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THE FIXED-POINT PARTITION LATTICES

PHIL HANLON

Let ¢ be a permutation of the set {1,2,---,n} and let
II(N) denote the lattice of partitions of {1,2, ---, n}. There
is an obvious induced action of ¢ on II(N); let II(N), =L
denote the lattice of partitions fixed by o.

The structure of L is analyzed with particular attention
paid to -7, the meet sublattice of L consisting of 1 together
with all elements of L. which are meets of coatoms of L. It
is shown that -# is supersolvable, and that there exists a
pregeometry on the set of atoms of -2 whose lattice of fiats
G is a meet sublattice of .Z. It is shown that G is super-
solvable and results of Stanley are used to show that the
Birkhoff polynomials B (1) and Bg(2) are

Bs() = Q@ —1DA—3) -+ (2— (m—1)j)
and
B.(A=G—17"1Bs2) .

Here m is the number of cycles of o, j is sguare-free part
of the greatest common divisor of the lengths of ¢ and 7 is
the number of prime divisors of j. - coincides with G
exactly when j is prime.

1. Preliminaries. Let (P, £) be a finite partially ordered set.
An automorphism o of (P, <) is a permutation of P satisfying x <y
iff o < yo for all z, ye P. The group of all automorphisms of P is
denoted I'(P). For oel(P), let P,={xcP:2x0 =2x}. The set P,
together with the ordering inherited from P is called the fixed point
partial ordering of o. If P is lattice then P, is a sublattice of P.
To see this, let x, y € P,. Then (x\V y)o = 20 = xand (x V ¥)o = yo = ¥,
so(aVyo=xzVy. If xVyo>xVy, then (x Vy <(xVyo<
(x\V y)o* < --- forms an infinite ascending chain in P which is im-
possible since P is finite. So (xV y)o = £V y hence the set P, is
closed under joins in P. Similarly P, is closed under meets.

A partition o of a finite set Q@ = {w, ---, ®,} is a collection
o = B,/B,/ --- |B, of disjoint, nonempty subsets of 2 whose union is
all of 2. The set of all partitions of 2 is denoted II(Q); if Q =
{1, 2, - -+, n} this is written II(N). JII(2) ordered by refinement is a
lattice.

Let S, denote the symmetric group on the numbers {1, 2, - - -, n}.
Define an action of S, on /I(N) as follows; for ¢S, and B/ --- /B, ¢
II(N)

(B -+ |B))o = Bo/Byo| -+ |B,o

319



320 PHIL HANLON

where B,o = {bo:be B;}. It is easily checked that this permutation
representation is faithful and that each o€ S, acts as an automor-
phism of II(N).

Recall that a lattice L is upper semimodular provided that all
pairs of elements x, y € L satisfy the condition (*):

(*) If x and ¥ both cover x Ay then z\V y covers both
x and .

A lattice G is geometric if it is upper semimodular and if each ele-
ment of G is a join of atoms. Its easy to check that every finite
partition lattice is geometric.

Let L be a finite lattice and 4 a maximal chain in L from 0 to
1. If, for every chain K of L the sublattice of L generated by K
and 4 is distributive, then we call 4 an M-chain of L and we call
(L, 4) a supersolvable lattice (SS-lattice).

Let L be a finite lattice with rank function » and let m = »(1).
The Birkhoff polynomial of L, denoted B,(\) is defined by

B,(\) = ZL §(0, )"

Here p¢ is the usual Mobius function of L.

It is assumed in §§3 and 5 that the reader is familiar with the
structure theory for supersolvable lattices given by Stanley and
particularly with his elegant results concerning Birkhoff polynomials
of supersolvable geometric lattices (see Stanley [4]). For more about
lattice theory see Dilworth and Crawley, [2].

If K is a lattice and S a subset of K we say S is a meet-sublattice
of K if S together with the inherited ordering is a lattice in which
the meet agrees with the meet in K.

2. The structure of (II(N)),. Throughout this section we as-
sume that » is a fixed positive integer and that ¢ is a permutation
of {1,2, ---,n}. We write

g = (01,1, Tty cl,ll) tee (cm.ly Tty cm,lm)

according to its disjoint cycle decomposition as a permutation of
1,2, ---,n}. We refer to (¢, --+, ¢;;;) as the ith cycle of o and
denote it by C,. Note that [, is the length of C, and so I, + --- +
l, = n.

Let L denote the fixed point partition lattice (I7I(IN)),. Observe
that if =B,/ --- /B,eL then B)/--- /B, = B,g/--- /B, and so ¢
permutes the blocks of 3. We let Z(o; B8) denote the cycle indicator
of this induced action of ¢ on the set of blocks of 3. The following
observation is presented without proof.
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LeEmMmA 1. Suppose 83 = B,/ --- /|B,e L and m,, € B,. Then there
exists an integer d which divides I, and there exist distimct blocks
B, B, -+, B;,_, such that the elements of the cycle C, are evenly
divided amongst the d blocks B;, ---, B according to the rule

» Hig—1

m,€B; iff u—t=r mod(,/d).

By, I e

By D //é/ CUL) Wy
|

B Y B T /

FIGURE 1

In a similar way, @ induces a partition of the set of cycles
{C, ---, C,} which is defined in terms of the equivalence relation ~
by C, ~ C; iff there exists ceC,, deC; and a block of 8 containing
both ¢ and d. This relation is transitive since each cycle is divided
amongst a cyclically permuted set of blocks. We denote the resulting
partition of {C, ---, C,} by p(o; B).

EXAMPLE 1. Let n =4 and ¢ = (1, 2)(3, 4). The partition g =
1/2/34 is in L; the cycle indicator Z(o;8) = x.2, and the partition
o(o; B) puts each cycle in a block by itself.

If instead we let @ = 13/24 we have Z(o;8) = x, whereas the
partition p(o; B) has just one block containing the two cycles. The
lattice L appears in the figure below.

