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[WEAKLY] COMPACT OPERATORS AND
DF SPACES

WOLFGANG RUESS

This is a study of (spaces of) [weakly] compact linear
operators with ranges in Frέchet spaces. Characterizations
of such operators, extensions and refinements of Schauder's
and Gantmaher's Theorems, and results on the approximation
property of the space K{X, Y) of compact linear operators
are given, together with applications to [weakly] compact
operators on function spaces with the strict topology of R. C.
Buck. Finally, a new tensor product representation for
K*(X, Y), X and Y Banach, is established, and compact sets
of compact operators on Banach spaces are characterized.
The main tools are extensions of Grothendieck's DF techni-
ques.

Introduction* This paper is devoted to a study of (spaces of)
compact and weakly compact linear operators with ranges in Frechet
spaces. The class of domain spaces is specified to be a class of
generalized DF spaces (gDF), which, besides its classical ancestors
(and thus all normed spaces), includes the duals of Frechet spaces
under various of the common polar topologies, as well as all function
spaces with a strict-like topology as first introduced on spaces of
bounded continuous and of bounded holomorphic functions by R. C.
Buck [4].

Among the results are an extension and refinement of Schauder's
and Gantmaher's Theorems on the [weak] compactness of a linear
operator and its adjoint (§3, Theorems 3.1 and 3.2), a new tensor
product representation for the space Kh(X, Y) of compact operators
and its dual K*(X, Γ), X and Y Banach (§3, Theorem 3.4), or, more
generally, X gDF and Y Frechet (§3, Theorem 3.3), characterizations
of operator norm compact sets of compact operators (§4), and a
proof of the approximation property for spaces of compact operators
(§1, Theorem 1.14).

The principal tools are extensions of Grothendieck's classical DF
space techniques to the wider class of gDF spaces (generalized DF):
A locally convex space X is gDF, whenever (1) its strong dual is
Frechet, and (2) its topology is localizable on the bounded sets, i.e.
linear operators into other locally convex spaces are continuous as
soon as their restrictions to the bounded sets are. Generally speaking,
"all" DF properties carry over to gDF spaces. The primary object
of §1 is to verify this for two of the most fruitful DF properties,
for which it has been an open problem. Extending the respective
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DF results of Grothendieck [16, I. 1, Thm. 2, p. 64] and [18, I, 1.3,
Prop. 5, p. 43], it is shown that (a) hypocontinuity implies continuity
for bilinear forms on the product of two gDF spaces, and that (b)
gDF spaces solve Grothendieck's "Probleme des Topologies" [18, I,
1.1, p. 33]. Theorems 1.4 and 1.9 in § 1 contain the precise (partly
more general) statements. These two results are the basic tools for
this paper. Also, they answer the corresponding problem of [26,
Probleme 2] in the affirmative.

Notation and terminology. As far as duality theory for locally
convex spaces is concerned, the terminology is that of J. Horvath's
book [23] with the following exceptions: For (X, τ) a locally convex
space (abbreviated by "lcs"), X'e, X'wc and X'h denote the topological
dual space Xf of (X, τ) with the topology of uniform convergence on
the compact, the weakly compact and the bounded disks in (X, τ),
respectively. (A disk is a convex circled set.) Accordingly, Xc and
Xwc denote the original space X, endowed with the topology of
uniform convergence on the compact and the weakly = σ(X', X")-
compact disks in X'b, respectively. In particular, the wc-topology on
X is just the restriction onto X of the Mackey topology τ(X", X')
of X" with respect to X'. As usual [23] the Mackey topology of
(X, τ) itself (uniform convergence on the weak* = σ(X\ X)-compact
disks in X') is denoted by τ(X, X').

The convex circled hull of a subset A of a linear space X will
be denoted by ΓA.

The space of continuous linear operators from an lcs X into an
lcs Y is denoted by L(X, Y), the space of continuous bilinear forms
from 1 x 7 into K by B(X, Y).

An operator u e L(X, Y)9 X and Y lcs, is called [weakly] compact,
if there exists a zero neighbourhood U in X such that u( U) is [weakly]
relatively compact in Y.

