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TRANSLATION INVARIANT CLOSED * DERIVATIONS

FREDERICK M. GOODMAN

If G is a locally compact group and δ is a left invariant
closed * derivation in C0(G), then δ generates a C* dynamics
of C0(G). If G is a Lie group, C?(G) is a core for δ. Similar
results are obtained for coset spaces.

1* Introduction* This paper is a study of translation invari-
ant closed * derivations in Co of locally compact groups and their
coset spaces. Our starting point is a theorem of S. Sakai [8, Pro-
position 1.17]: A nonzero translation invariant closed * derivation
in CiS1) has domain CXS1) and is a constant multiple of the deri-
vative. Our object is to generalize this result first to Lie groups
and their homogeneous spaces, and then to locally compact groups
and certain coset spaces. Theorems A and B, stated below, are
the main results.

DEFINITIONS. Let G be a locally compact Hausdorff space. A
linear map δ in C0(G) is a * derivation if its domain £&(β) is a
dense conjugate-closed subalgebra of C0(G), δ(f) = δ(f), and δ(fg) —
fδ(g) + δ(f)g (/, ge&(δ)). The derivation δ is closed if its graph
is closed. Now let G be a locally compact group and let H be a
closed subgroup. Left translations in G/H and in C0(G/H) are
defined by /8{tH) = stH and </ = /°4-i (s,teG, feC0(G/H)). We
say that a closed * derivation δ in C0(G/H) is G-invariant or trans-
lation invariant if <o<5o/s-i = δ for all seG. A closed * derivation
in C0(G) is left invariant if it is invariant under left translations
by elements of G.

NOTATION. If F is a class of continuous functions on a locally
compact space, Fc will denote the elements of F with compact
support and FBΛm will denote the real valued elements of F.

THEOREM A. Let G be a Lie group and H a closed subgroup.
Suppose that δ is a G-invariant closed * derivation in CQ(GjH). Then

( i ) CΓ(G/H) £ &(δ) and there is a G-invariant vector field
X on G/H such that δ(f) = X(f) for all feC?(G/H).

(ii) C?(G/H) is a core for δ.
(iii) The C*dynamics (strongly continuous one-parameter group

of * automorphisms) of C0(G/H) corresponding to the complete vector
field X has generator δ.
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The point of this is that δ is not assumed at the outset to
have anything to do with the differential structure of G/H; but
(τ-invariance implies that δ arises from a uniquely determined G-
invariant vector field. In particular, the differential structure of
a Lie group G can be recovered from the left invariant closed *
derivations in C0(G).

Theorem A is proved in § 2.

THEOREM B. Let G be a locally compact group, and let δ be a
left invariant closed * derivation in C0(G). Then δ is the generator
of a C* dynamics of C0(G).

This result is derived from Theorem A, using the structure
theorem which gives certain locally compact groups as protective
limits of Lie groups. The proof is in §3. (Theorem B in turn
implies the special case of Theorem A where H is the identity sub-
group.) Some further generalizations to coset spaces are also
presented in § 3.

The Lie algebra of a locally compact group is discussed in § 4.
We now recall some facts about a closed * derivation δ in a

commutative C* algebra C0(X). [1, 4, 8]
The algebra &(δ), with the graph norm || ||δ = || ||oo + p ( )||oo

is a Silov algebra with structure space X. £&(δ) has a C1 functional
calculus and δ(fog) = (fΌg)δ(g) for feC\R) and g e ^{δ)^.1 The
derivation δ is local; that is, if /, g e &(β) agree near x e X, then
<5(/)(#) = δ(g)(x). The minimum closed primary ideal in i&(δ) at
x 6 X is {/ e &(δ): f(x) = δ(f)(x) = 0}.

LEMMA 1.1. Let X be a locally compact Hausdorff space and
let δ be a closed * derivation in C0(X). Then &(δ)e is dense in

in the graph norm.

Proof. Let X U {°°} be the one point compactification of X.
Define a closed * derivation δx in C(IU{°°}) "extending" δ by taking
3f{$ύ - &(δ) 0 C\ and setting ί1 = ί φ 0 . Then &r(δ) = {f e3f{δfr
/(oo) = ^(/Xoo) = 0}. But this is the minimum closed ideal at <χ>
in £^(A), and is therefore the closure in ^(A) of the ideal of
functions vanishing in a neighborhood of oo. [3, Theorem 36.1].
That is, &(δ)e is dense in &{δ). •

DEFINITION. A closed subset E £ X is called a restriction set
for δ if whenever fe&{δ) and f\E = 0, it follows that δ(f)\E = 0.