1234
12/34

13/24 14/23

1/2/34 12/3/4

1/2/3/4

FIGURE 2
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Note that L is not Jordan; in general the fixed point lattices (Z7(N)),
are not themselves highly structured. However the meet sublattice
A of L consisting of 1 together with all meets of coatoms in L is
highly structured, in the above case isomorphic to the lattice of
partitions of a 3 element set. We begin by investigating the co-
atoms of L.

LEMMA 2. There are two kinds of coatoms v in L:

(a) v has 2 blocks, v = B,/B,. FEach block is setwise invariant
under o hence each block is a wunion of cycles. Z(o,v) = x} and
oo, v) is a coatom in the lattice of partitions of {C,, ---, C,}.

(b) v has p blocks, v = B,/ --- [B,, where p is a prime. The
blocks B, are cyclically permuted by o and every cycle C; is divided
evenly amongst the blocks B, ---, B,. The integer » divides
ged(y, -+, 1), Z(o,7) =%, and p(o,v) ts the 1 in the lattice of
partitions of {C, ---, C,}.

Proof. Clearly each of the 2 sorts of partitions above is fixed
by o and each is a coatom in L.

Let v be a coatom of L where v = B,/ --- /B, (k= 2). Suppose
the blocks of v can be split into two disjoint o-invariant sets

S = {Bip ) Biu}
T = {B:ip Tty Ba'q,} .

Consider the partition 7' = (Usp,es B:i)/(Uz;er B;). Clearly v € L and
vy<+v'<1l, Asv is a coatom of L, v' =~ and so 4 = v = 1. Thus
v is of type (a).

Otherwise, ¢ acts transitively on the set of blocks {B, ---, B,}.
Assume the B;s are numbered so that B,c = B;;, for 1 <k and
B,oc = B,. Suppose k factors as & = s where » > 1land s = 1. Con-
sider the partition

= (U Burs) /(U Barw)/ -+ (U Bovr)

Clearly v'eL and vy=v' <1, so y=7". Thus s=1 and v is of
type (b). O

There are 2" ! — 1 coatoms of the kind outlined in (a); these
will be called coatoms of type a. For each prime p dividing
ged (l, ---,1,) there are p™*' coatoms of the kind outlined in (b);
these will be called coatoms of type b.

Note that the coatoms of type a generate a sublattice of _#
isomorphic to the lattice of partitions of {C, ---, C,}. In the case
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that ged (l,, --+, l,,) = 1 there are no coatoms in L of type b and so
this sublattice is all of _Z

A partition 8 in L with Z(a, B) = x} will be called periodic with
period j. The preceding lemma states that every coatom of L is
periodic with period 1 or with prime period. The next lemma will
imply that every partition in _# is periodic.

LEMMA 3. Let B, B.€ L and suppose B, is periodic with period
J. and B, is periodic with period j,. Then B, A B, 1s periodic with
period j = lem(g,, J.)-

Proof. Choose a block B of B8, AB, and let ¢,,€ B. Applying
Lemma 1 and the fact that B, has period j, we see that ¢,, is in
the same block of 8, as ¢,, iff ¢ = » mod (I,/7,). Similarly, ¢,, is the
same block of g, as ¢,, iff ¢ = v mod (I,/j,). Hence ¢, is in the same
block of B, AR, iff t =u mod(l,/7,) and t=wu mod(,/5,) iff t=u
mod (I,/j) where j = lem(j, j,). Applying Lemma 1 again we have
that the block B falls in a j-cycle under the action of 0. As B was
chosen arbitrarily we see that every block of g falls in a j-cycle
under the action of ¢ and so Z(g, B) = «i. ]

Write ged (I, -+, 1,,) = pi* --- p* and let j=p,--- p,. Lemma
3 tells us that every partition in .# has period ¢ where %/j. Let
0 be the permutation of {1, 2, ---, mj} which consists of m cycles of
length 7,

6=0,2 -, DG+L -2 - (m—-Dj+1, -, mj).

Let I be the fixed point partition lattice of & and let _#Z be the
meet sublattice of L consisting of 1 together with all meets of co-
atoms of L. Let L and _#Z be as above.

LEMMA 4. The lattices # and 4 are isomorphic.

Proof. This follows from the classification of coatoms given in
Lemma 2. Returning to o note that c,,, ¢, 1, €125+, - are in the
same block of every coatom in L, and hence they are in the same
block of every partition in . The same is true of ¢, , ¢, i+j, Coprasy * *
as 7 ranges from 1 to m and & ranges from 1 to j. So there is a
natural 1-1 correspondence @ between the coatoms of A and the
coatoms of _#Z given as follows; let v be a coatom of A and let
Ciny Crs€{1,2, ---,n}. Write k= jk' + u and s = js' + v where 1 <
u<jandl1<v<j. Thencg,,andc,,are in the same block of o(v)
iff (1 —1)7+ u and (r — 1)j + v are in the same block of 7.
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This is easily seen to be a 1-1 onto mapping between coatoms
which extends to a lattice isomorphism between .# and _#. O

In the next section we will study the structure of the lattice
.7 and in §4 its associated geometry. By Lemma 4 we may reduce
to the case of ¢ having m cycles of length j, where 7 is a product
of distinct primes.

5. The supersolvability of _#. In this section we study the
structure of _Z Without loss of generality, we assume that n = mj
where j is the product of » distinet primes j = p, --- »,. We assume
that ¢ is the permutation

0‘:(1,2, ...’j)(j+1, ...,Zj)...((m_—l)j_{_l, ...,mj)

and as before we call (¢ — 1)5 + 1, ---, 75) the ¢th cycle of ¢ and
denote it C,. Since o is fixed we abbreviate Z(c; 8) and p(o; 8) by
Z(B) and p(B). Let L = (II(N)), be the fixed point partial ordering
of o and let _# be the meet sublattice of L consisting of 1 together
with all meets of coatoms.

Let h be the partition in L which puts each cycle in a block by
itself:

h=A1,2 -, g){g +1, -, 23/ {m =15 + 1, ---, mg}.

