over G and let
(C' = lim C", C'-, C'+) be the associated triad of C". Then from § V, the
associated triad of C" is chain homotopic to (CK, CK~, CK+). Finally,
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let C' be a 2-completion of C'. Then from § VI, (C, &) is chain
equivalent to (C, CUT) and the general theorem follows. •

REMARK. Theorem 7.1 holds for more general aspherical split-
tings and group systemt. This is why the phrases "aspherical split-
ting" and "group system" are used above rather than "aspherical
triad" and "group triad". (See [43]).

REMARK. Theorem 7.1 can be thought of as a π2-generalization
of CrowelΓs version of the Van Kampen theorem [10].

The following corollaries of Theorem 7.1 are stated more gener-
ally in [43].

COROLLARY 7.2. Let (K, K_, K+) be an aspherical splitting of
a CW complex K with universal cover K. Then

> Hq+1K >Hq(π1K0; Zπ,K)

> Hq(^K_; ZπxK) © HqfaK+; Zπ,K) > HqK > -

is a long exact sequence*

From Theorem 7.1 or Corollary 7.2 we have as a corollary the
following result of J. H. C. Whitehead.

COROLLARY 7.3. (Corollary to Theorem 5 in [66].) Let G be
the group system associated with an aspherical splitting (K, K-, K+)
of a CW-complex K, i.e., associated with the triad (K, K_, K+). (See
Def. 3.2.) // all the morphisms in G are monomorphisms, then K
is aspherical.

The following theorem will be of use in simplifying the calcula-
tion of the algebraic 2-type of 2-knots.

THEOREM 7.4. Let (K, K_y K+) be a hyperbolic splitting of a
smooth (or locally fiat PL) 2-knot. (See Def. 2.1.) Then K+ collapses
to a wedge of e+ 1-spheres, where e_ and e+ denote respectively the
number of upper and lower elliptic points. Hence, πxK± is free of
rank e± and of homological dimension one.

5 This is a special case of the long exact sequence

>Hq+1{G; A) >Hq(Go; A) >Hq(G-; A)®Hq(G+; A) >Hq(G; A)

found in [43], where G denotes the system {G-*-G0-^G+} with direct limit (or push-
out) G and A is a right ZG-moάule. This is a generalization to push-outs of Swan's
[43] Mayer Vietoris sequence (with local coefficients) for free products with amalgama-
tion. See [63] for details.
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THEOREM 7.5. Let KQ be the 0-level of a hyperbolic splitting of
a smooth (or locally flat PL) 2-knot. (See Def. 2.1.) Then the funda-
mental group πtK0 of Ko is of homological dimension at most two.

Proof πλK0 is the group of an unsplittable 1-graph in S3.
Hence, by [9, 51] it is of homological dimension at most 2. (See
remark at end of § VIII.) •

From Theorems 7.4 and 7.5 above it follows that the hyper-
bolic triad of a smooth (or locally flat PL) 2-knot satisfies all the
hypotheses of the following theorem.

THEOREM 7.6. Let (K, K_, K+) be an aspherical splitting of a
CW complex K and let G be the associated group system, (See Def.
3.2.) Let K be the universal cover of K. If πtK_9 TΓJSΓO, ftxK+ are
respectively of homological dimension at most 1, 2, 1, then the exact
sequence of Corollary 7.2 reduces to

and to the short exact sequence

0 > H2K > HtfaK*; Zπ,K)

> HX(%XK_\ ZπγK) φ HfaK+ , Zπ,K) > 0 ,

and all the remaining reduced homology groups of K vanish.

The second homotopy groups of 2-knots were originally computed
from the above short exact sequence [41, 42]. The method given
in this paper is a more general procedure of calculation. For 2-knots
and 3-manifolds, this procedure of course reduces to the use of the
above exact sequence. The more general procedure is needed to
compute the &-invariant.

REMARK. Heegaard splittings of positive genus of connected
3-manifolds satisfy the hypotheses of Theorem 7.6.

From Theorem 7.4 and from the asphericity of 1-knots [53], we
conclude:

THEOREM 7.7. Every hyperbolic splitting of a 2-knot is an
aspherical splitting.

It is obvious that:

THEOREM 7.8. Every Heegaard splitting of positive genus of
a closed connected 3-manifold is an aspherical splitting.
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VIII* Fox-Lyndon resolutions* We now give a method for
constructing a free resolution of a group which, for our purposes, is
geometrically more enlightening and computationally more economical
than the bar construction. (Our construction is similar to that
found in [46, 65].) This method of construction will be used to
bridge the gap between the main theorem (Theorem 7.1) and its
more constructive analogue (Theorem 9.2).

If C is a (augmented) G-chain complex, then by a free basis of
C, written

Sθ9 Slf S2, ,

is meant a sequence Sq(q = 0, 1, 2, •) of sets of symbols such that
Sq is a free basis of the left G-module Cq for all q ;> 0.