The space of compact linear operators from an lcs X into an
lcs Y is denoted by K(X, Y). L(X, Y) and K(X, Y) will always be
assumed to be endowed with the topology of uniform convergence
on the bounded subsets of X ( = operator norm in case X and Y are
normed), as being indicated by Lb(X, Y) and Kb(X, Y).

1* Extensions of Grothendieck's DF techniques* This section
is devoted to a discussion of the extension of the DF techniques to
the following wider class of locally convex spaces:

DEFINITION 1.1. [24, 25], [32, 34]: An lcs (X, τ) is called gDF
{generalized DF space), if (1) its strong dual X'b is a Frechet space,
and (2) its topology is localizable on the bounded sets, i.e. linear
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operators into other locally convex spaces are continuous as soon as
their restrictions to the bounded sets are.

Equivalently, (X, τ) is gDF, whenever it has a fundamental
sequence (Bn)neN of bounded sets (every B bounded in (X, τ) is absorbed
by some Bn), and τ is the finest locally convex topology on X that
agrees with τ on the 2?n's, neN.

EXAMPLES.

1. All DF spaces [16, Def. 1, p. 63] are gDF. In particular,
strong duals of metrizable lcs.

More generally:
2. Let X be a metrizable lcs. Then its strong dual (uniform

convergence on the bounded subsets of X), its c-dual X' (uniform
convergence on the precompact subsets of X), and in case X is
Frechet, also its Mackey dual XL (uniform convergence on the
weakly compact disks in X) are gDF [32, 34].

3. Accordingly, whenever X is an lcs whose strong dual X'b is
Frechet, then Xc (uniform convergence on the compact subsets of X'b)
and Xwc (uniform convergence on the weakly = σ(X', X")-compact
subsets of X[) are gDF, see Proposition 2.6 in §2.

4. R. C. Buck's strict topology β on Cb(S) [4], S locally compact
Hausdorίf, and its various extensions to (i) Cb(T), T completely
regular [11, 40], (ii) Banach modules over Banach algebras [42], and
(iii) the double centralizer algebra of a C*-algebra [5], all these
"strict" spaces, in general, are far from being DF but, again, turn
out to be gDF. (Consequences of this observation for such function
spaces have been the point of discussion of the paper [33]; see also
the survey [34].)

Further examples in this context are F. D. Sentilles' [41] strict
topology β on L°° in his L°°-ZΛ-duality, and the "universal strongly
countably additive" topology τ on the space £^(&) (of simple func-
tions on a ring <3% of subsets of a set S) of W. H. Graves [13] in
his representation of strongly countably additive vector measures
(on &) as continuous linear operators (on (^(^?) , τ)).

Applications in the context of strict topologies will eventually
be pointed out in this paper.

These examples show that gDF spaces considerably enlarge the
class of DF spaces, and include many more spaces of analysis. The
interesting fact to note now, and the important one for our dis-
cussion, is that, nevertheless, they still have all the nice DF prop-
erties.

Notes 1.2. (1) The gDF spaces as defined here have first been
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introduced by K. Noureddine [24, 25] as "espaces D"\ the semi-
Montel ones among them appear under the name "dF" in K. Brauner
[3], and under the name "DCF" in Hollstein [21], who also considered
non-locally convex analogues [20].

(2) Noureddine [24, 25] already showed that gDF spaces share
many properties with the DF spaces. For later use, the following
are noted here:

(a) [24, Cor. 1 and 2]: If A is a gDF subspace of an lcs X,
then every bounded subset of the closure of A in X is contained in
the closure of a bounded subset of A. In particular, a gDF space
is complete if and only if it is quasi-complete (i.e. closed bounded
sets are complete).

An extension of these results to lcs with a fundamental sequence
of bounded sets and the property that strong nullsequences in their
dual are equicontinuous, has been given in [33, Cor. 2.4],

(b) [25, Thm. 3.1.7]: (cnc) "countable neighbourhood condition":
For every sequence (Un)neN of zero neighbourhoods in a gDF space,
there exists a sequence (an)neN of positive real numbers such that
U — Π {ctnUn\neN} again is a zero neighbourhood.

(c) [25, Thm. 1.1.7]: Relatively compact subsets of the strong
dual of a gDF space are equicontinuous.