One must require /(0) = 0, unless X is compact.
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If E is a restriction set, the formula δE(f\E) = δ(f)\E defines a *
derivation in C0(E) with domain {f\E:fe&(δ)}.

LEMMA 1.2. If V is open and closed in X, then V is a restric-
tion set for δ, and δv is closed.

Proof That V is a restriction set follows from the fact that
δ is local. The characteristic function lv of V is locally in ^ ( δ ) ,
since £&(δ) is Silov regular. (We say that a function g is locally
in £&{$) if for each xeX there is an fe^(δ) such that / = g in
a neighborhood of x.) If / e ^ ( δ ) c , then flre&(δ), because a
Silov algebra contains each function of compact support which is
locally in the algebra. Given /e£^(δ), let </n> be a sequence in
&{h\ such that | |/. - / | | , - * 0 (Lemma 1.1); then | | / J F - / l F |μ-*0,
and δ(fnlv) = δ(fn)lv -> δ(f)lv uniformly. Since δ is closed, f\v e
3?{δ). It now follows that any g e 2&(δv) can be extended isometri-
cally to a function & in i^(δ) by setting g±(x) = 0 for # e X \ F .
This implies that SF is closed. •

Acknowledgments. I would like to thank Jonathan Rosenberg
and Antony Wassermann for helpful discussions. After this paper
was completed I learned that H. Nakazato had independently proved
Theorem B for compact groups. I am grateful to Professor Nakazato
for sending me his preprint [7].

2. The proof of Theorem A* Let the dimensions of G and
H be d and d — c respectively. Let π: G -» G/H be the canonical
map, and let η be a C°° section of π defined in a neighborhood of
H in G/H.

For each g e &(δ), the map s —> /sg is continuous from G to

(i^(S), || ||δ). Therefore for feCc(G), f*g = ( f{s)/s{g)ds is an ele-

ment of ^ ( δ ) , and

δ(f*g)W) = ί f(s)δ(ls(g))(tH)ds

= \ f(8)ls{δ(9))(tH)ds
JG

= f*δ(g)(tH) .

(The integrations are with respect to a fixed left Haar measure on
G.) If / e CC-(G), then /*# e ^ ( δ ) n C~(G/H).

We want to produce a co-ordinate system on a neighborhood
of ίZ" in G/H such that the co-ordinate functions extend to elements
of 3f{δ) Π C°°(G/H). In the special case that H = {1}, this can be
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done very easily. Let {xt: 1 ^ i ^ d] be elements of CC°°(G) which
form a local co-ordinate system near 1. Because &(δ) is Silov
regular, G has a right approximate identity </„> for convolution,
with each fn an element of £&(δ). For large n, {Xi*fn: 1 ^ i ^ d} is
a co-ordinate system in a neighborhood of 1, and each xt*fn is an
element of 3?{δ) Π CC°°(G). The proof in the following paragraphs
for H arbitrary follows the same basic line, although it is somewhat
more convoluted.

We will show that {d(f*g)(H): / e Cc°°(G)s.a., 0 6^(δ)s.a.} spans
the cotangent space T£(G/H). If not, there is a tangent vector
W^THQG/H) such that w1(f*g) = 0 for al l/e Cβ°°(G)s.a. and ge&(δ)aΛ..
Let w<(l ^ i ^ c) be a basis of TH(G/H) and let ^ = dη{w^. Choose
a basis {iγ. c + 1 ^ i ^ <£} of TX(H) £ Γχ(G). Then {vt: 1 ^ i ^ d) is
a basis of TΊ(G). Let X* be a right invariant vector field on G such
that Xt(l) = vt (1 ^ i ^ d). There is a positive constant a such that
the map

φ-1: (ru , rd) i > exp (nXJ exp (rdXd)

is a diffeomorphism of the cube {reRd: | r j < 4α (1 ^ i ^ d)} onto
a neighborhood Z7 of 1 in G, and the map

(rc+1, , rd) i > exp (rc+1Xc+1) exp (rdXd)

is a diffeomorphism of the cube {r eRd~c: |r€| < 4α (c + 1 ^ i ^ d)}
onto the neighborhood U Π i ϊ of 1 in H. Let {̂ : 1 ^ i ^ cί} be the
co-ordinate functions of the co-ordinate system (U,φ). Let e: R-+R
be a C°° function satisfying 0 ^ β <; 1, β|[_β,α] = 1, and supp (e) S
]-2α, 2α[. Define

( 0 ( s g C / ) .

