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TRANSLATION INVARIANT CLOSED « DERIVATIONS

FrEDERICK M. GOODMAN

If G is a locally compact group and 6 is a left invariant
closed x derivation in C,(G), then J generates a C* dynamics
of Cy(G). If G is a Lie group, C(G) is a core for 5. Similar
results are obtained for coset spaces.

1. Introduction. This paper is a study of translation invari-
ant closed = derivations in C, of locally compact groups and their
coset spaces. OQur starting point is a theorem of S. Sakai [8, Pro-
position 1.17]: A mnonzero translation invariant closed » derivation
in C(S') has domain C*S*) and is a constant multiple of the deri-
vative. Our object is to generalize this result first to Lie groups
and their homogeneous spaces, and then to locally compact groups
and certain coset spaces. Theorems A and B, stated below, are
the main results.

DEFINITIONS. Let G be a locally compact Hausdorff space. A
linear map 6 in Cy(@) is a = derivation if its domain <=(6) is a
dense conjugate-closed subalgebra of Cy(®), 6(f) = 6(f), and 4(fg) =
fo(g) + o(f)g (f, 9€ 2(6)). The derivation 6 is closed if its graph
is elosed. Now let G be a locally compact group and let H be a
closed subgroup. Left translations in G/H and in C(G/H) are
defined by < (tH) = stH and 4,f = fod-1 (s,te G, f€Cy(G/H)). We
say that a closed = derivation 6 in Cy(G/H) is G-invariant or trans-
lation tnvariant if Zodo4-1 =0 for all seG. A closed = derivation
in Cy(@) is left invariant if it is invariant under left translations
by elements of G.

NotaTION. If F' is a class of continuous functions on a locally
compact space, F, will denote the elements of F with compact
support and F,, will denote the real valued elements of F'.

THEOREM A. Let G be a Lie group and H a closed subgroup.
Suppose that & is a G-invariant closed » derivation in C(G/H). Then

(i) Cx(G/H) <= Z() and there is a G-imvariant vector field
X on G/H such that 6(f) = X(f) for all feC(G/H).

(ii) CZ(G/H) is a core for é.

(ili) The C*dynamics (strongly continuous one-parameter group
of * automorphisms) of C(G/H) corresponding to the complete vector
field X has generator 9.
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The point of this is that 6 is not assumed at the outset to
have anything to do with the differential structure of G/H; but
G-invariance implies that ¢ arises from a uniquely determined G-
invariant vector field. In particular, the differential structure of
a Lie group G can be recovered from the left invariant closed =
derivations in Cy(G).

Theorem A is proved in § 2.

THEOREM B. Let G be a locally compact group, and let 6 be a
left invariant closed * derivation in Cy(G). Then 0 is the generator
of a C* dynamics of C\(G).

This result is derived from Theorem A, using the structure
theorem which gives certain locally compact groups as projective
limits of Lie groups. The proof is in §3. (Theorem B in turn
implies the special case of Theorem A where H is the identity sub-
group.) Some further generalizations to coset spaces are also
presented in § 3.

The Lie algebra of a locally compact group is discussed in § 4.

We now recall some facts about a closed » derivation ¢ in a
commutative C* algebra C(X). [1, 4, 8]

The algebra =7 (6), with the graphnorm | |, =] |« + [[0( )l
is a Silov algebra with structure space X. <=/(6) has a C* functional
calculus and 6(fog) = (f'-9)é(9) for feCY{R) and g€ Z(6)s..." The
derivation 6 is local; that is, if f, ge =(6) agree near x e X, then
o(f)(x) = 6(g)(x). The minimum closed primary ideal in = () at
xe X is {f e Z2(0): f(x) = o(f)(x) = 0}.

LEMMA 1.1. Let X be a locally compact Hausdorff space and
let 6 be a closed = derivation in C(X). Then =Z(0), 1s dense in
Z(0) in the graph morm.