In particular, gDF spaces are sequentially evaluable:

DEFINITION [44]: An lcs X is called sequentially evaluable if
every strong nullsequence in its dual is equicontinuous.

( 3 ) Further DF properties have been carried over to gDF spaces
in [10] and [33].

(d) [10, 33]: gDF spaces are quasinormable (see Definition 1.3
below).

It seems worth noticing at this point that, for the special case
of the gDF space X'wc for X Frechet (Examples 2), property (d)
directly translates into the following result:

LEMMA. For every weakly compact dish B in a Frechet space
(Y, p), there exists another such, C say, with the property that BaC
and that the norm qc generated by C on Yc = span(C) induces on B
the same topology as p. In particular, B is a weakly compact disk
in (the Banach space) (Yc, qG).
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The compact analogue of this result is a well known and widely
used consequence of the Banach-Dieudonne Theorem. To my knowl-
edge, the above weakly compact version is not to be found explicitly
anywhere in the literature, whereas the existence of a bounded C
with the indicated properties [18, I, 4.1, Lemme 10, p. 105] is very
well being used.

(e) [33]. A gDF space, or, more generally, a sequentially evalu-
able lcs with a fundamental sequence of bounded sets, is nuclear, if
and only if its strong dual is nuclear.

(4) Two of the most important and fruitful DF properties
remained open for gDF spaces. For DF spaces, Grothendieck had
shown:

(f) [16, I, Thm. 2, p. 64]: Equihypocontinuous sets of bilinear
mappings on the (cartesian) product of two DF spaces are equicon-
tinuous.

(g) [18, I, 1.3, Prop. 5, p. 43]. "Probleme des Topologies": For
two DF spaces X and Y, their protective tensor product X0* Y and
its completion again are DF. On the space B(X, Y) of continuous
bilinear forms on X x Y, the topology of bibounded convergence is
equal to the strong topology of the dual of X®πY, i.e., every bounded
subset of X®πY is contained in the closed absolutely convex hull of
a set A (x) B, A bounded in X, B bounded in Y.

Noureddine [26, Thms. 2 and 3] proved (g) for semi-Montel gDF
spaces and left the general case as a problem [26, Probleme 2, p. 103].
Satz 2.1 of [20] yields (f) for gDF spaces. The nonlocally convex
results of [20] include the second statement of (g) for gDF spaces,
whereas it is not evident to me, whether this also extends to the
first one.

Proposition (f) will now be proved for a much wider class than
the gDF spaces [32, II. 4, Satz 4.11, and IV. 2, Satz 2.1], and pro-
position (g) for gDF spaces [32, II. 4, Satz 4.8 and Satz 4.9] will
then follow easily.

As a final result, it is now settled, that all important DF
properties, except the one of being countably evaluable, remain valid
for gDF spaces. It is for this reason that / chose (in [32, 34]) to
change the original terminology of Noureddine and to let their close
relationship with their ancestors show through this different name.

Recall the following notions:

DEFINITION 1.3.

1. An lcs X is called quasinormable [16, III. 1, Def. 4, p. 106],
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whenever, for every equieontinuous subset H of the dual of X, there
exists a zero neighbourhood U in X such that, on H, the strong
topology and the topology of uniform convergence on U coincide.

Equivalently, X is quasinormable, whenever, for every zero
neighbourhood U, there exists another such, V say, with the property
that, for every ε > 0, there exists a bounded subset Bε of X such
that VaeU + Bε.

Also recall, that a Schwartz space exactly is a quasinormable
lcs whose bounded sets are precompact.

2. Given an lcs (X, τ) with an increasing sequence A = (An)neN

of disks, τ is said to be localίzable on the An'&, whenever τ is the
finest lc topology on X which agrees with τ on the An's.

In case the union of the An'& spans X, and An + An(zAn+lf a
base of zero neighbourhoods for the finest lc topology on X, agreeing
with τ on the An's is formed by the absolutely convex hulls of sets
of the form U {Un Π An \ neN}, (Un)neN a sequence of τ-zero neigh-
bourhoods [12, Prop. 1].

