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COMMON FIXED POINT THEOREMS FOR
MULTIVALUED MAPPINGS

M. S. KHAN

Some results on common fixed points for a pair of
multivalued mappings defined on a closed subset of a com-
plete metric space are obtained. Our work extends some of
the known results due to Itoh; Iséki; and Rus.

1. Introduction. There have been several extensions of known
fixed point theorems for multivalued mappings which take each point
of a metric space (X, d) into a closed subset K of X. However, in
many applications, the mapping involved is not a self-mapping of K.
Assad and Kirk [1] gave sufficient conditions for such mappings to
have a fixed point by proving a fixed point theorem for multivalued
contraction mappings on a complete metrically convex metric space
and by putting certain boundary conditions on the mappings.
Similar results for multivalued contractive mappings were obtained
by Assad [2]. Itoh [4] extended the results given in [1] and [2]
for more general types of contraction and contractive mappings.

In this note, we shall extend the results of Itoh [4] for a pair
of generalized contraction and contractive mappings. We also prove
some other results for multivalued mappings which are partial gen-
eralizations of fixed point theorems due to Iséki [3] and Rus [9].

2. Preliminaries. Let (X, d) be a metric space. Then follow-
ing Nadler [6], we define

(i) CB(X)={A:A is a nonempty closed and bounded subset
of X}.

C(X)={A:A is a nonempty compact subset of X}.

BN(X) ={A: A is a nonempty bounded subset of X}.

(ii) For nonempty subsets of A and B of X, and ze X

D(A, B) = inf {d(a, b): a € A, be B}.

H(A, B) = max ({sup D(a, B): a € A}, {sup D(4, b): b B}).

d(x, A) = inf {d(x, a): a € A}.

0(A, B) = sup {d(a, b): a € A, be B}.

It is known (Kuratowski [5]), that CB(X) is a metric space
with the distance function H. We call H the Hausdorff metric on
CB(X).

We shall make frequent use of the following lemmas.

LEMMA 2.1 (Nadler [6]). Let A, B be in CB(X). Then for all
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€>0 and ac A, there exists be B such that d(a,b) < H(A4, B) + .
If A, B are in C(X), then one can choose be B such that d(a, b) <
H(A, B).

LEMMA 2.2 (Rus [10]). Let AcCB(X) and 0< 60 <1 be given.
Then for every x<€ A, there exists a € A such that d(x, a) = 66(x, A),
and d(z, a) = 6H(x, A).

Next two lemmas can be easily proved.

LEMMA 2.3. For any xze X, and any A, B in CB(X),
|d(x, A) — d(x, B)| < H(4, B) .

LEMMA 2.4. For any x and y in X, AC X.
ld(x, A) — d(y, 4)| = d(=, ¥) .

DEFINITION 2.5. A metric space (X, d) is said to be metrically
convex if for any «, y € X with x+#y, there exists z2e€ X, x#2+#y such
that

d(x’ z) =+ d(z, y) = d(x; y) .

Following result is borrowed from Assad and Kirk [1].

LEMMA 2.6. If K is a nonempty closed subsel of a complete and
metrically convexr metric space (X, d), then for any xe K, y¢é K,
there exists a z€ oK (the boundary of K) such that

d(x, 2) + d(z, ) = d(z, ¥) .

DEFINITION 2.7. Let K be a nonempty closed subset of a metric
space (X, d). A mapping T: K — CB(X) is said to be continuous at
2, € K if for any ¢ > 0, there exists a § > 0 such that H(Tx, Tx,) < ¢,
whenever d(z, x,) < . If T is continuous at every point of K, we
say that T is continuous at K.

Motivated from Park [7], we introduce the following:

DEFINITION 2.8. Let K be a nonempty closed subset of a metric
space (X, d) and S, T be mappings of K into CB(X). Then (S, T)
is said to be a generalized contraction pair of K into CB(X) if
there exist nonnegative reals a, 8, v with a + 28 + 2y <1 such
that for any z, ye K,

H(Sz, Ty) = ad(x, y)
+ B{D(x, Sz) + D(y, Ty)} + v{D(x, Ty) + D(y, Sx)} .
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Similarly, we define generalized contraction pair of K into C(X).