Let & = (x: r)φ be a presentation [11] of a group G. A Fox-
Lyndon resolution over G corresponding to & is a free resolution
over G constructed as follows:

Let Co be the free left G-module on the single symbol P and
let Cx and C2 be the free left G-modules on the sets X and R,
where X and R are sets of symbols in one-to-one correspondence
with the elements of x and r respectively. Let ε: Co —> Z denote
the extension of the morphism ε: G —> Z which sends each element
of G to 1 and define the G-morphisms dλ: C1—> Co, d2: C2 —> Cx by

d.x, = {xi - i)P vx, e x
32#i = Σ (drj/dxJXi VRd e JB ,

i

where xi — 1 and dr3 /dXi denote respectively the image in ZG under
φ of xt — 1 and of the Fox derivative [11, 18] dr^dx^

Next let u be a set of generators of the left G-module Ker 32

and U a set of symbols in one-to-one correspondence with the
elements of u. Define G3 as the free left G-module on the symbols
U and 93: C3 —> C2 as the G-morphism given by

dsUk - uk - Σ (dUJdRJRj Vl7keU,

where dUJdRj denotes the left coefficient of R3 in %.
Similarly, let w be a set of generators of the left G-module

Ker33 and W a set of symbols in one-to-one correspondence with
the elements of w. Define C4 as the free left G-module on the
symbols W and 34: C4 —> C3 as the G-morphism given by

i ι ι Σi

where dWι/dUk denotes the left coefficient of Uk in
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The free resolution C over G defined inductively as above is
called a Fox-Lyndon resolution of G corresponding to &*. The free
basis (see definition above)

P, X, R, U, W, .

is called a constructive basis of the Fox-Lyndon resolution C.
Finally, a q-completion C (see Def. 6.1) of an augmented free

G-chain complex C is a Fox-Lyndon q-completion if C is a Fox-
Lyndon resolution over G.

REMARK 1. The symbols U correspond to identities and the W
to the identities among the identities. The coefficients dUkjdRό and
dWι/dUk are actually the images of the Fox derivatives of these
identities and identities of identities. Hence, the notation. (See
[41, 42, 65].)

REMARK 2. Let Q be the complement of an unsplittable graph
in the 3-sphere. Then Q collapses to a 2-dimensional CW complex
K containing only one 0-cell. Let (JC: r) be the presentation of π^Q
carried by the cells of K and let K denote the universal cover of
K. Then the cells of K lift to K to form an augmentable TΓxQ-chain
complex CK. This chain complex, when augmented, is a Fox-Lyndon
resolution of πxQ corresponding to (JC: r). Moreover, CqK = 0 for
q > 2. Hence, π±Q is of homological dimension at most 2.

IX. A constructive form of the main theorem* The Fox-
Lyndon resolution defined in § VIII will now be used to give a more
constructive form (Theorem 9.2) of the main theorem (Theorem 7.1).

DEFINITION 9.1. Let 6? be a group system with direct limit
G — lim G. A presentation (jc__; Λ:0; Λ:+: r_; ro; r+)φ_>φQ>φ+ of G is a pair

of morphism presentations [20] (JC0; Λ:_: ro; r_)φQfφ_ and (ΛΓ0; X+: ro; r+)φQtΦ+

of ^_:G0->G_ and g+:G0-^G+ respectively. The subscripts φ0 and
φ± are usually omitted unless extra precision is needed. It follows
from [10] that (ΛΓ_, X0, X+: r_, r0, r+) is a presentation of G.

REMARK. If / : G —> H is a group morphism, then a presenta-
tion (ΛΓ; #: r; s) of / is a set of two presentations (JC: r)φ and (JC; y: r; s)ψ
of G and i ϊ respectively such that

(x)F(x

I 1
|ΛΓ, #: r,

i f



370 S. J. LOMONACO, JR.

is commutative, i.e., such that / is the morphism induced by the
inclusion c. (See [20].)

By arguments similar to those found in [20, p. 411], it can be
shown that the following transformations do not alter the isomor-
phism type of the presented group system.

DEFINITION. Let & = (JC_; ΛΓ0; JC+: r_; ro; r+) be a presentation of
a group system G. Then the following are called Tietze transfor-
mations of &.

( I ) Adjoin to r0 any one of its consequences.
(I±) Adjoin to r± any one of the consequences of r0 U r±.
(II) Adjoin a new symbol x0 to ΛΓ0 and xou~ι to r0, where u is

in the free group F(x0).
(II±) Adjoin a new symbol x± to x± and x±u~ι to r±, where u

is in the free group F(xOf x±).

By a proof similar to that given in [19, p. 198], it can be shown
that:

THEOREM (Tietze). If 3? and &' are finite presentations of
the same group system, then it is possible to pass from one to the
other presentation by applying a finite sequence of Tietze Trans-
formations of types

(I)*1, (U* 1, (I+)*1, (II)*1, (ID* 1 , (Π+)*1 .

DEFINITION 9.2. Let & = (x_; xo; x+: r_; ro; r+) be a presentation
of a group system G with G = lim G. Then a Fox-Lyndon resolu-
tion system over 6? is a free resolution system C constructed as
follows: Let C° be a Fox-Lyndon resolution (see §VIΠ) of GQ cor-
responding to (JC0: r0). Let C± be a Fox-Lyndon resolution of G± cor-
responding to (JC0, x±: r0, r±) formed by extending ZG±®GQC°. Then
C", C°, C+ together with the obvious maps 7_, 7+ under the respective
group morphisms g_, g+ is a free resolution system over G. Let P,
Xo, Ro, ί/0, W09 be the constructive basis (see § VIII) of C° and let
the induced free basis (see § VIII) of ZG± ®Go G° also be denoted by
the same symbols. Extend this free basis to a constructive basis
P, Xo U X±, Ro U Λ±, Uo U Kt, TF0 U W±, of C*. Then