3. Given three lcs X, Y and Z, a set H of bilinear maps from
1 x 7 into Z is called equihypocontinuous, whenever, for every B
bounded in X, the set H(B, •) is an equieontinuous subset of L(Y, Z),
and the set H( , C) is an equieontinuous subset of L{X, Z) for every
C bounded in Y.

THEOREM 1.4.

(1) A set of bilinear maps from the product X xY of two gDF
spaces X and Y into an lcs Z is equieontinuous, if and only if it
is equihypocontinuous. More generally, the following statement holds:

(2) Let X be a quasinormable lcs and (Y, p) an lcs. Whenever
either

( i ) Y contains an absorbing disk B (span(B) = Y) such that p
is localizable on B, or

(ii) Y contains an increasing sequence (Bn)neN of disks such
that p is localizable on the Bn's, and X fulfills condition (enc) of
proposition (b) of Notes 1.2 above, or

(iii) (Y, p) has a fundamental sequence (Bn)neN of bounded sets
and fulfills (enc), and X is DF, then a set of bilinear maps from
X x Y into an lcs Z, which is equihypocontinuous with respect to
the bounded subsets of X and the set B (resp. the Bn's) in Y, is
equieontinuous.

Notes. (1) Proposition (iii) is to be found in [16, I. 1, Thm. 2,
p. 64, and Rem. 2, p. 66].

(2) Proposition (i) seems to be the first result in the non-
metrizable context that dispenses completely with the assumption of
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a fundamental sequence of bounded sets for one of the factors. It
includes the following particular cases:

COROLLARY 1.5. Let X be a quasinormable lcs. Then every
equihypocontinuous set of bilinear maps from X x Y into an lcs Z
is equicontinuous, whenever.

(a) Y is any of the "strict" spaces listed among the examples
at the beginning of this section, or

(b) for a Banach space Z, Y is any of the spaces Zcy Zwc, Z'cy Z'wc.

A particular direct consequence of the above results is the
following surprising improvement of Theorem 4.12 of [41] (see this
paper for terminology and details).

THEOREM 1.6. Multiplication is β-jointly continuous on L°°(t_szf)
whenever β is Hausdorff.

This result, in turn, yields immediate proofs of Prop. 8.7 and
Thm. 8.8 of [41] on the "Radon-Nikodym-map" P;, for

veU:P-.L%s^) > L\j*) , f\ >f.φ,

where, for geL%W)f f-v(g): = v(f-g) Since veL1(Ssf) is /3-con-
tinuous, there exists a /3-zero neighbourhood V in LΓ{^/) on which
v is bounded by one in absolute value. /3-continuity of multiplication
now asserts the existence of a /3-zero neighbourhood U in L°°(jy)
such that U UaV. In terms of P; this yields P$(U)aU°. In par-
ticular, P; is β-\\ ||rcontinuous. In case the dual of (L\j*f), \\ Id)
is equal to L°°(c&O (consult [41]), it even is weakly compact from
(L%J^l β) into {L\J*)9 || 110.

(3) A particularly striking application of Theorem 1.4 to sets
of [weakly] compact operators is to be found in §2, see Proposition
2.1 and its proof.

(4) Note that, besides all gDF spaces, the class of spaces that
fulfill the assumptions of propositions (2) (i) and (ii) of Theorem 1.4
on X, contains all subspaces of Schwartz gDF spaces. This is worth
mentioning, for, in general, the gDF property is not inherited by
linear subspaces. Note as well that the class of Y's as specified in
(2) (iii) is closed under the formation of linear subspaces.

Proof of Theorem 1.4. We shall prove the following more tech-
nical result which, much like Theorem 1.4 itself, provides remarkable
consequences for sets of [weakly] compact operators from gDF spaces
into Frechet spaces; see Theorem 2.2 and the Note following the
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proof of this theorem in §2.

PROPOSITION 1.7. Let (X, τ) be a quasίnormable lcs with property
(cnc), (Y, p) an lcs with an increasing sequence έ% — (Bn)nBN of disks
whose union spans Y. Then a set H of bilinear maps from 1 x 7
into an lcs Z is equicontinuous from (X, τ) x (Y, η) into Z, whenever
it is &τ x έ^-equihypocontinuous. (Here, rj denotes the finest lc
topology on Y agreeing with p on the Bn's, and ^ τ denotes the class
of all bounded subsets of (X, r).)