DerFINITION 2.9. Let K be a nonempty closed subset of metric
space (X, d). Let S and T be mappings of K into CB(X). Then
(S, T) is said to be a generalized contractive pair of K into CB(X)
if there exist nonnegative reals a, @, v such that for any z, ye X
with 2 = v,

H(Sz, Ty) < ad(x, y)
+ B{D(x, Sz) + D(y, Ty)} + v{D(x, Ty) + D(y, Sx)} ,

Where0<2a+2,e+47_s_1.

REMARK. When S and 7T are singlevalued mappings then we
simply say that (S, T') is a generalized contraction (contractive) pair
of K into X.

3. Results.

THEOREM 3.1. Let (X, d) be a complete and metrically convex
metric space, K a monempty closed subset of X. Let (S, T) be a
generalized contraction pair of K into CB(X). If for any zecokK,
S cK, T)cK and (@ + L8+ 7L+ B+ 7/A -8 —72<1, then
there exists z€ K such that z€ Sz) and z¢€ T(z).

Proof. Put0=(@@+p8+71+8+7/1—-8—7v7 Then 0=
0 < 1. Without loss of generality we may take 6 > 0 since for
¢ = 0, the conclusion of Theorem 3.1 trivially holds. We shall con-
struct sequences {z,} and {y,} in K and X, respectively, as follows:

Let x,¢0K and x, = y,€S(%,). Then by Lemma 2.1 we can
choose a ¥, € T(x,) such that

< 1-8—7
A, ) = H(Sw, To) + (175 1)0
If y,eK, pat =, =1, If y,¢ K, use Lemma 2.6 to choose an ele-
ment 2,€ 90K such that d(z, x,) + d(x, ¥,) = d(x,, ¥,). Continuing in
this manner, we obtain sequences {z,} and {y,} satisfying:

(i) v,eS(,_,), for an odd =, and
9, € T(x,_), for an even .

(i1) dWa Y+ = HS@®,-0), T(@,)) + L — B — ¥/1L + B + 7)0%; if
n is odd and

A Yy Yur) = HT(2,-,), S@,) + A — B —v/L + B+ )0 if n is
even.

(iil) Ypr1 = Xpry if ¥,4. € K, for all n, or
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(iv) d(@n, Turr) + ABpisy Yutr) = Xy Yutr), if Yo, € K for all n
and z,., € 0K.

We wish to estimate the distance d(z,, #,..) for n = 2. Let us
write P = {x; e {x,}: 2; = ¥} and @ = {x,; € {x,}: x, # y,}. Note that if
z,€Q then «,_, and «,;, will be in P by boundary condition.

Case I. Let z,, ,.,€ P. Then for an odd » we have,

d(wm xn+1) = d(ym yn+1)

< HS@), Te) + (1752 )

< ad(@,_, v,) + B{D@,_y, S@,_,)) + D(,, Tx,)}

+ ’Y{D(xn—ly T(xﬂ)) + D(w"’ S(x”—l))} + (.:.-_j___g;—z>0”

é ad(xn—-ly xn) + B{d(xn—lf xu) + d(xm xn+1)}

e 2 + a2+ (LB = D)

So

(@, Tur) < (%f—g%)dm_h x) + (ﬁ;) :

A similar inequality can be obtained when » is even.

Case II. z,e P and x,.,€®. Then by (iv) we see that

d(xm wn+1) é d(xm yn+1) = d(?/m yn-H.) .

By method similar to Case I, we have for even and odd =

A(@s, 7o) S (FEEED )@, 20 + (7577) -

Case III. z,€@ and x,,,€P. Then 2, ,= ¥, holds. So we
get
d(wm xn+1) é d(xm yﬂ) + d(ym xn-}-l)
= d(xm yn) + d(ym yn+1) .

Then for an odd », we have

AWy Yutr) = H(ST,_y, Ta,) + G ; g ; z)m

é ad(xn—ly x'n) + B{D(xn—ly Sww—l) + D(xﬁ, Txn)}

+ HD@ssy T2a) + D(@,, S2u)} + G*I%E—Z)m
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< ad(@,_s, ©,) + BlAd@as, Ya) + &A@y Yurd)}

+ VA@ay Yars) + A@sy ¥)} + (ﬁ%)”"

= ad(®,_i, ¢,) + B{d(wn-—ly Ya) + (@, L)

st s do s + (B2

é ad(wn—ly x'n) + B{d(xn—ly yn) + d(xn; xn+l)}

+ V{d(wn-—ly wn) -+ d(a)n, xn’l‘l) + d(xm yn)} + (-———-—':]l: —+— g ; Z)ﬁ” .