Note that # is the meet of all type a coatoms in L and so he #Z
We call b the hinge of _/Z

LEMMA 5. In _# we have

[, 1] = II(M)
[0, ] = D; = B,

where D; denotes the lattice of divisors of j and B, denotes the lattice
of subsets of {1, 2, ---, 7}.

Proof. First consider the interval [k, 1]. In [I(N), this interval
is isomorphic to II({1, 2, ---, m}) and every element of this interval
is a meet of coatoms in the interval. Also each partition above h
is fixed by o and so [h, 1] S L. It follows that [h, 1] & .# which
proves the first assertion.

For the second assertion, recall that each partition in _#Z is
periodic with period d dividing j. For d|j, there is a unique
partition z(d) below h of period d consisting of dm blocks. This
partition is arrived at by dividing each cycle C; of ¢ into d blocks
according to:
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(t—1)j + s and (¢ — 1)j + t are in the same block
iff s=¢t modd .

If d=p, ;- p;, then 7(d) can be realized as a meet of coatoms
in L by taking the meet of all coatoms of type a and one coatom
of period p, for 1 <1< u. It follows that [0, h] = D,. ™

Recall that in a lattice K, a complement of an element k is an
element &' with kVE =1 and EAK = 0.

LEMMA 6. In the lattice _#, h has j™* complements, and each
complement ¢ has the following properties:

@ pl) =1

(©) Z(c) = =7

(e) [e, 11 = D;

(@ [0,c]l=1({1,2, -, m}.

Proof. Let F be the set of functions mapping {1,2, ---, m — 1}
into the set {1,2, ---, j}, and let feF. Define a partition ¢(f) of
the set {1, 2, ---, mj} as follows:

(1) The element (m — 1)j 4+ 1 (i.e., the first element in C,,) will
be in a block with exactly one element from every other cycle, these
m — 1 elements being (s — 1)+ f(s) s=1,2, ---, m — 1.

(2) Rotate this block cyclically under the action of o; the ele-
ment (m —1)j+1 1 =<¢1=< 7 will be in a block with exactly one
element from every other cycle, these m — 1 elements being
(s — 1)j + (4 + f(s)) where 1 < s < m — 1 and where f(s) + ¢ is taken
mod j.

It is clear that c¢(f) uniquely determines f and so there are ;™! such
partitions ¢(f). Note that each has p(c(f)) =1 and Z(ce(f)) = «7.

Consider the join &V e(f) in II(N). In h, every pair of elements
in a common cycle are in the same block. In ¢(f), every two cycles
have elements in the same block. So & Ve(f) = 1.

Next consider the meet 2 Ac(f) in II(N). In ¢(f), no two ele-
ments in the same cycle are in the same block whereas in %, no two
elements in distinet cycles are in the same block. It follows that
hNe(f)=0.

So ¢(f) is a complement to % in II(N) hence ¢(f) will be a com-
plement to k in L. Hence ¢(f) will be a complement to z in _Z
provided ¢(f) is in _#Z We examine the coatoms in L which sit
above c¢(f); clearly all are of type b. Let p be a prime dividing j.
Recall that if v is a type b coatom of period p then the element
(m —1)j + 1 is in a block with exactly (j/p) elements from each
block C;, and specifying any of these elements in C; specifies them
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all. It follows that there is a unique coatom of period p above c(f)
for each prime p dividing j. The meet of these 7 coatoms has period
7 (by Lemma 3) and has the property that (m — 1) + 1 is in a block
with at least one other element from each cycle. Clearly this meet
is ¢(f), and so ¢(f)e _« Let the » coatoms above c(f) be labelled
Ys * 5 ¥, SO that v, is the coatom of period p,. Define a mapping
@: B, —[e(f), 1] by @(¢) =1, P(S) = Aicsv: for S+ @ (here [¢(f), 1]
denotes the interval in _#). Obviously @(S) < o(T) if TS S, and
it is easy to check that ¢ is onto. ¢ is one-to-one by Lemma 3
and the fact that the p,’s are distinet primes. It follows that
[e(f), 1] = B, = D;. It is equally simple to show that [0, ¢(f)] =
{1, 2, ---, m}). To obtain the isomorphism +, recall that [k, 1] =
({1, 2, - -+, m}). Define 4: [h, 1] = [0, ¢(f)] by (x) = ¢(f) Ax. We've
thus shown that ¢(f) is a complement of ~ in M having the required
properties for each feF'.

It remains to show that every complement of 2 in _#Z is of the
form c¢(f) for feF. Let ¢ be any complement of 2 in _Z As
hAec=0,notwo elements in a common cycle are in the same block
of c. As hVVe =1, every cycle must have an element in a block of
¢ with some element of C,. By the invariance of ¢ under o, we
may assume that the block of ¢ containing (m — 1) + 1 contains
exactly one element from every other cycle. It is now clear how
to define fe F' with ¢(f) = c. O

ExAMPLE 2. Let m =38 and j§ =2. So our permutation ¢ =
(1, 2)(8, 4)(5, 6). The lattice .#Z appears below; note that _~ is geo-

123456

1234/56 1256/34

145/236 146/235

1234756 13/24/5/6 14/23/5/6 15/26/3/4

1/2/3/4/5/6
FIGURE 3
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metric. We will see later that _# is geometric iff 5 is a prime.
Here the hinge & is the partition 12/34/56. The coatoms of type a
are the three to the left, those of type b are the four to the right.
g™ ' is four; the four complements of ~ are the four coatoms of
type b.

In this section we prove that _# is supersolvable. This will
require careful analysis of certain elements of _# Recall that if
x € .# then x is periodic of some period d which divides j. We let
II(x) denote this number d. In the following sequence of lemmas,
we explore the functions /7 and p and show that a certain miximal
chain from 0 to 1 in _#Z consists of modular elements.

For z,ye _# we let ©\Vy denote the join of x and y in .7 and
we let 2V ,y denote the join of x and ¥ in L. As .# is a meet
sublattice of L we have 2 V,y < «\V ¥; in general equality does not
hold. For example, let 7 =2 and m = 3 s0o 0 = (1, 2)(3, 4)(5, 6). Let
x = 13/24/5/6 and let y = 14/23/5/6. Then zV,y = 1234/5/6 but zVy
must have period 1 since both C, and C, are in the same block of
xV.y. Hence zVy = 1234/56 (see Figure 3).