Proof, It suffices to give a proof for the case Z — K, see [16,
I. 1, Lemme 3, p. 64]. Also, considering 2nBn instead of Bn,neN,
one can assume that Bn + Bn c Bn+1, neN, for rj is not being changed
by this manipulation.

1. For every neN, there exists a zero neighbourhood Z7» in
(X, τ) such that \H(U'n, Bn)\^l (equihypocontinuity of H).

2. For every neN, there exists a zero neighbourhood Un in
(X, τ) with the property that, for every a > 0, there exists a bounded
subset M* of (X, τ) such that UnaaUi + MS (quasinormability of
X).

3. There exists a sequence (an)neN of positive reals such that
U = Π {αnί7JweiV} is a zero neighbourhood in X ((cnc) for X).

4. For every neN, there exists a zero neighbourhood F n in
(Y, p) such that |iϊ(Mί-i, Vn)\ ^ 1 (equihypocontinuity of H again).

It follows that * H{U, \Jm,ΛBm n α" 1 ^)) aH{U'n + anMϊ-,,
— 1 **

UmeivCBmΓl #m V»)) for all neN. Hence, by 1. and 4., we have:
5. \H(U, ϋ{Bmn a-'Vm I meN}) \ £2.
The set V = Γ U {Sm n ^m1 F m | m 6 iV} is an T̂ -zero neighbourhood

in Y (see Definition 1.3 above), and, by 5., we conclude that
\H(U, V)\ ^ 2, which completes the proof.

Projective tensor products of gDF spaces are next.

PROPOSITION 1.8. Let X and Y be gDF spaces with respective
fundamental sequences (An)neNand (Bn)neN of bounded sets, all disks,
and An + Ana An+1 and Bn + Bna Bn+1. Then the projective tensor
product topology π on X (x) Y is localizable on the sets Cn =
Γ{An®Bn\neN.

A variety of consequences follows:

THEOREM 1.9. ("Probleme des Topologies" for gDF spaces); Let
X and Y be gDF spaces with respective fundamental sequences
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(An)nefV and {Bn)neN of bounded sets. Then X(&πY and X®πY are
gDF spaces as well, with fundamental sequences (ΓAn (x) Bn)neN

(closure in the respective space) of bounded sets. In particular, the
topology of bibounded convergence (uniform convergence on A x B, A
bounded in X, B bounded in Y) on the space B(X, Y) of continuous
bilinear forms on X xY is equal to the strong topology on B(X, Y)
as the dual of X(&πY and of

Proof. Combine Proposition 1.8 and proposition (a) on gDF spaces
in Notes 1.2 above with the fact [30, Thm. 4] that, whenever an lc
topology is localizable on an increasing sequence Cn of bounded disks
whose union spans the whole space, its bounded sets are exactly
those absorbed by the closures of the Cn's.

COROLLARY 1.10. For gDF spaces X and Y with respective
fundamental sequences (An)neN and (Bn)neN of bounded sets, a set H
of linear mappings X(ξξ)πY (resp. from X(&πY) into an lcs Z is
equicontinuous, if and only if H \ ΓAn (x) Bn (resp. H | ΓAn 0 B.n) is
equicontinuous (at 0) for all neN.

COROLLARY 1.11. For X and Y gDF spaces, every precompact
subset of Bhh(X, Y) is equicontinuous.

(For semi-Montel gDF spaces, this is Lemme 2 in §4 of [26]).

Proof of Corollary 1.11. Combine Theorem 1.9 with property (c)
of gDF spaces in Notes 1.2 above.

COROLLARY 1.12. Let X and Y be gDF spaces.
( i ) Whenever both X and Y are Schwartz lcs, then X®πY is

Schwartz gDF, and X(&πY is semi-Montel Schwartz gDF.
(ii) Whenever X is Schwartz and Y is semi-reflexive, then

is semi-reflexive gDF.

(For semi-Montel DF spaces, compare [18, I, 1.3, Cor. 2, p. 45];
at this time it was not yet known that DF spaces are quasinormable.)