Proof. Let X U{w} be the one point compactification of X.
Define a closed = derivation 4, in C(X U {c}) “extending” § by taking
Z(0,) = Z(0) P C1 and setting 6, =6 P 0. Then 2(0)={f € Z(0,):
f(0) = 6,(f)(=) = 0}. But this is the minimum closed ideal at <o
in 2(,), and is therefore the closure in =(4,) of the ideal of
functions vanishing in a neighborhood of <. [3, Theorem 36.1].
That is, Z(9), is dense in = (6). ™

DEFINITION. A closed subset E < X is called a restriction set
for ¢ if whenever fe =7 (6) and f|; =0, it follows that d(f)|z = 0.

* One must require f(0) =0, unless X is compact.
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If E is a restriction set, the formula 6,(f|;) = 0(f)|, defines a =
derivation in C(¥) with domain {f|s: f € &(9)}.

LEMMA 1.2. If V is open and closed in X, then V s a restric-
tion set for d, and 0, 1s closed.

Proof. That V is a restriction set follows from the fact that
0 is local. The characteristic function 1, of V is locally in =(5),
since =7 (d) is Silov regular. (We say that a function ¢ is locally
in () if for each x € X there is an f € .2 (d) such that f =g in
a neighborhood of xz.) If fe ()., then f1,e.(6), because a
Silov algebra contains each function of compact support which is
locally in the algebra. Given fe =(d), let {f.> be a sequence in
Z(3), such that ||f, — fll; — 0 (Lemma 1.1); then ||f,1, — f1,|-—0,
and 6(f,1y) = 6(fu)1y — 0(f)1, uniformly. Since & is closed, f1,¢
Z(6). It now follows that any ge = (d,) can be extended isometri-
cally to a function g, in () by setting g,(x) =0 for ze X\V.
This implies that 6, is closed. |

Acknowledgments. 1 would like to thank Jonathan Rosenberg
and Antony Wassermann for helpful discussions. After this paper
was completed I learned that H. Nakazato had independently proved
Theorem B for compact groups. I am grateful to Professor Nakazato
for sending me his preprint [7].

2. The proof of Theorem A. Let the dimensions of G and
H be d and d — ¢ respectively. Let n:G— G/H be the canonical
map, and let » be a C> section of 7 defined in a neighborhood of

H in G/H.
For each ge =(6), the maps-— /g is continuous from G to
(), | |l). Therefore for fe&CAG), frg = S £(8)4(g)ds is an ele-

ment of <=7 (6), and ‘
o(F*a)eH) = | F@ooNEH)ds

= | _r@Lo@)erds
= fe3(g)(eH) .

(The integrations are with respect to a fixed left Haar measure on
G.) If feCs(@), then fxge 2(6) N C=(G/H).

We want to produce a co-ordinate system on a neighborhood
of H in G/H such that the co-ordinate functions extend to elements
of Z(6) N C=(G/H). In the special case that H = {1}, this can be
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done very easily. Let {z:1=<1=d} be elements of C*(G) which
form a local co-ordinate system near 1. Because =(§) is Silov
regular, G has a right approximate identity {f,> for convolution,
with each f, an element of =(3). For large n, {xxf,:1 <7< d} is
a co-ordinate system in a neighborhood of 1, and each xz,xf, is an
element of =7(6) N C(G). The proof in the following paragraphs
for H arbitrary follows the same basic line, although it is somewhat
more convoluted.

We will show that {d(fxg)(H): feCI(G)s.., 9€ ().} spans
the cotangent space Tji(G/H). If not, there is a tangent vector
w, € Ty(G/H) such that w,(f+g)=0 for all fe C(G)s... and g € Z(0)s.,..
Let w,(1 <1< ¢) be a basis of T,(G/H) and let v, = dp(w;). Choose
a basis (vic+1=i1=d} of TW(H)ZS T(G). Then {v:1=1=d} is
a basis of T\(G). Let X, be a right invariant vector field on G such
that X;(1) = v, 1 = 7 = d). There is a positive constant a such that
the map

¢t (1, c v, 1) > exp (1, X)) - - exp (1. X,)

is a diffeomorphism of the cube {reR% |r,| <4a (1 =1 < d)} onto
a neighborhood U of 1 in G, and the map

(Pesay *+ 0y Ta) > XD (104, X 1y)+ + + €XP (7:.Xy)

is a diffeomorphism of the cube {reR!°:|r,| <4da (c +1= 1 £ d)}
onto the neighborhood UN H of 1 in H. Let {z;:1 <4 < d} be the
co-ordinate functions of the co-ordinate system (U, ¢). Let e: R—R
be a C~ function satisfying 0=<e=<1, e¢|_,. =1, and supp(e) &
1—2a, 2a[. Define

| Mews) Get)
0 (sgU).