P; X_, Xo, X+; Λ_, /ί0, Λ+; ί/_, Uo, U+; W_, Wo, 1Γ+; -

is called a constructive basis of the Fox-Lyndon resolution system C

THEOREM 9.1. Lβί C be a Fox-Lyndon resolution system over a
group system G corresponding to a presentation 3? of G. Let G =
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lim G and (C, C~, C+) be the associated triad (see Def. 5.5) of C. If

P Y Y Y ¥? T? T? TT TT TT W W W, Λ._y Λ.Q, Λ.+, £i>_, xiθ9 Jt+f u_, c/0, C7+, rr_, rr 0, rτ+,

is a constructive basis of C, then

P, XQ, RQ, UQ, WQ,

P, Xo U X±9 Ro U /ί±, ί70 U U±9 Wo U TF±,

P, X_ U Xo U JT+, Λ . U ί f l U i2+, Z7_ U ί70 U U+, W_ U T̂o U 1F+,

are respectively the induced constructive bases of Co, C
±, C, a^d the

boundary operators are given by

3° = 1G ® 3° 3* = 1^ ® 3 ±

3 f3+σ if σeC+

(3~σ if σeC~ ,

where 3a ΐs ί/ie boundary operator of Ca.

THEOREM 9.2. (Constructive form of main theorem.) Let C be
a Fox-Lyndon resolution system over a group system G correspond-
ing to a presentation

%y — \X—\ XQ> X+I r_j τOy Γ+)

of G. Let G = lim G, let (C, C~, C+) be the associated triad (see

Def. 5.5) of C, and let C be a Fox-Lyndon 2-completίon of C (see
§VIΠ). Let

P Y Y Y - I? R J? - TT TT TT - IV W W . .

be a constructive basis of C and let

P, X_ U Xo U X+, # _ U Ro U 12+, ί/_ U ί70 U ί/π U U+,

W_l)W0UWQl)W+,

be a constructive basis of C formed by extending the free basis of
C mentioned in Theorem 9.1. Then H2C as a left G-module is
generated by the elements of dUπ and

is a presentation of H2C as a left ZG-module. Moreover, if W is
any set of generators of the left ZG-module C49 then

is also a presentation of H2C as a left ZG-module. Moreover, the
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obstruction k(C, C) lying in H\C, H2C) is represented by the equi-
varίant 3-cocycle k: C3 —> H2C given by

θ if U* e U_Ό U0[J U+.

Proof. From the long exact sequence induced by the short
exact sequence

0 > C > C > C/C > 0 ,

we have that

as left G-modules under a isomorphism denoted by a*.6 But

Φ, Φ, Φ, Uπ, WΏ, . .

is a constructive basis of CjC. Hence, UΏ is a set of generators
of the left ZG-module Z3(C/C) of relative 3-cycles and

dWπ = ι Σ (dWΌ/dUπ)UΏ

is a set of generators of the left ZG-module BS(C/C) of relative
3-boundar ies. Hence,

(UQ: Σ (3WQ/dUπ)UΏ = 0, VWQe Wπ)

is a presentation of H^C/C) as a left ZG-module. Thus using the
isomorphism d* taking Uπ to dUΏ9 we have the first presentation.

Next, let C(3) be a left ZG-chain complex such that C(3) and C
agree up to and including C3 and such that C^ ~ 0 for q > 3. Then
JΪ2C = iϊ2C

( 3 ) and by the same argument, H2C
{Z) = H3(C/C{Z)), which

gives the second presentation.

Finally, by Definition 6.2, the obstruction k(C, C) is represented

by

k - ηid,: C3 > Z2C = Z2C > H2C .

Hence,

[dU* if t / * e Uπ

since 3Z7 = 0 in H2C for all C7e ί/LU UQ\J U+. Π

The following theorem will be used to simplify 2-knot and
3-manifold calculations.

In the termonology of [43], H2(G; ZG)Q*HS(G, G; ZG).
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THEOREM 9.3. Let (K, K_, K+) be an aspherical splitting of a
CW complex K (see Def. 7.1) and let G be the associated group
system {see Def. 3.2). Hence, by Theorem 3.2, πj£ = lim G. Let C

be a Fox-Lyndon resolution system over G corresponding to the
presentation (x_; xo; x+: r_; ro; r+). // Ko = K_ 0 K+ collapses to a
2-dimensional CW complex and if (x0: r0) is aspherical, (i.e., its
associated 2-complex is aspherical), then Kerdl — 0, i.e., UQ of
Theorem 9.2 is vacuous. Hence, we may also assume Ker dl = 0,
i.e., Wo of Theorem 9.2 is vacuous.

X* What is the significance of the algebraic 2-tyρe of 2-
knots? Throughout this section (unless stated otherwise), K and
Kf will denote the exteriors of w-knots. (See notation in § 0.)

We now attempt to understand how significant are the remaining
homotopy groups πqK for q ^ 3 for 2-knots. A complete answer to
this question would indeed be a four dimensional analogue of the
asphericity of 1-knots [53]. The evidence given herein (Theorem
10.1) suggests that the algebraic 2-type7 completely determines the
homotopy type of 2-knot complements. If this is so, then the
groups πqK for q ^ 3 are of little significance.

Since the asphericity of 1-knots essentially means that the
algebraic 1-type (i.e., the fundamental group) completely determines
the homotopy type of 1-knot complements, we now ask if the
analoguous property is true of 2-knots, i.e.,

QUESTION. If the complements of two smooth (or locally flat
PL) 2-knots are of the same algebraic 2-type7, then are their com-
plements of the same homotopy type?