Let V be a symmetric neighborhood of 1 in G satisfying
(1) φ-\[ - 2α, 2a]d) F Q φ~\] - 3α, 3α[rf)
( 2 ) ^-χ([ - 3α, 3α]d) 7 S ί / , and
( 3 ) I x±(8) I < α/2 for se(Hf) φ-\[-3a, 2a]d)) F.

(Point (3) is possible since xx\Hm = 0.) Let ge&(d) satisfy g(H)>
0, ^ ^ 0, and supp (g) £ π(F).

We next observe that X1(F)(s)g(π(s-1)) = 0 for all s e G. Of
course X^Fis)) — 0 for s & U. Suppose that for some se U,
X1(F)(s)g(π(s-1)) Φ 0. Since XlF){jί) = e'fais)) UU e(a?t(«)), we must
have 1 (̂8)1 ^ 2α (2 ^ ί ^ ώ), and

( 4 ) α ^ |^(s) | ^ 2 α .
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Because g(π(s-λ))Φθ, π{s~ι)eπ{V). Thus iheH and 3 w e F such
that s~xh — w. Since seφ~\[—2α, 2a]d), h = sw is an element of
Hf] Φ~\[ — 3α, 3α]d), according to (1). Therefore s = hw1 is an
element of (£ΓΠ φ-\[-Za, 3α]d)) F, and (3) implies | ^ ( s ) | < a/2.
This contradicts (4).

Let g be as above and define

[ o o s u).

Then feC?(G). We will show that w1{f*g) Φ 0. In fact,

u>i(f*g) = ^((/*flr)oπ)

= Vi(f*(g°π))

goπ)(l) .

The last equality comes from the right in variance of Xx. Continu-
ing,

Wi(/*flO = ! X1(f)(s)g(π(s-ί))ds

= \ x1(s)X1(Fχs)g(π(s-1))ds + ί F(s)g(π(S-
ί))ds .

In the last line, the first integrand is zero, as was noted in the
previous paragraph. The second integral is positive. Thus wx(f*g)Φ
0, and this contradiction shows that {dy(H): y e CC°°(G/H) Π &(δ\Λ)
exhausts T£(G/H). Therefore there exist functions #,(1 ̂  i ^ c) in
C?(G/H)Π&(δ)BΛ. and a neighborhood Uo of H such that (Uo, {y,})
is a co-ordinate system.

Let Cco{yύ) denote {g°yά: g e C°°(R)}.2 Because of the C1 functional
calculus in &r(δ), C°°(^) £ &{$) and δ(goyd) = (groyj)d(yd) (geC°°(R)).
For 8 6 ?70, this is δ(goys)(8) = dldys{goys){8)δ{ys){8). It follows that
for / in the algebra A generated by {C°°(i/y): 1 ^ i ^ c}, and for
5 e Z7o, 5(/)(β) = X(f)(s), where X is the C° vector field on C70,

Now let Wbe a compact neighborhood of H contained in Uo,
such that {(y^w), , yc(w)) we W) is a cube in J?c. If / is a C°°
function with support in int(TΓ), then there is a sequence (fn) in
A, each fn also having support in int(W), such that fjw) —> f(w)
and δ(fn)(w) = X(fn)(w) -> X(f)(w) uniformly for w e PΓ. Because

One should require g(0) = 0.
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all functions are supported in W, </„> and <δ(/J> are uniformly
convergent on G/H, and since δ is closed, it follows that fe^(δ).
By translation invariance of &(β) every C00 function is locally in
3f(δ) and therefore CT(G/H)^^(δ). There is a vector field X on G/H
such that δ(f) = X(f) (f eC?(G/H)), and because of the G-invariance
of δ, X is also G-invariant. This proves the first assertion.