The function p, introduced in §2, is defined for all xe L. It is
easy to check that o respects the join in L, that is o(x)V o(y) =
oxV,y). In fact o also respects the join in _#

LEMMA 7. Let x,yec._#. Then o(xV y) = o(x)V o(y).

Proof. Note that if w,ze _# and o < z then p(®) = p(z). So
@)V o) = pxV.Ly) = p(xV y).

Let z be the unique partition in .# with p(z) = o(x) V p(y) and
II(z) =1. Then 2=« and 2=y so zVy <=z Hence paVy =
p(z) = p(x) V o(y).

It should be pointed out that the analogous statement for meets
is false; i.e., in general we do not have p(x Ay) = p(x) A p(y). As a
counter example let j =2 and m =2 so o = (1, 2)3, 4). Let z =
13/24 and let y =14/23. Then 2 Ay = 1/2/3/4 so p(x Ay) =1/2. But
o) = p(y) =12 so p(x Ay) = 1/2 % 12 = p(x) A o(y). However one
case where equality holds will be of particular interest to us.

LeEMMA 7. Let xe€ _# and suppose II(x) =1. For any y € _#,
o Ay) = p(@) A o(y).

Proof. As II(x) = 1, each cycle C; is contained in a block of .
Let C, and C, be cycles with p and ¢ in the same block of o(x) A o(¥).
Then p and ¢ lie in the same block of p(y) so there exist ueC, and
ve€C, such that % and v lie in the same block of y. Also p and ¢
lie in the same block of p(x) so some block of x contains both cycles
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C, and C,. Hence a and v lie in the same block of # Ay so p and
q lie in the same block of po(x Ay). This shows that o(x) A p(y) <
o(@ A\ y); the reverse inequality is easy to show.

We next consider the function 7. Again we will be interested
in how it behaves with respect to the join operation in _#

LEMMA 9. Let x,ye _#.

(A) If x =y then I(y) |l ().

(B) II(zVy) divides ged (II(x), II(y)).

(C) If I(xVy) = ged ((2), (y)) then aVy =axVL,¥.

Proof. Note that II(x) = d iff the elements of each eycle C; are
evenly divided amongst d blocks according to the rule that « and v
are in the same block iff w = (modd), for u,veC,. From this
observation (A) follows immediately, and (B) follows easily from (A).

For (c) suppose first that u, »€C; and 4 = v (mod ged (d, ¢)): say
u=v+ kged(d, e). Write kged(d, ¢) = ad + Ge for a, B€Z and
let @ be the unique element of C; satisfying u + ad = @ (mod j).
Then # and @ are equivalent mod d hence are in the same block of
2. Also

o+ Be=w+ad)+ Be=u+ kged(d, e) =

so w and v are equivalent mod e hence are in the same block of ¥.
Thus % and v are in the same block of zV .y, which shows that if
% = v (mod ged (II(zx), II(y))) and u, veC, then u and v are in the
same block of zV,v.

Suppose » and w are in the same block of x\V y with u € C, and
weC, Since

o@Vy) =p@)V oy and o@)V oY) = e \L/ Y)

there exists a sequence 4 = w,, u,, - - -, %, such that w,, u,y, are in the
same block of either x or y and such that u,eC, It follows that
u and u, are in the same block of xV .y hence of zVy so w and
u, are in the same cycle and in the same blockof x\vVy. Sou, —w =10
(mod II(x \Vy)). Since HxVy)=IxV,y) we see that u,=w
(mod II(zV,v). By the above observation, u, and w (hence w and
w) are in the same block of *V.¥ so xVy < a2V.y and equality
must hold.

Note that the sufficient condition for the equality of x V¥ and
2V.y given in (C) is not a necessary condition. For a counter-
example let 1 =2 and m =4 so g = (1, 2)(3, 4)(5, 6)(7,8). Let o =
14/23/58/67 and let y = 13/24/57/68. Then

xNVy=xVy=1234/5678 so II(xzVy) =1.
L
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But II(x) = II(y) = 2 so 2 = ged (II(x), II(y)).

We can now construct the bottom half of our maximal chain of
modular elements. Suppose p(x) = 0 and II(x) = d. Then each block
of x contains j/d elements; the blocks partition each cycle C; into d
parts. The unique element x of _#Z satisfying these conditions is
denoted 7(d). Note that z(j) = 0 and z(1) = h.

LemMMA 10. Let d/f and let y, z€ _#.
(A) If 2 <y then 2V (t([d)AY) = (V) Ay.
(B) If 2 < z(d) then zV (z(d) Ay) = (2 y) A z(d).

Proof. We first prove (A). Note that foranyxe_#, t(d) Az =
7(e) where e = lem(d, II(x)) and z(d) \V « is the unique element of _#Z
above z which has period ged (d, II(x)) and cycle partition p(x). From
this it follows that z V (¢(d) A ¥) is the unique element of _# above
2 which satisfies

oV (T(d) A y)) = p(2)
IV (z(d) A y) = ged I(z), lem(d, II(y)) .

By a similar argument one shows that (zVVz(d)) Ay is the unique
element of _#Z above z which satisfies

oz V o(d) Ny) = p(2)
I((zVt(d) ANy) = lem(II(y), ged (11(z), d)) .

Here one needs to use the fact that z < 4. ‘
As 2z <y we have II(y)|II(z). Also, the lattice of divisors of j
is modular which together with II(y)|II(z) gives

lem(I1(y), ged (1(2), d)) = ged (11(z), lem(d, 11(y))) .

The proof of (B) is somewhat easier. Assume z = [I(¢) where d|e.
Then
2V (@) Ay) = z(e) V(z(d) A y)
= 7(lem(e, ged (d, 11(y)))) .
=V y) ANt@d) = (z(e) Vy) Az(d)
= t(ged (d, lem(e, 1(y)))) -

As Dbefore, the condition d|e together with the modularity of
the lattice of divisors of j proves the desired equality.