As 00 <1, and d(zx,_,, x,) + d(®,, ¥,) = d(&,._,, ¥.), We obtain
d(xm xn+1) § (1 + ’Y)d(wm y‘n) + (a + ’7)d(xn——1’ x'n) + Bd(xn—ly y-n,)

+ (8 + ey 2 + (AT

é (1 + 'Y)d(xn—l’ yn) + Bd(wn—ly yn)

+ (8 + NA(@Xy, Tprr) + (E-g—;%)m ;

Therefore,

A, 7o) = (B ilo, 00 + (5757

A similar inequality is obtained for an even %. Since x,, = ¥,
and ¥, # %,, as in the Case II we have for an odd =,

A, v S (BT Yilor 200 + (755 )0

Similarly, we can obtain an inequality for even n. Combining the
above two inequalities we have

Ao, 2 5 (FEED) (LD im0

* (’1_—0;1_—7> * (ﬂ‘%ﬁ) ’

Then, as noted in Itoh [4], it can be shown that {x,} is a Cauchy
sequence, hence convergent. Call the limit 2. By the way of
choosing {x,}, there exists an infinite subsequence {x,} of {x,} such
that x, € P. Then for an even n;, we have

D(wnir Sz) é H(Twm—ly Sz)
é ad(w‘n;——h z) + B{D(xni—ly Twni—l) =+ D(zy Sz)}
+ 7{D(xn,;—11 Sz) —+ D(zy Twni—l)}
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é a{d(mnt—h wnt) + d(xnp z)} + B{d(wni—l’ wﬂi)
+ @y, #0,) + (2, 2,) + D(@,, S2)}
+ 7{d(x‘ni—1’ xn,-) + D(xni} Sz) + d(z’ wni)} .

So
<(et+B+7 .
Dz, 82) 5 (FEEEL o, ) + Aoy 2)
Using this and the inequality
D(z, Sz) < d(z, »,) + D(,, Sz),

we see that D(z, Sz) = 0. As Sz is closed, zeSz. Similarly, we can
show that z€T%2. Thus z is a common fixed point of S and T.
This finishes the proof.

We can also prove the following result:

THEOREM 3.2. Let (X, d) be a complete and metrically convex
metric space, K a monempty closed subset of X. Let (S, T) be a
generalized contraction pair of K into C(X). If for any x€okK,
S@)cK and T@)CK and (@ + 8+ NA+8+MNA—-B8—7)7<1,
then S and T have a common fixed point in K.

Proof. As in the proof of Theorem 3.1, we shall construct two
sequences {x,} and {y,} which satisfy (i), (iii) and (iv). The condition
(ii) is replaced by the following:

(i) AWY oy Yurr) = HSZ,_,, Tx,) , if » is odd
and
AYuy Yuss) = H(Tx,_,, Sx,), if m is even.
These relations are possible due to Lemma 2.1. The rest of the

proof is identical with Theorem 3.1.

As every Banach space is metrically convex, we have the follow-
ing corollaries for singlevalued mappings:

COROLLARY 3.3. Let X be a Banach space and K be a nonempty
closed subset of X. Let (S, T) be a generalized contraction pair of
Kinto X. IfS@K)c Kand TOK)C K and (¢ + 83+ v)A + B8+ 7)/
A—-—B—772<1, then S and T have a unmique common fixed point
n K.
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REMARK. The technique of the proof of Theorem 8.1 and
Theorem 3.2 can be used to extend a result of Rhoades [8] for a
pair of singlevalued mappings.

Next theorem extends Theorem 2 of Itoh [4] for a pair of

multivalued mappings, and hence generalizes a fixed point theorem
of Assad [2].