Now let g e &(δ)c and let </Λ) be a left approximate identity
for convolution in G, with each fneC?(G). Then fn*g eC?(G/H),
f**9 -> 9 uniformly and δ(fn*g) = fn*δ(g) —> δ(g) uniformly. Thus
C?(G/H) is dense in l&(δ)e, with respect to || ||δ. Since £&(β)0 is
in turn dense in 3f(δ), by Lemma 1.1, CΓ(G/H) is a core for δ.

X, being G-invariant, is a complete vector field on G/H. Let
{Xt:teR} denote the group of diffeomorphisms of G/H generated by
X, and let at(f) = foXt(fe CQ(G/H), teR). Let δ1 be the infinite-
simal generator of the C* dynamics {at}. Then CT(G/H) S ^ ( ^ )
and δλ(f) = X(f) = δ(f) (feC?(G/H)). Moreover, it follows from
the invariance of X that I8°at°l8-i = at (teR, seG) and hence that
δ1 is G-invariant. But then C?(G/H) is also a core for δly and
since δ and δλ agree on GΓ{G/H), δ = δλ. •

3* Theorem B and generalizations^ Before giving the proof
of Theorem B, we note that this theorem contains the case of
Theorem A where H = {1}. Let G be a Lie group and δ a left
invariant closed * derivation in C0(G). If we know that δ generates
a C* dynamics {αj, we can easily obtain the remaining conclusions
of Theorem A. Let us see that &{$) 2 CT{G). Let {Xt} be the
group of homeomorphisms of G such that at(f) — f°Xt (feC0(G),
teR), and let θt = Xt(l). Because of the left invariance of δ,
/Soαto/Γi = at and s8oXto/8-i = Xt (seG, teR). It follows that
Xt(s) = sθt, {θt} is a continuous one-parameter subgroup, and
<**(/)(«) = f(sθt) (seG, teR, feC0(G)). Now the fact that {θt} is
C00 implies tha t ^(δ) 2 GT(G).

Proof of Theorem B. Suppose first that G is the protective
limit of Lie groups: Let {Ga:aeB} be an inverse limit system of
Lie groups with homomorphisms φab: Gb —> Ga (b > a) such tha t G =
lim Gα. Let φa: G —> Gα be the natural projection; we are supposing
<—

t h a t the kernel Na of φa is compact. Thus if K ζZ Ga is compact,
then φ~ι(K) is compact in G. Let φl(f) = foφa (feCQ(Ga)); then φl
is a * isomorphism of C0(Ga) into C0(G) which carries Cc(Ga) into
CC(G). Let Aa = φl(CQ(Ga)), and let A - U.e* Aα.

Each Aα is both left and right translation invariant, since



CLOSED * DERI VATIONS 409

and

'.(f°Φa) = (4β(.)/W. (/ € C0(Gβ)) .

A function feCQ(G) is in Aα if and only if <,(/) = / for all neNa.
If fe&(δ) Π Aβ, then δ(/) is also in Aa, since <,(«(/)) = δ«(/)) =
<?(/) (neNa). We next observe that 3f{h) n Aα is dense in Aa. Let
dto- denote normalized Haar measure on the compact group Na.
Given gQeAa and ε > 0, choose gxe&(δ) such that \\gQ — gx\\ < ε.
Define #2 = L/UsOdw. Then g2e&(δ) Π Aβ, and

Therefore ||flr0 - 2̂||oo ̂  ^ \\sn(g0 - flrJUdn < e.

Define δa in C0(Gα) by &(δa) = (Λ^C^Cδ) n Aβ), δα - ( ί ϊ ) - 1 ^ .
Then δa is a densely defined * derivation in C0(Gu)9 and it is straight-
forward to check that δa is closed and left invariant. Since Ga is
a Lie group, δa generates a C* dynamics of C0((τα) (Theorem A).
Let ψ? == $ βxp (ίSβX !̂)"1 be the corresponding C* dynamics of Aβ.
If 6 > α in A, then NbQNa, and Aα£A6. We observe that ψ\\Aa =
ψ*?. For seG and ίeΛ,