In an attempt to gain some insight into the above question,
we give the following definition.

DEFINITION 10.1. An %-knot is quasi-aspherical (QA) if the
(n + l)-th homology group of the universal cover of its exterior
vanishes.

THEOREM 10.1. Let K and K' be the exteriors of two smooth
(or locally flat PL) QA 2-knots. Then K and Kf are of the same
homotopy type if and only if they are of the same algebraic 2-type7.

Proof. The exteriors K and Kf are homotopic to 3-dimensional
CW complexes, which we also [denote by the same symbols K and
K', respectively. Hence, we need only prove that, if K and Kf

7 In [48], S. MacLane and J. H. C. Whitehead call this the algebraic 3-type.
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are two 3-dimensional CW complexes of the same algebraic 2-type,
then K and Kf are of the same homotopy type.

Assume that K and Kf are of the same algebraic 2-type. Hence,
there exists an isomorphism (/0, h) of T(K) = {πλK, π2K, kK) onto
T(K') = (πJfΓ, π2K', kK') [48]; and by Theorem 3 of [48] this iso-
morphism has a geometric realization φ:K—>Kr.

Let K* and KH denote the i-skeletons of K and K', p:K-*K
and p': K' -> K the universal covers, and K^p-'K* and K'^p-'K'K

Following [48], we define an augmentable chain complex C=C*K
by C,K = H^K1, K'-1) if i > 0 and by C0K = iJolf ° if ί = 0 with
boundary operator defined in the obvious way. Let C* = CIK be
the corresponding augmented chain complex. Define C" = C*K' and
C* = C^JK"' in like manner. Then C* and Cn are acyclic in dimen-
sions less than 2. In fact, because of quasi-asphericity HiC* — HiK=
0 = HiK = J^C* if i ^ 2, where j? and K' are the universal covers
of K and iΓ', respectively.

By Theorem 4 of [48], (/0, h) has a combinatorial realization
(/o, λ): C3 —> C'3 which induces an isomorshism of H^ for i < 3. (C3

and C'3 denote the 3-skeletons of C and C respectively.) But fί4C=
0 - fl.C for i > 2 and C.K = 0 = Ĉ SΓ' for i > 3. Hence, (/0, λ) has
a combinatorial realization (/0, λ):C—> C which induces an isomor-
phism of ίί^C onto ίZ C" for all i.

By Theorem 5 of [48], C = t C for all i. Thus, C is equivalent
to C. On the other hand, K and Kf are J2-complexes of dimension
3. So by Theorem 15 of [69], K is of the same homotopy type
as K'. D

Actually, we have proven more than stated above, namely:

THEOREM 10.2. // Q and Qf are topological spaces such that
( 1 ) Q and Qr are dominated by connected Z-dimensional CW

complexes, and
( 2 ) The third homology groups of the universal covers of Q

and Qr both vanish,
then Q and Q' are of the same homotopy type if and only if they
are of the same algebraic 2-type.

It is easy enough to show that the class of QA knots is immense.
It is proven in [26] that:

THEOREM 10.3 [26]. An n-knot is not QA if and only if its
fundamental group G has a decomposition of the form A*B with
C finite and properly contained in A and B such that the meridian
subgroup H of G lies in A.
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THEOREM 10.4. [26, 39, 41, 55, 64] The class QA n-knots includes
all spun, twist spun, fibered, nilpotent, and finitely ended knots.

If all 2-knots were QA, then the above question would be
resolved. However, this is not the case. Recently, Gonzalez-Acuna
and Montesinos [26] have constructed an n-knot (n ^ 2) with infi-
nitely many ends, thus solving problem 40 of R. H. Fox [22].
Ratcliffe in [55] has pointed out that this example has a group of
the form given in Theorem 10.3 above, and hence, is not QA. In
light of Theorem 10.4 above, the examples of [26] are indeed
remarkable.

XI* Miscellaneous corollaries on 2-knots* We list below a
number of miscellaneous corollaries. The following corollary is an
immediate consequence of J. H. C. Whitehead's certain exact sequence
[67].

COROLLARY 11.1. Let Q be a topological space such that
(1) Q is homotopic to a Z-dimensional CW complex.
(2) The third homology group of the universal cover of Q

vanishes.
Then π3Q as a πLQ-module is isomorphic to Γ(π2Q), where Γ denotes
the functor defined in [67]. (See also [45].)

REMARK. If K is the exterior of a smooth (or locally fiat PL)
QA 2-knot or of a connected QA 3-manifold, then the above corollary
can be used to compute πzK from π2K. (For details see [45].)

From [12, 13] and from Theorem 10.1 it follows that

COROLLARY 11.2. // K is the exterior of a smooth QA 2-knot
and if π2K = 0, then K is a homotopy l-sphere.

Since all 1-knot groups are of homological and cohomological
dimension at most 2 (see [9, 51] or Remark 2 in § VIII), we have:

COROLLARY 11.3. Let K be the exterior of a spun 2-knot. Then
H\πγKύ n2K) — 0, and hence, the k-invariant kK vanishes.

COROLLARY 11.4. Let Q be a connected CW complex whose
second homology group vanishes and let ^ denote the augmentation
ideal of πxQ. Then the k-invariant kQ lying in H\πxQπ%Q) is
nonzero if π2Q/J^~π2Q Φ 0.