Recall that 5 was assumed to be the product of » distinct primes
j=m:p 9. For i=12--- 7 let t,=1c(p,p, - p), and let
t,=0. Then 0 =¢t, <t < --- <t.=h is a maximal chain from 0
to h consisting of modular elements of _# (by Lemma 10).

For 1=1,2, ---, m let s, denote the element of _# which has
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the following % + 1 blocks; block 1 contains only cyecle C,, block 2
contains only cycle G, ---, block ¢ contains only cycle C; and block
% + 1 contains the remaining cycles C;yy, -+, C,. Let s,=1 so

h=58,;<8,<:-<s=1

is a maximal chain from % to 1. Note that 7I(s;) =1 and p(s;) =
/ey - @i +1,9+ 2, ---, m}. We will use the fact that o(s,;)
is a modular element of IT(M).

LEmMMA 11. Let y,ze _#. For i=0,1, ---, m —1 we have the
following:

(A) If e =y them 2V (s; ANY) = BAS)AY.

B) If 2z < s, then 2V (s; \NY) = (VY As,.

Proof. We first prove (A); assume z < ¥.

0z V (s, \NY) = p(2) V o(s; A\ Y) by Lemma 7
= 0(2) V (o(s;) A\ o(¥)) by Lemma 8
= (p(2) V 0(8)) N\ 0(¥)

the last equality holding since p(s;) is a modular element of II(M).
Using Lemma 7 again we have

o=V (8, AY) = p(zV8) A\ p) = p((zV8)AY) .

The last equality follows from Lemma 8 upon observing that zVs, = s;
so II{z\/ s,)|II(s;) = 1.

Also II(s,) = II(s;Vz) = 1so II((s; V2) ANy) = II(y) and II(s; \y) =
II(y). The latter equality implies that 7(zV (s; A¥))|lI(y). But
y=z and y=s,Ay so y =2V (s;A\y) hence II(y)|II(zV (s, \¥))-
Thus

IV (s; \y) = ged (I(2), II(s; \'y))

andso 2V (s; ANY) =2V .(s; ANy) by Lemma 9(C). We now show that
2V (s, ANY) = (s;V2) Ay which will imply equality since we know

o=V (s \NY) = p((8;V2) \¥Y)
and
V(s ANY) =1((5:V2)\Y) .

Suppose % and v are in the same block of 2V (s; Ay). Since
2V (s; \Y) = 2V (s; \y) there exists a sequence u = u,, U, -+, U, = v
such that w;, %,,, are in the same block of either z or (s; A ). Since
2 < y we see that wu;, %;., are in the same block of ¥ so w and v
are in the same block of y. Also u;, %,., are in the same block of
either z or s; so w and v are in the same block of zV.s; hence of
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2V s,. Thus w and v are in the same block of (zVVs;) Ay so (zVy) <
(s; V2) Ay. This completes the proof of (A).

The proof of (B) is the same with a minor exception. As in (A)
we show that

oV (8, AY) = p(( VY) \8)
and

HzN (s;\Ny) =y Vz) =1((zVY) As,).

Let d = II(z\VVy), and suppose that w and v are in the same block
of 2V (s;Ay). Then there exists a sequence u = u,, u,, - - -, u, such that

(1) wu, w4, are in the same block of either z or (s, Ay)

(2) u,=v (modd).
Note that wu;, u#;+, are in the same block of (zVy)As, and
IH{(zVY)As;) =d so u and v are in the same block of (z V%) A s..
This completes the proof of (B).

Lemma 11 tells us that each s, is a modular element of _#.
Combining Lemma 10, Lemma 11 and Proposition 2.1 from Stanley
[4, pg.203] gives the following theorem.

THEOREM 1. _#Z 1is a supersolvable lattice with M-chain
0=<t, < - <t,=h=8,, <8< - <8 =1.
At this point a rough sketch of _# is helpful.

4. The geometric properties of _#Z. Figure 4 suggests that
7 might be geometric; in fact _# is geometric iff j is prime.
However _# does give rise to a pregeometry (in the language of
Crapo and Rota [1]) which we will show in this section. To do so

NI 3
j.| copies of
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: \\ Y
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we need notation for certain elements of . #. Some of this notation
has already been established; for completeness it is listed below again.

(1) For d|j, z(d) denotes the unique element of .~ with
o(z(d)) = 0 and /I(z(d)) = d. <(d) sits in the interval [0, Z].

(2) For a partition Be (%), o(B) denotes the unique element
of .7 with p(o(B)) = 8 and II(6(B)) = 1. o(B) sits in the interval
[h, 1].

(3) Let F be the set of functions mapping {1,2, ---, m — 1}
into the set {1, 2, ---, j}. For feF, c¢(f) denotes the complement of
h given by f as in the proof of Lemma 6. Note: for notational
convenience in what follows we will extend f to a function from
{1,2, ---, m} into {1, 2, ---, j} by defining f(m) = 1.

(4) Let p and ¢ be integers between 1 and m with p < ¢ and
let » be an integer between 0 and j — 1. Then a(p, q, ) denotes
the following partition in . which has exactly 7 blocks of size 2
and all other blocks of size 1. Each block of size 2 consists of one
element from C, and one from C, according to uweC, and veC, are
in the same block iff v = v — 7 (mod 7).

EXAMPLE 3. Let j=m =3 so o= (1,2, 3)4, 5, 6)(7,8,9). Let
p=1, q¢q=3and » =2. Then

a(l, 3, 2) = 19/27/38/4/5/6 .

It is worth noting that /7(a(p, ¢, 7)) = j and that po(a(p, g, 7)) is the
atom in I7(_#) having the block {p, ¢} of size 2 and all other blocks

of size 1.

LEMMA 12. _Z has exactly r + 3<7g> atoms. QOf these, r atoms

lie in the interval [0, h]; these are of the form t(j/p) for » a prime
dividing j. (These r atoms will be called type a atoms.) The re-

maining g<7g’> atoms lie outside the imterval [0, h]. These are of

the form «(p, q, r) and will be called type b atoms.