THEOREM 1.13. Whenever X and Y are Schwartz gDF spaces
with the approximation property (a.p.), then the space X(ξξ)πY has
the approximation property as well.

REMARK. For barrelled Montel DF spaces, this follows from
[2, 4, Satz 1, p. 212]. Recall that these spaces are exactly the strong
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duals of Frechet Montel spaces, whereas the class of Schwartz gDF
spaces contains the c-duals of any metrizable lcs. This extension is
essential for the proof of Theorem 1.14 below.

Proof of Theorem 1.13. The proof is a combination of Theorem
1.9 and a result of [19]. Heinrich's elegant direct proof of the a.p.
for X®πY for X and Y Frechet spaces with a.p. [19, Thm. 3]
actually shows that the following result is true. Let X and Y be
lcs with the property that every precompact subset P of X®KY is
contained in the closed absolutely convex hull of a set Px (g) P2 for
precompact subsets P1 of X and P2 of Y. Then, if both X and Y
have a.p., XφπY has a.p. In case of Theorem 1.13, Theorem 1.9
reveals that the assumptions of this result are fulfilled.

Note. In conjunction with Theorem 3.4 in §3, Theorem 1.13
yields the well known fact that K(X, Y) has a.p. whenever X and
Y are Banach spaces with X* and Y having a.p.: It is folklore
(polarity techniques) that a Frechet space has a.p. if and only if its
c-dual has a.p. Hence, given X, Y Banach with X* and Y a.p., Xc**
and Y* have a.p. and thus, by Theorem 1.13, the space Xβ**®«Ff
as well. But, according to Theorem 3.4, this is the c-dual of the
Banach space K(X, Y). Hence, K(X, Y) has a.p.

But, using Theorem 3.3 instead, much more can be said. The
following extension of the classical Banach space result to the gDF-
F-situation holds:

THEOREM 1.14. Let X be a gDF space and Y a Frechet space
such that Y and the strong dual X'h of X have the approximation
property. Then the Frechet space Kb(X, Y) of compact linear operators
from X into Y, endowed with the topology of uniform convergence
on the bounded subsets of X, has the approximation property.

It remains to prove Proposition 1.8: We have to show that π
is equal to the finest lc topology on X(x)]Γ, agreeing with π on the
sets Cn = ΓAn (x) Bn. Denoting this latter topology by η9 and referring
to the general properties of the projective tensor product topology, it
is enough to show that the tensor mapping Φ: X x F—> X(x)Y, (x9 J/)H->

x (x) y, is continuous from X x Y into (X® Γ, η). Theorem 1.4 reduces
this to hypocontinuity, i.e. that Φ{An, •) and Φ{ , Bn) are equicontinuous
sets of linear operators from Y resp. X into (X(g)Γ, η) for all neN.
By symmetry, and according to the fact that X and Y are gDF, it
suffices to prove that the restrictions Φ(An9 )\Bm are equicontinuous
at 0 for all m,neN. This is what we show now.
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Let m,neN and W an 37-zero neighbourhood.
(1) There exist sequences (Uk)keN and (Vk)keN of zero neigh-

bourhoods in X and Y, respectively, such that Wz)Γl}{(ΓAk®Bk)Γ\
(ΓUk(g)Vk)\keN} (see proposition 2 of Def. 1.3).

(2) For keN, choose aϊ > 0 such that An(za%Uk. Let j =
maxjw, m), and let (x, y) e {An x (Bm n (α?)"1^-). Then we have:

( 3) x(x) y e (Aj<g> Bs) n ((αj ϋy) <g> ((α?)"1 Vά)) = {Aά (x)By) n (Uj ® 7y).
In conjunction with (1), this yields Φ(An, ^ ( Ί ί α j Γ ^ j O c W, which

completes the proof.

2* [Weak] Compactness of linear operators* The starting
point for our discussions are Grothendieck's classical results [16, Cor.
1 of Thm. 11, p. 114], and [17, IV, 4.3, Cor. 1 of Thm. 2, p. 241]:

Every continuous linear operator from a quasinormable lcs X
into a Banach space Y, which transforms bounded sets into [weakly]
relatively compact sets, is [weakly] compact.