Proof. By [14], if kQ = 0, then ^π2Q is then the kernel of
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the natural morphism of π2Q into H2Q. •

The following is a consequence of the Leray-Serre spectral
sequence. (See [8, p. 356].)

COROLLARY 11.5. Let Q be a GW-complex such that H2Q = 0 =
HZQ. Then

2Q (= Z ®^ Qπ2Q) ,

where J^~~ denotes the augmentation ideal of πλQ.

Since every n-knot complement is by Alexander duality a homo-
logy 1-sphere, we have

COROLLARY 11.6. Let K be the exterior (or complement) of a
smooth n-knot. Then

Hzπ,K = π2Kj^π2K ( = Z®πi κπ2K) ,

where J?" denotes the fundamental ideal of K. Moreover, the k-
invariant kK lying in H*^^; π2K) is nonzero if H^Jί Φ 0.

The first part of Corollary 11.6 can be thought of as a generali-
zation of the Kervaire condition H2πλQ — 0. (See [36].)

COROLLARY 11.7. Let K be the exterior of a smooth (or locally
flat PL) fibered 2-knot. Then kK Φ 0 if the commutator subgroup
Gf of πxK is non-trivial and finite.

Proof. If G' is finite, then by Theorem 13 of [3]

π2K = ( ί : ( Σ i / ) ί = 0 = ( ί - 1)0) .
geG'

Hence, π2Kj^π2K — Zn Φ 0, where n is the order of G', and by
Corollary 11.6, kK Φ 0. •

XII* Conclusion: Problems and more problems* We list
below a number of problems which as far as I know are still
unresolved.

PROBLEM 1. Let K and Kr be smooth (or locally flat PL) 2-
knot exteriors. Is K of the same homotopy type as Kr iff K and
Kr are of the same algebraic 2-typel (See § X.) If so, this is a
four-dimensional analogue of the asphericity of classical knots.
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PROBLEM 2. Let K and K' be smooth n-knot exteriors (n ^ 3).
Is K of the same homotopy type as Kr iff K and Kf are of the
same n-typeV (See [50, 68].) (See § X.)

PROBLEM 3. (Ratcliffe.) Is a smooth n-knot (n ^ 2) quasi-
aspherical if and only if it is finitely endedi (See Theorem 10.3
and last paragragh of §X. See also [39, 48, 50, 55].) (See §X.)

PROBLEM 4. (Problem 37 of Fox [22].) Are there any non-
trivial smooth (or locally flat PL) aspherical 2-knotsΊ This appears
to be a very difficult problem. The reader should note that a smooth
(or locally flat PL) 2-knot is aspherical if and only if the funda-
mental group πrK of its exterior K is infinite cyclic. The "only if"
part of this statement is proven in [12, 13]. The "if" part follows
from [38, Theorem 3.4]. (See [34, 61].) Moreover, the exterior K
of a smooth (or locally flat PL) aspherical 2-knot is a homotopy 1-
sphere. For a map from S1 to K can easily be constructed which
induces isomorphisms π^S1 = π*K. Hence, by a theorem of J. H. C.
Whitehead, K is a homotopy S1. (See also [25].)

PROBLEM 5. (Problem 8 of Gordon [28].) Let K be the exterior
of a smooth (or locally flat PL) 2-knot (Si, kS2). Is π2K always
finitely generated as a left ZπJί-moduleΊ.

PROBLEM 6. Let K be as in Problem 5. Is π2K considered
only as a group always a free abelian groupΊ (This is true for
all spun 2-knots. See [17].)

PROBLEM 7. Let K be as in Problem 5. Is kK Φ 0 if and only
if H.π.K Φ 0. (See Corollaries 11.6 and 11.7.) (From [15], it follows
that HzπxK Φ 0 iff the reduced K-invariant is non-zero.)

PROBLEM 8. Let K be as in Problem 5. What is the relation-
ship (if any) between H^Jί, the number of ends of πxK, and quasi-
asphericityl (See §§ 10 and 11.)

PROBLEM 9. When does a 2-knot diagram represent the trivial
2-knotΊ

PROBLEM 10. When do two 2-knot diagrams represent the same
2-knotΊ

PROBLEM 11. Construct a table of all 2-knot diagrams with

This is called the (n+l)-type in [68].
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<;6 (or 7, or 8, •) crossings and with <*2 (or 3, or 4, •) hyper-
bolic points. (See Problems 9 and 10 above.)

PROBLEM 12. Is there a GW-complex K such that no cell decom-
position of its underlying space \K\ has an aspherical splitting^
Bill Beckmann [5] has pointed out that every 2-dimensional CW
complex has a subdivision which has an aspherical splitting.

PROBLEMS 13-16. These problems can be found in the addendum.

Appendix A* A computing manual for algebraic 2-type cal-
culations* If the reader is interested only in computing the algebraic
2-type of closed connected 3-manifolds and of 2-knot complements,
he or she need only read Theorem A2.1 and observations 1 through
3 and the hint, all in part A2 of this appendix. Explicit 2-knot
calculations are given in Appendix B. If the reader has more
general calculations in mind, then all of Appendix A should be
read.

Part Al* The computation for arbitrary aspherical triads*

DEFINITION Al.l. Let (K, K_K+) be an aspherical splitting of
a CW complex K, i.e., a triad of CW-complexes such that

(1) K=K_ΌK+.
(2 ) K_, Ko = if_ Π K+, K+ are pathwise connected.
( 3 ) K_, KQ, K+ are aspherical, i.e., πqKa = 0 for a — —, 0, +

and for q > 1.