<f tVr1 - /A exp

= φl exp

= + ? . -
For / 6 Aa and w 6 Na,

Therefore o/r« maps Aa into Aβ. Now both {ψΐ} and {ψJ|Aβ} have
generator δ\&[δ)ΓιΛa, so ψ?Uβ = ψ* We define a group of * automor-
phisms of A = UαeB Aβ by ^ ( / ) = ^σ(/) if feAa; {ψt} is strongly
continuous on A. A is a conjugate-closed subalgebra of C0(G). If
8 ^ 1 , there is a kernel jVβ such that s£Na, and there is an / 6 AQ

such that f(s) Φ /(I). So A separates points of G and is dense in
C0(G). Each O/ΓJ extends uniquely to a * automorphism of C0(G) and
{ft} is a C* dynamics of Ce(G). Let δλ be the generator of {ψt}.

We show that δ = ^. First it is evident that ^(δ,) n A =
^ ( δ ) Π A and ^(/) = δ(f) (/ 6 ^ ( δ ) Π A). Since s9ψts.-i = f t (ί 6 JB,
s 6 G), δx is left invariant. Given g e £&{<$) and ε > 0, there is a
neighborhood U of 1 in (? such that ||/g(#) — flr||β < ε for all se U,
and there is an a e B such that Na £ U. Let & = I sn(g)dn (with
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dn denoting normalized Haar measure on Na). Then gλ e £&(δ) Π Aa9

and \\g - gx\\δ < e. Thus A n &{8) is a core for 8. Similarly A n
= A (Ί î (<5) is a core for ^. Since δ and δx agree on An
δ = δlβ This completes the proof in the case that (? is the

protective limit of Lie groups.
Now let G be any locally compact group, with identity com-

ponent Go. Let (?! be the pre-image in G of a compact-open sub-
group of G/Go [6, Theorem 2.3]. Thus G1 is an open (and closed)
subgroup, and according to Lemma 1.2, Gx is a restriction set for
δ and δGl is closed. It is clear that δGχ is Gx-invariant. Since GJG0

is compact, Gλ is the protective limit of Lie groups [6, Theorem
4.6]. By the first part of the proof, 8βί generates a C* dynamics
{at} of CoiGj). There is a continuous one-parameter subgroup {θt} of
Go such that at{f) = r^(/) (f eC^), teR). (See the remarks at
the beginning of this section.) We define a C* dynamics {ψt} of
C0(G) by the formula

Uf)-rOt{f) (/6Co(G)).

If §! is the generator of {ψj, then Gλ is also a restriction set for
δ, and ( ^ = δσι> since t t (/) | f f l = at(f\Gl) (feC0(G)). By translation
invariance of δ and δlf a function is locally in 3f{$) if and only if
it is locally in &f{$ύ- Hence &(8\ = &{δ^)G. Again by translation
invariance, δ and δx agree on &(δ)e9 and Lemma 1.1 implies that
« = 8λ. D

COROLLARY 3.1. Let δ be a left invariant closed * derivation
in C0(G), where G is a locally compact group. The identity com-
ponent of G is a restriction set for δ.

Proof This follows immediately from the existence of a one-
parameter subgroup {θt} of G such that

*(/)(«) = 4τ f{sθt)
dt

We next consider generalizations of Theorem B to coset spaces.

THEOREM 3.2. Let G be a locally compact group. Suppose that
there is an inverse limit system {Ga} of Lie groups such that G =
lim Ga and each projection G —>Ga has compact kernel. Let H be a
closed subgroup of G and let δ be a G-invariant closed * derivation in
CQ(G/H). Then δ is the generator of a C* dynamics of C0(G/H). •

The first part of the proof of Theorem B can be modified to
prove this result. Theorem 3.2 applies in particular if G is compact
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or connected. We have not obtained the analogous result for
arbitrary G, but we do have the result for another special class of
groups:

THEOREM 3.3. Let G be a locally compact group which can be
covered by countably many translates of an arbitrary neighborhood
of the identity. Let H be a closed subgroup and let d be a G-invari-
ant closed * derivation in C0(G/H). Then δ generates a C* dynamics
of ClGjH).

Proof. Let G1 be an open subgroup of G which is the projec-
tion limit of Lie groups. Each Grorbit M in G/H is open and
closed, and is therefore a restriction set for <5. The derivation δM

is closed and evidently G^-invariant.
Gx inherits the property of being covered by countably many

translates of an arbitrary neighborhood of the identity. Because
of this, there is a homeomorphism of M onto a coset space of Gx

which respects the Gx actions. It now follows from Theorem 3.2
that δM generates a C* dynamics {a?}-of CQ(M).