THEOREM 3.4. Let (X, d) be a complete and metrically convex
metric space and K be a nonemply compact subset of X. Let (S, T)
be a generalized contractive pair of K into CB(X), and S, T are
continuwous on K. If for any xcoK, Sx)c K, Tx)cCK; Sk)N
Tx)+ @ for all xzeKand (@+ B8+ NA+B8+7/A—-B—772=1,
then there exists a common fixed point of S and T in K.

Proof. Consider f: K— Rt (the nonnegative reals) defined by
fx) = d(x, Tx), xc K. Then using Lemma 2.3, Lemma 2.4 and the
continuity of T we have for z,yc K

|f@) — )| < |d(x, Tz) — d(y, T2)| + |d(y, T2) — d(y, Ty)|
= d(x, y) + H(T=, Ty) .
Thus f is continuous on the compact set K. Let ze K such that

f(z) = inf {f(x): x € K}. Suppose that f(z) > 0. Then for each n =
1,2 8, ---, we can choose z, € T(z) such that

e, 2) < 1) + L.
n

As K is compact, if z,€ K for very large n, then there is a sub-
sequence {x,} of {x,} which converges to an element z,€ K. We may
assume that x, = z. Then

f@o) = d(@,, Tx,)

< H(Tz, Tx,)

< H(Tz, Sz) + H(Sz, Tx,)

< ad(z, x,) + B{D(z, Sz) + D(x,, Tx,)}
+ v{D(z, Tx,) + D(z,, Sz)}

< a{d(z, Tz) + H(Tz, Txy)} + Bl{d(z, T?)
+ H(T%, Sz) + flx)} + v{d(z, Tz) + H(Tz, Tx,)
+ flwy) + H(Tx,, Tz) + H(T%, Sz)} .

Then we get

at Bty
fla) < (2 s
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Since (@ + B8 + V)/1 — a — 8 — 3v)) = 1, we have f(z,) < f(2) which
contradicts the minimality of z. Therefore f(z) = 0.

If some subsequence {z,} of {x,} is such that =z, ¢ K, then 2¢ /K.
For the sake of convenience, we may assume that x,¢ K, n =
1,2,8,--.. Then by applying Lemma 2.6 we see that for each =
there is a y,€0K such that d(z,, ¥,) + d¥,, 2) = d(®,, 2). As K is
compact and S(y,) C K there exists w, e S(y,) such that d(z,, w,) <
H(Tz, Sy,) + ¢ by Lemma 2.1. We may further assume that {y,}
converges to some y,€0K. Let

8¢ = ad(y,, z) + Bld(z, Tz) + d(ys, Sy} + 1{d(z, Sy,) + d(y,, T?)}
- H(Tz9 S?/o) .

Then ¢ > 0 as y, = 2. For this choice of ¢, we can find a positive
integer N such that for all » = N,
(a') d(yO, z) - d(ym Z) < 26;
(b)) flye) — e < fy.),
(C) d(xm z) < f(z) + 28:
(d) H(Tz, Sy,) < H(Tz, Sy,) + ¢, (here continuity of S is used).
Then for any n = N, we get

fWo) — ¢ < fW.) = DY,y TY,)
= Y, x,) + d(z,, w,) + d(w,, Ty,)
=< d(Yn, ®,) + H(T2, Sy,) + ¢ + H(SY,, TY.) -

Here last term vanishes and «,<€ T%?. Then we have

SWo) — € < d(Ya, x,) + H(Tz, Sy,) + 2¢
< d(@,, ¥.) + ad(z, ¥o) + B{D(z, Tz) + D(y,, Sy.)}
+ v{D(z, Sy,) + D(y,, Tz)} — 6¢
< d(x,, ¥.) + ad(y,, 2) + B{D(z, Tz) + D(y,, 2) + D(z, Tz)
+ H(Tz, Syo)} + ¥{D(z, Tz) + H(Tz, Sy,) + d(y,, 7)
+ D(z, Tz)} — 6¢ .