Let (x0: r0) be a presentation of πxKQ9 let (ΛΓ0, JC±: r0, r±) be a
presentation of πγK± such that xi0 H* xi0 (for all xiQ e x0) is the mor-
phism g±:π1K0-^π1K± induced by inclusion, and let g™\π1Ka-*π1K
denote the morphisms induced by inclusion for a = —, 0, + . It
follows from the Van Kampen theorem that (x_, x0, x+: r_, r0, r+) is
a presentation of πγK.

Linearly order x_ U x0 U x+ and r_ U r0 U r+ such that Xi_<xjΌ<
xk+ for all i, j , k and ra_ < rβ0 < rr+ for all a, β, y and consider the
equations:

(*o) HIT1-) = o >
V dx0 I
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(Ό)
U

where the rows and columns of the above matrices are ordered
according to the above constructed linear ordering9 and where dri/dxj

denotes the Fox derivative. (Note: (dro/dx±), (dr±/dx+) are all zero
matrices.)

Let dU0 denote a set of generators of the left i^ϋΓo-module of
solutions λ° of equation (*0) over the ring ZπxKQ. Each solution of
equation (*0) induces a solution λ* of equation (*±) over ZπλK±. Let
dU0 also denote the induced solutions of (*±) over Zπjί±. Let
ΘU± U dU0 denote a set of generators of the left ZπλK±-module of
solutions λ ± of equation (*±) over ZπίK±. Each solution of (*±)
over ZπxK± induces a solution of (*•) over ZπλK. Let ΘU_ \JΘU0\J
ΘU+ also denote these induced solutions of (*•) over Zπjί. Finally,
let ΘU_ U dU0 U dUΏ U ΘU+ denote a set of generators of the left
ZπxK-module of solutions λα of (*•) over ZxπK. Then ΘUΠ is a set
of generators of π2K as a left i^if-module.

A complete set of relations among the generators ΘUΠ of π2K
is computed as follows. Linearly order the set dU_\JdU0{JdUΏ{JdU+
such that dUa_ <ΘUβ0< ΘUδΠ < dUΐ+ for all α, β,y,δ. Let dRa be
a set of symbols in 1 -— 1 correspondence with the relators ra for
a — —, 0, +. Give dR_ U dR0 U BR+ the linear ordering induced by
that on r_ U r0 U r+. Let dUJdRi denote the component of the
vector dUσ corresponding to rz for all dUσ in ΘU_ U ΘU0 U dUD U dU+
and for all rt in r_ U r0 U r+. And consider the equations

\ dR+ U 9R0 U dR__

where the rows and columns of the above matrices are ordered
according to the above constructed linear orderings.10 (Note: (ΘU0/ΘB±),
(ΘU±/ΘB*), (dUJdRπ), (dU0/ΘRπ) are all zero matrices.)

Let dW denote a set of generators of the left ZTΓiif-module of
solutions μΠ of (**•) over ZπxK. Finally, let dWJdUσ denote the
component of dWω corresponding to dUσ for all dWω in dW. Then

{ Σ (dW/dUΠ)dUΠ = 0\We W)

is a complete set of relations in π2K among the generators 9 Z7D. Hence,
9 Rows in decreasing order from top to bottom. Columns in increasing order from

left to right.
10 Rows ordered as in footnote 9. Columns in decreasing order from left to right.
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({dUΏ\dUΏedUD}:{ Σ (dW/d

is a presentation of π2K as a left Z^K-modxxle.

Finally, let W, U, R be a set of symbols in 1 — 1 correspondence
with the elements of ΘW, ΘU = ΘU_ U βU0 U BUΠ U 8ί/+, 812 = 0R_ U
&R0 U &R+, respectively and let C4, C8, C2 be the free left ZπJ£-
modules on the sets W, U, R, respectively. Then

r, 34 -^ d3 ^
U 4 > O 3 > KJ2

is a portion of a free resolution over πxK> where

d,W= Σ>(dW/dU)U, VWe W (over ZπxK)
UeU

dzU=Σ> (dU/dB)R, VReR (over Zπjt) .
ReR

A representative of the fc-invariant kK lying in H^π^; π2K) is the
equivariant 3-cocycle k given by

κu)=\dUiίUeUπ

v ( 0 if UeU_ΌU0{jU+ .

A2* Simplifications that occur for Heegaard and hyperbolic
splittings* For the reader who is only interested in computing the
algebraic 2-type (i.e., πuπ2, and keH\πx',π2)) of 2-knot exteriors
or of 3-manifolds, we state and prove the following theorem. (The
definition of hyperbolic splitting is given in § II (Def. 2.1). A defi-
nition for Heegaard splitting can be found in any standard text
on 3-manifolds. See, for example, [32, Chapter 2].)

THEOREM A2.1. Let (K, K_, K+) be a hyperbolic splitting of a
2-knot (or a Heegaard splitting of positive genus of a closed con-
nected 3-manifold). Let (xo

 ro) be an aspherical presentation of
πλKQ (see Observation 1 below) and let (x0: r0 U r±) be the presenta-
tion of ΊZJK.+ obtained by adjoining the hyperbolic relators r± (see
Observation 2 below) [or by adjoining the meridinal handle relators
r± (see Observation 2 below)]. Let ΛΓ = ΛΓ0 and r=r_\Jro\Jr+ and let
(dr/dx) — (drJdXβ) denote the Jacobian matrix whose aβ entry is the
image of the Fox derivative [11, 18] dra/dxβ in the ring ZπxK. Let
ΘU± be a set of generators of the left ZπλK-module of solutions λ of
equation (*)

(*) λ(0r/8jιr) = 0 ,
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over ZπJZ such that the components of λ corresponding to rψ all
vanish. Let dUD be a set of solutions of (*) over ZπJZ such that
d.U = ΘU_ \JdUΠU BU+ is a set of generators of the left Zπjζ.-module
of all solutions λ of (*).