Proof. Let x be an atom. It is clear that p(x) is either 0 or
an atom in II(_#) and that [I(x) is either j or (j/p) for p a prime
dividing j. We consider the four possibilities.

If o(w) =0 and II(x) = j then x =0 which is impossible. If
o) =0 and II(x) is j/p then & = z(j/p). If o(x)is an atom and 7I(x)
is j/p then we have 0 < 7(j/p) < « which is impossible.

Lastly suppose /7(x) = j and p(x) is the atom in f/(_") which
has exactly one block of size 2 containing » and ¢ with » < gq.
Consider (p — 1)j +1e€C,. It is in a block of size 2 with a unique
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element of C,, say (¢ —1)j+ (r+ 1) for 0=r=<j—1. It is now
clear that =z = a(p, q, 7).

For the remainder of this paper, A denotes the set of type a
atoms and B denotes the set of type b atoms. Let gelI(M) and
let fe F. Then B(B) denotes the set of type b atoms « satisfying
2 < 0(B) and B(f) denotes the set of type b atoms satisfying « < ¢(f).
B(B; f) denotes the intersection of B(B) and B(f). Note that a(p, q, 7)
isin B(B) iff p and ¢ are in the same block of 8 and a(p, q, r) is in
B(f) iff r = f(g) — f(p) (mod j).

Let <% denonte the lattice of subsets of A U B.

DEFINITION 2. Define closure operator = on <% as follows; let
Se. and write S=S,US; with S, &£ 4 and S; = B. Let 5=
Vies, 0@) € II(M). Then

Case 1. ¢ =0

Case 2. 1f S, =@ # S, and if there exists fe F such that
x < c(f) for all xeS; let S = B(B; f).

Case 3. Let S = A U B(8) otherwise.

We need to show that ~ is well-defined in Case 2. Suppose
S,=@ # 8y and let f, geF satisfy xz < ¢(f) and 2« = ¢(g) for all
2eSz. We need to show that B(g; f) = B(B; 9). By the symmetry
of f and g it suffices to prove that B(B; f) & B(B; 9).

Assume that a(p, q, 7)€ B(B, ) so r = f(g) — f(p) mod j. Choose
a sequence a(py, Dy, 1), APy, Doy 72), = **y ADu_yy Duy, Ts) €Sp such that
» =, and ¢ = p,. This can be done by definition of 8. Asz = ¢(f)
for all xe€ S; we know

fp) — f(im) =7 (mod j) .

In particular
r = f@) — £(B) = fB) — £p) = 32 (f(p) = f(pi) (mod ) .

Hence » = 3., 7, (mod j). Since z < ¢(g) for all xeS; we also have
r = g(p,) — g(p,_,) (mod 7). The same telescoping sum shows that

r = g(p,) — 9(p.) = 9(¢) — g(p) (mod j)

and so a(p, q, r) € B(B; g) as desired.

It is easy to show that ~ is a closure operator—the verification
is left to the reader. The next lemma shows that ~ also satisfies
the exchange condition thus making (8, ) into a pregeometry. We
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first need the following technical lemma.

LEMMA 13. Let S; S B and let yeB. Let 8= V,.5,0(2) and
suppose that Sy is of the form B(B; f) whereas Sz U {y} is of the
Jorm A U B(v) for some v = 3. Then p(y) = B and so v = .

Proof. Suppose o(y) £ 8. We will construct a function ge F
with ¥y < ¢(g) and z < ¢(g) for all 2€S;. Let y = a(p, q, 7). As
o(y) £ B we know that p and ¢ lie in distinet blocks of 5. Write

B =B/B,)---/B, with peB, and ¢geB,.

Case 1. m¢ B,. Define g(l) = f(I) for 1l ¢ B,.
For 1 e B, define ‘

g() = (f(@) — f®) — r + f) (modj) .

Note that g(p) = f(@) —r = g(¢) — r (mod j). Thus g(q) — g(p) =7
(mod j) and so y < ¢(g). Suppose z€S;, z = a(p, q, ). If p, g €B,
for i # 1 then g(q,) — 9(»,) = f(q) — f(p) = 7, (mod j) and so z < ¢(g).
If p, q,€ B, then

9(q) — 9(p) = (f(@) — f(®) — r + flg) — (fl@) — f(p) — r + f(p)
= flg) — f(p) =7, (modj) .

So z < ¢(g) as was to be shown.

Case 2. me B,. Define g(I) = f(I) for ¢ B,. For e B, define
g(l) = f() + (f(p) — fl@) +r (modj) .
As before, g(@) = f(p) + 7 = g(p) + r (mod j) so ¥y =< ¢(g9). For zeS,,
2z < ¢(g) as in Case 1.
THEOREM 2. (<%, ") 18 a pregeometry.
Proof. We need to show that ~ satisfies the following exchange
property (*):

Let x,ycAUBand let SCAUB. If x¢S and

) xeSU{y} then yeSU {z} .

The verification of (*) proceeds in several cases. Let 3 = V.., 0(2).
Case 1. xcA.

Since 2¢ S we know S =S, B. If yec A then obviously ye
S U {x} = AU B(B), so assume that y e B.
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Since x ¢ Sy, we have S; = B(B; f) for some fe F. AsxzeS; U (¥}
we know S; U {y} = B(v) U A for some v = 8. Applying Lemma 13

we have p(y) < 8 so yeB(B). So yeS;U{x} = B(B) U A.

Case 2. xz€B, ye A.
If yeS then

ScSufwcSufyw=S=38

which is impossible since zeS U {y} — S.

So y¢S;i.e., S = B(g; f) for some fe F. Thus SU{y} = AUB(R)
and so o(x) =< B.

Since 2 ¢ S there is no function fe F with « < ¢(f) and with
2= c¢(f) for all zeS. So SU{x} = B(8) UA which gives ye S U {x}.

Case 3. x,yeB and p(y) < 8.