F(s)

Let V be a symmetric neighborhood of 1 in G satisfying

(1) ¢7([—2a, 2a])- V < ¢7(]—3a, 3a[?)

(2) ¢ [—3a,3al)- V< U, and

(3) |z(8)] < a/2 for se(H N ¢~([—3a, 3a]))- V.

(Point (3) is possible since x|y, = 0.) Let ge = (6) satisfy g(H) >
0, g =0, and supp (g) & (V).

We next observe that X,(F')(s)g(z(s™?) =0 for all seG. Of
course X, (F(s)) =0 for s¢ U. Suppose that for some secU,
X\(F)(8)g(m(s™) # 0. Since X,(F)(s) = ¢'(x,(s)) IIi-. e(x,(s)), we must
have |2,(8)| £ 20 2= 1= d), and '

(4) o= la(s) = 2a.
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Because g(n(s) # 0, w(s)en(V). Thus 3he H and Iwe V such
that s*h = w. Since seg¢([—2a, 2a]*), h = sw is an element of
HnN ¢ ([—3a, 3a]*), according to (1). Therefore s =hw™ is an
element of (HNg¢([—3a,3a])) -V, and (3) implies |z,(s)| < a/2.
This contradicts (4).

Let g be as above and define

_ [F(8)xy(s) (seU)

7 0 (sel).

Then feCy(G). We will show that w,(f+g) = 0. In fact,

w,(f*g) = v,((f*g)om)
= v (f*(gom))
= X,(f*(gom))(1)
= Xi(f)*(gom)(1) .

The last equality comes from the right invariance of X,. Continu-
ing,

w(f+9) = | X(FHg((s™)ds
= | 2OXE s + | Fegae)ds .

In the last line, the first integrand is zero, as was noted in the
previous paragraph. The second integral is positive. Thus w,(f*g)+
0, and this contradiction shows that {dy(H):yeC>(G/H) N Z(6)s..}
exhausts TX(G/H). Therefore there exist functions y;,(1 = ¢=<¢) in
C>(G/H) N Z(0)s... and a neighborhood U, of H such that (U, {y.})
is a co-ordinate system.

Let C=(y;) denote {goy,: g € C=(R)}.*> Because of the C' functional
caleulus in Z(9), C=(y;) S Z(0) and d(goy;) = (9'°¥;)0(y;) (9 € C=(R)).
For se U, this is d(goy;)(s) = 0/0y;(g°y;)(s)o(y;)(s). It follows that
for f in the algebra A generated by {C<(y;):1= j = ¢}, and for
se U, o(f)(s) = X(f)(s), where X is the C° vector field on U,

X(6) = 3, 00565 -
J=1 Y;

Now let W be a compact neighborhood of H contained in U,
such that {(y.(w), ---, y.(w)): we W} is a cube in R°. If fis a C~
function with support in int (W), then there is a sequence {(f,) in
A, each f, also having support in int(W), such that f,(w)— f(w)
and o(f,)(w) = X(f.)(w) — X(f)(w) uniformly for we W. Because

2 One should require g(0) = 0.
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all functions are supported in W, {f,> and <é(f,)) are uniformly
convergent on G/H, and since ¢ is closed, it follows that fe <= (5).
By translation invariance of <=(6) every C= function is locally in
= (6) and therefore C°(G/H)S <7 (5). There is a vector field X on G/H
such that 4(f) = X(f) (f € C(G/H)), and because of the G-invariance
of §, X is also G-invariant. This proves the first assertion.