Next let dRβ be another notation for rβ and let dUJdRβ denote
the component of dUa corresponding to dRβ — rβ. Now let dWbe a set
of generators of the left ZπλK-module of solutions "μ of equation (**)

(**) μ(dU/dR) = 0 ,

over ZπλK.

If dWJdll denotes the component of dW corresponding to dU
for all dWedW and for all dUeθU, then

(dUΏ: Σ (dW/dUΠ)dUΠ = 0 for all dWedW)
dUΠedUΏ

is a presentation of π2K as a left Zπ^K-module.
Finally, let W, U, R, X be sets of symbols in 1-1 correspondence

with the sets of symbols dW, dU, r, x, respectively; and let C4, C3, C2, Clf

be respectively the free left Zπjc-modules on W, U9 R, X. Let C(4)

denote the left Zπjί-chain complex

given by

dtW = Σ (3WβU)U, 33U - Σ (9U/dR)R
UeU ReR

d2R = Σ (dr/dx)X, dίX=x- 1, e(Σ »ιΛ) = Σ %
XeX i i

Then C(4) is a truncation of a free resolution of πλK. A representa-
tive of the k-invariant kK lying in H^iπ^; π2K) is the equivariant
S-cocycle k: Cz —> π2K given by

κ J 0 if UeU_UU+.

Proof Theorem 9.2 gives a presentation of π2K and a repre*
sentative of the ^-invariant. Since the presentation (JC0: r0) of πxKΌ

is chosen to be aspherical, it follows from Theorem 9.3 that dUQ =
0 =dWQ.

Moreover, for both Heegaard splittings of closed connected
3-manifolds (see [32]) and hyperbolic splittings of 2-knots (see
Theorem 7.4), πtK± is of homological dimension one. Hence, since
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the morphisms g±: πλK± —> πxK induced by inclusion are both epimor-
phisms, it follows from Theorem 5.4 that the set dU± can also be
obtained by finding a set of generators of the left Z^K-moάule of
solutions λ of (*) over Zπjί (rather than ZπxK±) such that the com-
ponents of λ corresponding to rψ all vanish. •

OBSERVATION 1. There exist aspherical presentations (ΛΓ0: r0) of
πJ^Q. (A presentation is aspherical if its associated 2-complex is
aspherical.) Such presentations are easy enough to find. For
Heegaard splittings the usual presentation of the fundamental group
TΓxiζ) of the 2-manifold Ko can be chosen. (See [7].) For hyperbolic
splittings, the Wirtinger presentation of πλK0 with one relator
deleted is aspherical. (See [11].) Moreover, any presentation derived
from an aspherical presentation by applying a finite sequence of
Tietze (Π)*1 transformations [11] is aspherical. There are many
other transformations which preserve presentation asphericity. (See
[41, 42].)

OBSERVATION 2. Since gs. πλK0 -> πxK_ and g+: πxK^ -» πxK+ are
both epimorphisms, a presentation of πxK± of the form (ΛΓ0: r0, r±)
can be obtained from a presentation (ΛΓ0: r0) by adding relators r±.
For Heegaard splittings simply add one relator for each handle, i.e.,
the relator carried by a meridinal 2-cell of each handle. For hyper-
bolic splittings of 2-knot exteriors, simply adjoin one relator for each
hyperbolic point, i.e., adjoin the upper (if + ) or lower (if — ) hyper-
bolic relators. (See Fig. 8.)

OBSERVATION 3. Since the groups πxK± are free for both

r^—alr1 or car1 r+=ad~1 or 6c""1

t > o

t = o

t < o

> <

x x:><
r-=ad~1 or 6c"1 r-=ab^ or car1

FIGURE 8. Hyperbolic relators.
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Heegaard splittings of 3-manifolds (see [32]) and hyperbolic split-
tings of 2-knots (see Theorem 7.4), the reader may find it easier to
find the dU± as follows. First, find a set dU± of generators of the
left Zπ1K±-moάxx\e of solutions λ of (*) over ZπιK± for which the
components of λ corresponding to r τ all vanish. Thendt/± is simply
the set of solutions of (*) over ZπxK induced by dU±.

The reader may find the following Hint of use in computing
the algebraic 2-type.

HINT. (Solving equations over group rings.)
Let

\ x. ) \JLk ̂ %ai)u/ — υ
i

be a linear equation in unknowns {#J over a group ring ZG (i.e.,
deZG and a.eZG Vi).

Case 1. If d is not a divisor of zero, then equation (1) can be
replaced by

i

(The element d can be shown not to be a divisor of zero by the
methods of [66, § 8].)

Case 2. If d is a divisor of zero, then equation (1) can be
replaced by the equation

* 3

where {dj} is a set of generators of the right ideal of left anni-
hilators of d and where the δ/s are arbitrary.