Since S is properly contained in S U{y} we see that S has the
form B(gB; f) for some feF and that SU{y} = BB) UA. As ze
SUW), o < 8. |

Since x ¢S there is no function fe F with z < ¢(f) and z < ¢(f)
for all zeS. Thus SU{x} = B(8) U A and so y € {x}.

Case 4. z,yeB, o(y) £ 8 and S = A U B(p).

Here we have SU{y} = AUB(v) for v =BV p(y) > B. Since
x ¢S we know p(x) £ 8 but p(x) < 8V p(y). Hence we know p(y) <
BV o(x) because II(M) is a geometric lattice.

Case 5. z,yeB, p(y) £ B and S = B(B; f) for feF.
In this case we have SU {y} = B(v; g) for v = 8V p(y) and for
some g€ F (see the proof of Lemma 13). Suppose p(x) < 8. Since

2eS U {y}, we know z < ¢(g) and so
xeB(B;9) = BB f) =S —.

Thus o(x) £ 8 and p(x) = BV p(y) so p(y) = BV p(xr) again because
II(_#') is geometric. Hence y € B(v; g) = S U {«} and this finishes the
proof of Theorem 2.

Let G be the subset of _# consisting of all elements of period
1 together with all elements of period j. It is clear that if =, yeG
then 2 Ay € G so G is closed under meets.

Given any element x of _#; there is a unique smallest element
of period 1 which is greater than or equal to x, this being a(o(x)).
In particular this is true of x = yVvz for y,2€G. Thus G has a
join operation V. defined as follows; for y,ze G

yVz= YyVz if Ilyvz)=7
¢ olplyVe) if HyVvz <.
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G is a meet sublattice of _# hence of L and so of ({1, 2, - - -, mj}).
For the remainder of the paper we continue to let \/, A denote the
join and meet of _#Z and V. A denote the join and meet of G.
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Let G denote the lattice of flats of the pregeometry (<7 7). We
know that G is a geometric lattice. Define @: G — G as follow:;

(1) () =0

(2) @(B(B; 1) = VeB(B; f)

(3) P(AUB(B) =hVYe(VeB(B) = 0o(B).

THEOREM 3. @ s a lattice isomorphism and so G is a geometric
lattice. Some elemetary properties of the matroid given by G are
listed below:

A. Bases: If I is a basis containing h then I — {h} =< B(f) for
a unique function f. The set of p(x) for xel — {h} constitute a
basis for II(M).

If I is o basis not containing h them I contains an element y
(not mecessary umique) such that the set of p(x) for x eI — {y} con-
stitute a basis for II(M) and such that VoI — {y}) = c¢(f) for some
function f.

B. Circuits: If C is a circuit containing h then the set of o(x)
such that xeC — {h} constitute a circuit wn II(M). There is no
Sfunction f such that x =< ¢(f) for all xe€C — {h}.

If C is a circuit not containing h then the set of p(x) such that
x ¢ C constitute a circuit in II(M). There is a function f such that
x = e(f) for all xeC.

C. Rank function: Let n, denote the rank function of G and
let N denote the rank function of II(M). Let S be a subset of BU {h};
write S =S, U Sy where S; &€ B and S, = @ or {h}. Let



THE FIXED-POINT PARTITION LATTICES 337

B= N o@).
Then ’
0 if S=9g

MB) if Si=g and

Ne(S) = Sz S B(f) for some feF(Sz+ @)

1+ MB) otherwise .

Proof. It is easy to verify that @ is one-to-one, and onto. @
is obviously order-preserving hence @ is a lattice isomorphism. The
matroid properties given in A, B and C are clear; proofs are left to
the reader.

COROLLARY 1. _#Z 1s geometric iff 7 is prime, or m = 1.

Proof. If j is prime then .# = G and so the result follows
from the last theorem. If m =1 then _# is isomorphic to the
Boolean algebra B, (i.e., lattice of divisors of j), and so .# is
geometric.

Conversely, suppose j is not prime and m > 1. We show that
# is not geometric.

Consider the join of the two atoms «(l, 2, 1) and a(l, 2, 2). It
is clear that these two do not both sit below ¢(f) for some f hence

a(l, 2, )V_.a(, 2,2) = o(B8) > h

where 8 = {1, 2}/{3}/ - - - /{m}. But since j is not prime and [0, z] = B,
we see that the rank of % is at least 2 so the rank of ¢(B) is at
least 3. So .# is not geometric.

Return to Figure 3, where 7 =2 and m = 3. Corollary 1 tells
us that _#Z is geometric in this case. In fact, its easy to check
that this particular _# is the projective plane of order 2.

5. The Birkhoff polynomial of _#Z. The purpose of this sec-
tion is to determine the Birkhoff polynomial of _#. Some results
in this section will be proved in a more general framework and then
specialized to _#. We begin with some well-known facts about closure
operators on lattices.

Let K be a finite lattice with join and meet operations YV, and
Ax. Let 2 —7% be a closure operator and let K denote the set of
closed elements of K. Then K is a lattice with join Yz and meet

Az given by

ctVy=axVy
K K

ctAy=2Avy.
Vi K
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Let e K. Define G(h) to be the set of elements of K whose
meet with & is either 0 or k. Define a map x —Z from K to K by

x if xeGh)

“Tlavh if zeGh).

It is clear that Z = x. Also ~ maps K onto G(h) so & =, and it is
easy to check that if x = y then £ = y. Thus ~ is a closure on K
and the lattice of closed elements is G(k). We sometimes write
G(h) = G, U G, where

G,={xeK:xANh =0}
G, ={xcK:x Nh = h}.

LEMMA 14. Suppose that K is supersolvable with M-chain C,
suppose heC and let C' = CN G(h). Then G(h) is supersolvable with
M-chain C'.

Proof. Let &7 be a chain in G(h), and let T be the sublattice
of G(h) generated by &2 and C. Note that T is contained in the
sublattice of K generated by C and & since heC. Also observe
that T is closed under joins in K, if z,yeT withaAh=yAh =0
then

@VNAh=@ARYYAR)=0V0=0.
The first equality follows by the fact that C is an M-chain for K.