Now let ge =2(0), and let {f,> be a left approximate identity
for convolution in G, with each f,eC2(G). Then f,xgecC>(G/H),
fuxg — g uniformly and 6(f,xg) = f,x6(g) — d6(g) uniformly. Thus
C>(G/H) is dense in = (6),, with respect to || |;. Since & (5), is
in turn dense in ' (4), by Lemma 1.1, C*(G/H) is a core for ¢.

X, being G-invariant, is a complete vector field on G/H. Let
{X,: t € R} denote the group of diffeomorphisms of G/H generated by
X, and let a,(f) = f-X(feC(G/H), te R). Let 6, be the infinite-
simal generator of the C* dynamics {o,}. Then C*(G/H) < Z(0,)
and 6,(f) = X(f) = o(f) (feCs(G/H)). Moreover, it follows from
the invariance of X that l,cq,ol,-1 = a, (te R, s€G) and hence that
0, is G-invariant. But then C°(G/H) is also a core for 4,, and
since 6 and 46, agree on C*(G/H), 6 = 0,. ]

3. Theorem B and generalizations. Before giving the proof
of Theorem B, we note that this theorem contains the case of
Theorem A where H = {1}. Let G be a Lie group and o/ a left
invariant closed = derivation in C(G). If we know that 6 generates
a C* dynamies {a,}, we can easily obtain the remaining conclusions
of Theorem A. Let us see that &) = C>(G). Let {X,} be the
group of homeomorphisms of G such that a,(f) = foX, (f € C(G),
teR), and let 6, = X,(1). Because of the left invariance of g,
ool =, and ZoX,o/-1 =X, (seG, teR). It follows that
X,(s) = s0,, {#} 1is a continuous one-parameter subgroup, and
a(f)(s) = f(sb,) (seG, teR, feC(G)). Now the fact that {4} is
C> implies that <(0) = C2(G).

Proof of Theorem B. Suppose first that G is the projective
limit of Lie groups: Let {G.:aeB} be an inverse limit system of
Lie groups with homomorphisms ¢,: G, — G, (b > @) such that G =
lim G,. Let ¢,: G — G, be the natural projection; we are supposing
t<hat the kernel N, of ¢, is compact. Thus if K £ G, is compact,
then ¢;'(K) is compact in G. Let ¢i(f) = fog, (f € C(G,)); then &,
is a =isomcrphism of Cy(G,) into C(G) which ecarries C,(G,) into
C.(@). Let A, = ¢2(C,(G,), and let A = U,.»n A..

Each A4, is both left and right translation invariant, since

’)'s<f°¢a) = (7.¢a(s)f)0¢a ’
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and
4(fo9a) = (%,wf)o9.  (feC(G)) .

A function feC(G) is in A, if and only if 4(f) = f for all neN,.
If fe=z()N A,, then 4(f) is also in A,, since 4(0(f)) = 0(4(f)) =
o(f) (ne N,). We next observe that =(0) N A, is dense in 4,. Let
dn denote normalized Haar measure on the compact group N,.
Given g,e A, and ¢ > 0, choose g¢,€ 2(d) such that | g, — g,] <e.

Define g, = SN/“(gl)dn. Then g, e Z(6) N A,, and

9o — 9; = SN 49, — g)dn .

a

Therefore [|lg, — g./l- = | 1400 — g)lldn <.

Define 3, in C(G,) by 2(.) = (B)(ZB) N A,), 8, = (827!
Then 0, is a densely defined * derivation in Cy(@,), and it is straight-
forward to check that §, is closed and left invariant. Since G, is
a Lie group, 0, generates a C* dynamics of Cy(G,) (Theorem A).
Let ¢ = ¢, exp (£0,)(¢2)~* be the corresponding C* dynamics of A,.
If 5> a in A, then N,CN,, and A,C4,. We observe that !4, =
4. For seG and teR,

it = 4,05 exD (£0,)(¢8) 4!
= i, XD (£0,)4 " (¢3) "
= ¢ exp (£0;)(¢:) "
= I'Eb‘g .
For feA, and neN,,

Vi(f) = 4l () = 2(f)