Then this yields

£ = & < dlany v) + ($EEED i, 2 + (FELE)16e) — 6e

1—-p8 1—-8—7
< dlaw, 4 + Ay 9 + (FELE)E) — 6
< dlaw v2) + A ) + (FEEENE) — e

= d(x,, 2) + <~1§§—%> f(z) — 4e
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< + ()0 — 2

So

) < (%J_L%J:LD @) — 2

Now choose ueS(y, N T(y,) such that d(y, Ty,) = d(¥,, u). As
f(z) > 0, we see that u == y,. Then

Sw) = D(u, Tu) < H(Sy,, Tu)
< ad(y,, w) + B{DW,, Sy,) + D(u, Tu)}
+ v{D(y,, Tw) + D(u, Sy,)}
< a{D(Ys, Tyo) + D(Tyo, w)} + B{DY0o, Tyo)
+ H(Ty,, Sy,) + D(u, Tw)} + 7{DW,, Tyo) + H(TY,, SYyo)
+ H(Sy,, Tw) + D(u, Sy,)} .

Then using the facts D(u, Ty, = 0 and D(u, Sy,) = 0, we have

s < ($EEED )stws)

Now using previous relation between f(y,) and f(z) we have
+B8+7\Y1+ 8+ a+ B+
f(u)<( tox )(1_3_7)10() <___1_B~7>s

< flz) — <aTir—:%%>e .

This contradicts the minimality of z. Hence f(2) = 0 and as 7% is
a closed subset of X, we find that ze T%. Further, D(z, Sz) <
D(z, Tz) + H(Tz, Sz), implies that z2€Sz. Therefore z is a common
fixed point of S and 7. This completes the proof.

For Banach space we have the following:

COROLLARY 3.5. Let K be a monempty compact subset of a
Banach space X and (S, T) be the genmeralized contractive pair of
Kinto X and S, T are continuwous on K. If SOK)C K, TeK)C K,
and (@+B+VA+B8+7/A—-B—77=1, then there ewxists a
unique common fixed point of S and T in K.

Now we prove two results concerning unique common fixed
points of a pair of multivalued mappings defined on a nonempty
complete subset of a metric space which are not necessarily metri-
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cally convex, and also the mappings involved do not satisfy any
boundary conditions.

THEOREM 3.6. Let (X, d) be a metric space and K a nonempty
complete subset of X. Suppose that S, T: K — CB(X) are multivalu-
ed mappings such that for all z, ¥y in K:

0(Sz, Ty) < ad(z, y) + B{é(z, Sz) + o(y, Ty)}
+ 7{0(x, Ty) + o(y, Sw)},

where a, B,y =0 and a + 28 + 27 < 1.
Then S and T have a unique common fixed point in K.

Proof. Put 6 = (@ + 28 + 2v)¥®. Then @ is positive. We shall
now define singlevalued mappings S, and T, of K into itself such that
S,(z) € S(x), T.(x)e T(x) for all z, y € K, and

d(z, S,(z)) = 69(x, S(x)) ,
d(z, Ty(x)) = 66(x, T(=)) ,

for all z¢ K.
Lemma 2.2 justifies our choice of S,(x) and T,(x). Then one gets

d(Sw, Twy) = 6(S(=), T(¥)
< ad(x, y) + B{o(x, S)) + oy, T(W)}
+ 1oz, T(y)) + oy, S(x))}
< ad(z, y) + B{0'd(z, S;x) + 6~'d(y, T.y)}
+ Y{0~d(z, Ty) + 07'd(y, S,x)} .
As 0'28 +2v)+a <028 +2v+a)=a + 28 +2y<1and K is

complete, it follows from Theorem 1 of Wong [11] that S, and T,
have a unique common fixed point, say z in K. Consider

0 = d(z, S;z) = 00(z, S(2)) .
This shows that d(z, S(z)) = 0 giving thereby that z¢S(z), as S(z)

is closed. Similarly, we have z€ T(z). This ends the proof.

The method of proof of Theorem 3.6 can be used to prove the
following as well:

THEOREM 3.7. Let (X, d) be a metric space and K a monemply
complete subset of X. Suppose that S, T: K — BN(X) are multivalu-
ed mappings such that for all x, y in K:
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3(S(x), T(w)) = ad(x, y) + B{H(x, Sx) + H(y, Ty)}
+ v{H(x, Ty) + H(y, Sxv)} ,

where a + 28 + 2y <1, a, 3,7 = 0.
Then S and T have a unique common fixed point in K.

REMARKS. Theorem 3.6 and Theorem 3.7 are slight extensions
of results obtained by Iséki [3] and Rus [9].
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