Let @, b and ¢ T. Then

(a\G/b)/\0=(a\]{b)/\c=(a/\c)\K/(b/\c)

=WA®y@A®
and

((a/\b)yc) = (a/\b)\!c = (a\I{c)/\(b\I{c)
=(@Ve)ADVeo).
G G
This proves the lemma.
Apply the last result to _#Z with & as in §§3 and 4. Note that

G = G(h) and so we see that G is a supersolvable geometric lattice
with M-chain

O<h:3m_1<sm_2<"'<31<30:1.

We now use methods of Stanley to evaluate the Birkhoff polynomial
of .

THEOREM 4. Let B ,(\) denote the Birkhoff polynomial of _#.
Then
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BAMN=0=1D0C=-5)O—=2j)- -~ (m—1)7).

In particular 2,0, 1) = () (=)™ *(m — 1)1)j™* where p(j) denotes
the number theoretic Mobius function.

Proof. Let B,(\) denote the Birkhoff polynomial of the interval
[0, R]. We first observe that

B0 = B3, 10, bmr)

where 7(b) denotes the rank of b. The proof is exactly the same as
the proof of Theorem 2 given in Stanley [3]. In this proof Stanley
assumes that the lattice L under consideration is geometric whereas
.# is not in general geometric. However he only uses that L is
geometic to prove his Lemmas 1 and 2. Lemma 1 still holds since
we’ve shown £ is modular in _# (see Lemma 10). We now prove
his Lemma 2; i.e., we show that for any ye_#, h Ay is a modular
element of [0, y].
Suppose a€[0, y] and b < a. Then

OGVYAR)ANa=({(bVRE)AY)ANa by modularity of h
=({(bVhAa)=bV(hAa)
=bVHhA@GANQ) =bV((RAY)Aa).
This part of the proof comes directly from Stanley [3, pg. 216]. Next
suppose b = h Ay and ac[0, y]. Then

bBV({(RAYANa)=bV (hAa)

=hAODVa)
=hAYADBVa) since bVa=zy
=hAYANDLVa).

My thanks to Prof. R.P. Dilworth for suggesting this half of

the proof.
This shows that

B..(\) = Bh(h)(bZG 200, DA™
€Go
Next consider the supersolvable geometric lattice G. As h is a modu-
lar element of G we can apply the same result again to G. This
time the interval [0, 2] is isomorphic to a chain of length 1 so we

have
B;\) = (L — 1)<bez'a #(0’ b)xm-—r(b)) .

Combining this with the previous equation yields

By(\) = (v = DT'By(M)Bs(\) -
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Also the interval [0, 2] in M is isomorphic to the Boolean algebra B,
so B,(A) = (, — 1)". Thus we have

(6.1 B,(\) = (n — "' Bs(\) .

Recall that an M-chain for Gis 0 <s, <$,, < --- <s§, =1. For
1 =0 to m — 1, let a;, denote the number of atoms of G which are
less than or equal to s; but not less than or equal to s;;,. By
Theorem 4.1 of Stanley [4, pg. 209] we know

BG()") = ()\' - am—l) ()\‘ - a’m——z) tte ()\' - a’o)
=W =—1DN—ans) - (M—ap) .

We next show that a,,_, = (@ — 1)j for ¢ =2, ---, m. The atoms of
G are h together with all type b atoms _# A type b atom a is
less than or equal to s,,_; iff p(a) < o(s,_;). Now po(s,_,) has one block
of size 1 together with m — ¢ blocks of size 1; the block of size <
consists of {m,m — 1, ---, m — ¢ + 1}.

Let a(p,q,7) be a type b atom with a(p,q,r) <s,; and
a(p, q, 1) £ Sp_i_s. Sincea(p, q,r) < s,_; weknowp,qge{m, m—1, ---,
m — 1+ 1}. Since a(p, q, ) £ s,,_;_. we know that p and ¢ are not
both members of {m, m — 1, ---, m — 1 + 2}. As p < q we see

p=m—1+1
ge{m,m—1, ---,m—1+ 2}.

Furthermore any choice of ge{m,m — 1, ---, m — ¢+ 2} and re
1,2, .-, 5} give a type b atom a(m —1+1,q,7) =a witha =< s,_;
and a £s,_,,. So @, =73 —1). Thus

B\ =0 =DM =5)0N—25) -+ (&= (m —1)7)

which together with equation (5.1) completes the proof of Theorem 4.
Return now to Figure 3. Here 7 =2 and m = 3 so we have

B,n) = —=DA—=2)(0 —4) =N — T+ 16N, — 8.

The interested reader can verify from Figure 3 that this is the cor-
rect Birkhoff polynomial for _#.

In Theorem 4 we obtained, for a nongeometric supersolvable
lattice, factorization results similar to those which Stanley obtained
for supersolvable geometric lattices. We can restate Theorem 4 in
the following more general form.

THEOREM 4A. Let (K, C) be a supersolvale lattice and let h be
an element of C. Suppose that G(h) is a geometric lattice and that
for each yeG@G, the map from [0, k] to [y, ¥y \V k] given by z —>2Vy
1s one-to-one. Let C' = CN G(h) be
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O<h=s5<s<:---+-<s,=1.
Then
B.(0v) =BMOM—a)N—a) - (v—a,)
where a; 18 the number of atoms a of _#Z which satisfy a < s, @ £ s;_;.

The assumption that the map z — 2z \V ¥ is one-to-one is necessary.
Consider for example

It is easy to check that 0 < a < h <1 is an M-chain for this lattice;
note that the map from [0, 2] to [y, ¥ V2] given by 2 —2V A is not
one-to-one (h and b have the same image).

1

Gh) = hoy

0

so G(h) is geometric. It is easy to check that a, =1 and B,(\) =
(»— 1)* so

B,MON —a) =0 —1).

However one can check that B,(\) = M — 1)(A — 2) and so Theorem
4A does not hold.
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