Therefore ¢ maps A4, into A,. Now both {¢} and {y!|A,} have
generator 0| ;na,, SO Ytls, = ¥¢. We define a group of * automor-
phisms of A = U.csda by v.(f) = 4i(f) if feA, {y¢} is strongly
continuous on A. A is a conjugate-closed subalgebra of Cy,(G). If
s # 1, there is a kernel N, such that s¢ N,, and there is an fe A,
such that f(s) = f(1). So A separates points of G and is dense in
C(G). Each +, extends uniquely to a » automorphism of C,(G) and
{4} is a C* dynamics of Cy(G). Let 0, be the generator of {y}.
We show that 6 =6, First it is evident that 2(,)N A =
Z0)N A and 0,(f) = o(f) (feZ ()N A4). Since 4y4-1 =, (LER,
se@), 0, is left invariant. Given ge 2(d) and ¢ > 0, there is a
neighborhood U of 1 in G such that ||4(g) — gl|; < e for all se U,

and there is an aeB such that N, CU. Let g, = SN Z(g)dn (with
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dn denoting normalized Haar measure on N,). Then g,€ ()N A4,,
and ||g — g.ll; <e. Thus AN =2() is a core for §. Similarly 4N
200) = AN =Z2(6) is a core for 4,. Since 6 and 4§, agree on AN
(), 6 = 6,. This completes the proof in the case that G is the
projective limit of Lie groups.

Now let G be any locally compact group, with identity com-
ponent G,. Let G, be the pre-image in G of a compact-open sub-
group of G/G, [6, Theorem 2.3]. Thus G, is an open (and closed)
subgroup, and according to Lemma 1.2, G, is a restriction set for
0 and g, is closed. It is clear that §; is G.-invariant. Since G,/G,
is compact, G, is the projective limit of Lie groups [6, Theorem
4.6]. By the first part of the proof, d, generates a C* dynamics
{a;} of Cy(G,). There is a continuous one-parameter subgroup {4,} of
G, such that a,(f) = r,,(f) (f€Cy(Gy),teR). (See the remarks at
the beginning of this section.) We define a C* dynamies {4} of
Cy(G) by the formula

¥l f) = r0(f) (feC(@) .

If 6, is the generator of {4}, then G, is also a restriction set for
0, and (d))¢, = 0¢,, since ¥,(f)e, = a,(fls,) (f€Cy(G)). By translation
invariance of é and §,, a function is locally in =(8) if and only if
it is locally in = (6,). Hence =£(0), = & (d,).. Again by translation
invariance, § and 0, agree on =2(5),, and Lemma 1.1 implies that
0 = 0,. O

COROLLARY 3.1. Let 6 be a left imvariant closed = derivation
in C(G), where G is a locally compact group. The identity com-
ponent of G is a restriction set for o.

Proof. This follows immediately from the existence of a one-
parameter subgroup {4} of G such that

o)) = 2|

We next consider generalizations of Theorem B to coset spaces.

S60)  (seG, fe ).

THEOREM 3.2. Let G be a locally compact group. Suppose that
there is am inverse limit system {G,} of Lie groups such that G =
lim G, and each projection G — G, has compact kernel. Let H be a
<
closed subgroup of G and let 6 be a G-invariant closed * derivation in
Cy(G/H). Then o is the generator of a C* dynamics of C(G/H). [

The first part of the proof of Theorem B can be modified to
prove this result. Theorem 3.2 applies in particular if G is compact
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or connected. We have not obtained the analogous result for
arbitrary G, but we do have the result for another special class of
groups:

THEOREM 3.3. Let G be a locally compact group which can be
covered by countably many translates of an arbitrary neighborhood
of the identity. Let H be a closed subgroup and let & be a G-invari-
ant closed = derivation in C(G/H). Then 6 generates a C* dynamics
of C(G/H).

Proof. Let G, be an open subgroup of G which is the projec-
tion limit of Lie groups. Each G,-orbit M in G/H is open and
closed, and is therefore a restriction set for 6. The derivation 4§,
is closed and evidently G,-invariant.