Define at: C0(G/H) -> CQ(G/H) by

for each Gx-orbit M. Then {at} is a C* dynamics of CQ(G/H). Let
δλ be the generator of {αj. For each Gx-orbit M, (δ,)* = δM. It
follows that ^{δ1)ΰ = &(δ)e and δ,{f) = δ{f) for / e &{$).. Now
Lemma 1.1 implies that δ = 3le •

4* The Lie algebra of a locally compact group* The Lie
algebra of a connected locally compact group G was defined by
Lashof in [5] to be the protective limit of the Lie algebras of Lie
groups forming a protective limit system for G. The Lie algebra
of an arbitrary locally compact group is defined to be the same as
the Lie algebra of its connected component. Bruhat [2] identified
the Lie algebra of G with a closed subspace of the dual of the
algebra 1&(G) of regular functions on G.

For the remainder of this section let G be a connected locally
compact group. We show that the set L(G) of left invariant closed *
derivations in C0(G) has a natural Lie algebra structure and can be
identified with the Lie algebra of G.

Let {Ga: aeB} be an inverse limit system of Lie groups such
that G = lim Ga. We adopt the notation of the proof of Theorem

B. The algebra 3f{<3) is defined to be \Ja&Bφl{CτiGa)). &(G) is
independent if the choice of the inverse limit system {Ga}. [2]
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PROPOSITION. ( i ) £3f(G) is a core for each element of L(G).
(ii) Each element of L(G) maps &{G) into &(G).
(iii) Each * derivation in C0(G) with domain £&(G) is closable.

Proof. Let δ be an element of L(G). By Theorem A the deri-
vation δa induced by δ in C0(Ga) has domain containing Cc°°(Gα) and
maps C?(Ga) into itself. Therefore &{δ) 2 Φl(C?(Ga)) and 8 maps
Φl(CΓ(Ga)) into itself. This proves (ii). Now let ge&(δ) and ε>0.
By the proof of Theorem B, there is an aeB and gι e £3f(8) Π Aa

such that \\g — giWs < ε Since CΓ(Ga) is a core for δaf it follows
that there is a gzeφl(CΓ(Ga)) such that \\gt - gz\\δ < ε. Thus ^ ( G )
is a core for <5.

A * derivation δ in C0(X) is said to be well behaved if it satisfies
the following equivalent conditions: (a) \\f ± δ(f)\\ ^ | | / | | for all
/ e £&(δ)a a., and (b) if / 6 £&(δ)a a. attains its maximum at s e X, then
δ(f)(s) = 0. A well behaved * derivation is closable [8, Theorem 2.8].

Now let δ be a * derivation in CQ(G) with domain 3f{<3i). For each

aeB, define P α : Co((?)->Λ by Pβ(/) = ί ln(f)dn. Since P α is a con-

ditional expectation, Pa

Όδ\φl{Cr(Ga)) — δa is a * derivation in ^4α. The
* derivation (Φ°a)~loδa°φl in C0(Gα) with domain C?{Ga) is defined by a
continuous vector field and is therefore well behaved (condition (b)).
So δa is well behaved. Fix aeB and f eφ°a(Cr(Ga))SΛ.; for all b ^ a,
11 / ± Pb(δ(f)) 11 ^ 11 /11. Since P6(δ(/)) -> δ(/) uniformly, 11 / ± δ(f) \ \ ^
| | / ] | . Thus 5 is well behaved and closable. Π

Given this result, we can define each Lie algebra operation on
L(G) by restricting the elements of L{G) to ^ ( ( ? ) , performing the
operation on the restrictions, and closing the resulting left invari-
ant * derivation on &(G).

It remains to identify L{G) with the Lie algebra of G as defined
in [5]. Let gα be the Lie algebra of Gα; {gα: aeB} forms an inverse
limit system with homomorphisms dφab: Qb —»gα (δ > α). Regard L(G)
as the set of left invariant * derivations of 32f{β) and Qa as the set
of left invariant * derivations of CΓ(Ga). Then δ -> {δa: a e B) is a
Lie algebra isomorphism of L{G) onto limgα.
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