Appendix B* Explicit calculations for 2-knots*

We now use Theorem A2.1 of Appendix A to compute the
algebraic 2-type of a number of 2-knots. (The methods of [45]
can be used to compute π3 of these examples. See Cor. 11.1 above
and following remark. From [49], the Euler characteristic of the
embedded connected surface is the number of elliptic points minus
the number of hyperbolic points.)

EXAMPLE 1. The diagram of a spun trefoil is given in Figure 5
page 355. (This is Example 9 of [21] and Example 1 of [41, 42].)

A presentation of πxK0 is (a, b, c, z: r0), where
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n =
The hyperbolic relators r+ and r_ are:

jr+1 = be-1

[r+2 = zδα^δ" 1

Hence, (α, b, c, z; r_2> r_lf r0, r+ 1, r+ 2) which simplifies to

(a, b: abab-la-lb'")

is a presentation of j^iL Thus equation (*) of Theorem A2.1 becomes

0 —(λ» 2 , λ»i, λ*o, λι_χ, λ/_2

(a)

/ -b

0

0

(b)

δ α δ " 1 - !

1

(c) (z)

0 l\(r 2 )

- 1 0

— 1 + a—ba 1 — a+ba 0

-a

1

0
1

(n) .
1

0/(r_2)

By the methods of the Hint in Appendix A, the solutions dU_(JdUaU
dU+ of equation (*) of Theorem A2.1 are found to be:

(dU+1 = (0, 1-a+ba, 1, 0, 0)

\dUa = (0, 1, 0, 0, - 1 )

(δ£/"_! = (0, 0, 1, 0,1 -a+ba) .

Thus equation (**) of Theorem A2.1 becomes

dU+ι

0 = (ju+,. μa, /i_t)

By the methods of the Hint in Appendix A, the solutions dW of
equation (**) of Theorem A.I are:

Hence,

= (1, - 1 + α - δ α , -1) .

π,K = (3l/-D: (1 - α + δα)a^G = 0) ,

and

iPfriJS:; π22f) = 0, and hence ΊcK = 0 .

EXAMPLE 2(W). The diagram of Example 2(«) is given in Figure
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6, page 356. (This is Example 12 and 15 of [21] and Example 2 of
[41, 42].)

A presentation of πxK0 is

(a, x, z+, z_: r 0) ,

where

and

r0 = u*zju~*x~1a~1z+1x

u = «z1α +1α?α-(n+lίίδ;1a? .

The hyperbolic relators r+ and r_ are:

Hence,

(α, α: α2Λ+1 = 1, αα? = αα-1)

is a presentation of TΓX-BΓ. Thus, by the methods of Hint in
Appendix A, the solutions ΘU_\JdUΠUdU+ of equation (*) of
Theorem A2.1 are:

dU+1 = ( A, B, 1, 0, 0 )

7b = (1 — α, (α - l)α*+1, 0, - ( α - l)α + ι, - ( 1 - α))

^ = ( 0, 0, 1, 5, A ) ,

where

0 1

n n+l

B = a;-1 Σ α* - Σ α* .
0 2

The solutions dW of equation (**) of Theorem A2.1 are:

x = fl - α, x - ^ Σ α ' + £V, ~(1 - α))
\ 0 1 /

= ( 0, | < 0

(See Hint in Appendix A.)
Hence,

π2K= (dUa: (x-'a^a* + Σα'
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which simplifies to

π2K = (dUΏ: (x - 1)3CΓD = 0 = ( Σ α

and

where

& Zπ2K) = = (t:

EXAMPLE 3. The diagram of Example 3 is given in Figure 7,
page 9. (This is Example 10 of [21] and Example 3 of [41, 42].)

ntK0 = (α, a?, #, s: r0)

T+2 — yz \*-2 — xz

πjί = (α, x: ax = α α2) .

By the methods found in the Hint of Appendix A, we have:

dU+x = ( - 1 - a + αa?, 0, 1, 0, 0)

Π = ( 1, 0, 0, - 1 , 0)

-i =• ( 0, 0, 1, - 1 - α + αa?f 0) .

3TΓ= (1, 1 + α - αx, - 1 ) .

Hence,

π2K = α - = 0) ,

FIGURE 9. Diagram of an embedding of RP2 in S*.

π1(<S4-i2P2) = (α:α 2 )=Z 2

π2(Si-RP2) = (dUa: (l+a)dUn=0)=Z (twisted action)
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and

H*faK; π2K) = 0 and kK - 0 .

EXAMPLE 4. The diagram of an embedding in S4 of the real
protective plane RP2 is given in Figure 9. Using the methods of
Appendix A, we have

(π^S* - RP2) = (a, b, c: ab~\ ac~\ ab) = (a: a2) = Z2

(τr2(S
4 - RP2) = (3ί/G: (1 + α)3C/D - 0) = Z twisted action) .

(See [54].)

Addendum (Section XII continued)

PROBLEM 13. Let K be the exterior of a smooth (or locally flat
PL) 2-knot (S\ KS2). Is π2K always finitely related as a left ZπxK-
modulel

PROBLEM 14. Let K be as in Problem 13. // π2K vanishes, then
is K always a spherical! (See Problem 4.)

PROBLEM 15. Does there exist a 2-knot whose fundamental group
has no non-trivial elements of finite order but whose K-invariant is
non-zero! (See Corollary 11.7.)

PROBLEM 16. Do there exist two 2-knots with exteriors K and
Kf respectively such that πλK = πxK

r and π2K ~ π2K' (as left ZπλK-
modules) but with distinct K-invariantsΊ (See [27].)
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