G, inherits the property of being covered by countably many
translates of an arbitrary neighborhood of the identity. Because
of this, there is a homeomorphism of M onto a coset space of G,
which respects the G, actions. It now follows from Theorem 3.2
that 6, generates a C* dynamics {a}} of C,(M).

Define a,: C(G/H) — C(G/H) by

at(f)lM = Ol,zl(flM) ’

for each G,-orbit M. Then {a,} is a C* dynamics of C,(G/H). Let
0, be the generator of {a,}. For each G,-orbit M, (8), = d,. It
follows that =Z(4,), = 2(). and 6,(f) = o(f) for fe (), Now
Lemma 1.1 implies that § = §,. 1

4. The Lie algebra of a locally compact group. The Lie
algebra of a connected locally compact group G was defined by
Lashof in [5] to be the projective limit of the Lie algebras of Lie
groups forming a projective limit system for G. The Lie algebra
of an arbitrary locally compact group is defined to be the same as
the Lie algebra of its connected component. Bruhat [2] identified
the Lie algebra of G with a closed subspace of the dual of the
algebra =7(G@) of regular functions on G.

For the remainder of this section let G be a connected locally
compact group. We show that the set L(G) of left invariant closed »
derivations in Cy(G) has a natural Lie algebra structure and can be
identified with the Lie algebra of G.

Let {G,:aeB} be an inverse limit system of Lie groups such
that G = lim G,. We adopt the notation of the proof of Theorem

B. The alzebra (@) is defined to be U..ss2(C3(Gr). Z(G) is
independent if the choice of the inverse limit system {G.}. [2]
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PROPOSITION. (i) Z(G) is a core for each element of L(G).
(ii) Each element of L(G) maps Z(G) into Z(G).
(ili) FEach = derivation in C(G) with domain Z(G) is closable.

Proof. Let 6 be an element of L(G). By Theorem A the deri-
vation 0, induced by 6 in C,(G,) has domain containing C;*(G,) and
maps C>(G,) into itself. Therefore =) = ¢2(C>(G,)) and & maps
#(Co(G,)) into itself. This proves (ii). Now let ge =7 (6) and ¢>0.
By the proof of Theorem B, there is an aeB and ¢g,€ 2(0)N A,
such that ||g — g, <e. Since C=(G,) is a core for §,, it follows
that there is a g, € ¢,(C(G,)) such that || g, — ¢.ll; <e&. Thus Z(G)
is a core for o.

A xderivation 6 in Cy(X) is said to be well behaved if it satisfies
the following equivalent conditions: (a) ||f & 6(f)|| = ||fI| for all
fe2(0)s., and (b) if fe ()., attainsits maximum at se X, then
o(f)(s) = 0. A well behaved * derivation is closable [8, Theorem 2.8].

Now let 6 be a = derivation in C(G) with domain =& (@). For each
a € B, define P,: C(G)— A, by P,(f) =\ [.(f)dn. Since P,is a con-
ditional expectation, P,0d|¢(C3(G,)) = 3,,Ni§ a = derivation in A,. The
» derivation (4%)7%0d,°4) in Cy(G,) with domain C?(G,) is defined by a
continuous vector field and is therefore well behaved (condition (b)).
So 4, is well behaved. Fix a€B and f € ¢3(C>(G,))s..; for all b = a,

£ = PN = |1 F1l. Since Py3(f)) —3(f) unifornly, | £ (f)]|
ll£1l. Thus o0 is well behaved and closable. ]

Given this result, we can define each Lie algebra operation on
L(G) by restricting the elements of L(G) to & (G), performing the
operation on the restrictions, and closing the resulting left invari-
ant = derivation on 2 (@G).

It remains to identify L(G) with the Lie algebra of G as defined
in [5]. Let g, be the Lie algebra of G,; {g,: « € B} forms an inverse
limit system with homomorphisms dg,,: g, — g, (b > @). Regard L(G)
as the set of left invariant x derivations of <2 (G) and g, as the set
of left invariant = derivations of C*(G,). Then 6 —{0,:a € B} is a
Lie algebra isomorphism of L(G) onto lir_ng,,.
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