The following quite recent result of van Dulst is a variation/
extension of the theme [10, Thm. p. I l l ] :

The conclusion of Grothendieck's result holds, whenever Y is a
Frechet space, and X a quasinormable lcs with (cnc) (see proposition
2 of Definition 1.3 in §1).

Note that every gDF space fulfills the assumptions on X
As a first step towards our characterization of (weakly) compact

operators along this line, an extension to sets of (weakly) compact
operators of these two results is shown to be an immediate conse-
quence of Theorem 1.4:

PROPOSITION 2.1. Let H be an equicontinuous set of linear
operators from an lcs X into an lcs Y such that H(B) is [weakly]
relatively compact in Y for all B bounded in X If either

(a) Y is Frechet and X gDF {or, more generally, a quasinormable
lcs with (cnc)), or

(b) Y is Banach and X quasinormable, then there exists a zero
neighbourhood U in X such that H( U) is [weakly] relatively compact
inY.

Proof. Considering the set H of bilinear forms on 1 x 7 '
associated to the heH (h(x,yf): = (hx, y'}), the assumptions on H
mean that H is equihypocontinuous on X x Y'c (resp. on X x Y'wc).
Hence, in both cases, Theorem 1.4 reveals that H is equicontinuous
for these topologies. This proves the assertion.
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A further variation of the theme, this time with an additional
aspect concerning the topologies of the range space, is F. D. Sentilles'
characterization of [weakly] compact operators on the space (C6(S), β)
of bounded continuous functions on a locally compact Hausdorff space
S, endowed with the strict topology β of R. C. Buck [4]:

[39, Thms. 2 and 4]. Given two locally compact Hausdorff spaces
S and T, a linear operator from (Cb(S), β) into (Cb(T), β) is [weakly]
compact, if and only if it is continuous as an operator from (Cb(S), β)
into (Cb(T), sup-worm), and transforms β-bounded ( = sup-worm
boundedl) subsets of Cb(S) into β-[weakly] relatively compact subsets
of Cb(T).

As this characterization is not being covered by the above
abstract results, it motivated the search for an appropriate extension.
Such is provided by the following result, which contains all the
results considered so far as special cases.

THEOREM 2.2. Let X be a quasinormable lcs and (Y, p) an lcs
with a further locally convex topology pu finer than p. Whenever
H is an equicontinuous set of linear operators from X into (Y, pt)
and, in addition, either.

(a) pλ is normable, or
(b) px is metrizable and X has (cnc) (see Notes 1.2, 2.(b)), then

the following statements hold:
1. // H(B) is p-precompact in Y for all B bounded in X, then

there exists a zero neighbourhood U in X such that H(U) is pre-
compact in (Y, p).

2. If H(B) is p-weakly relatively compact in Y for all B bounded
in X, and if (Y, p) is sequentially complete, then there exists a
zero neighbourhood U in X such that H(U) is p-weakly relatively
compact in Y.

3. If X is a gDP space with fundamental sequence (Bn)n£N of
bounded sets, and if (Vn)neN is a (decreasing) zero neighbourhood base
for p1 on Y (all Vn disks), then the zero neighbourhood U in X in prop-

(-D

ositions 1. and 2. above can be chosen to be U= Π {nBn + H(Vn) \ neN}.

Notes, (a) The additional information on the special zero
neighbourhood U in X as given in part 3 is particularly useful, for
it provides a recipe for constructing U in terms of the give items
(Bn)neN, (Vn)neN and H. In the measure theoretic context [14], this
recipe has been used to some advantage for the study of Banach
space valued strongly countably additive vector measures; see Note
(b) following Theorem 2.3.
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(b) In the context of general linear operators, the formulation
of Theorem 2.2 for sets of operators (as opposed to a single one) also
will prove particularly useful: in §4 it will be used to characterize
compact sets of compact operators on Banach spaces.

Some special cases of Theorem 2.2 for a single linear operator
are specified next:

THEOREM 2.3 [33]. If X is a quasinormable lcs with property
(cnc), and (Y, p) is a sequentially complete lcs with a metrizable lc
topology p1 finer than p, then every prcontinuous linear operator
from X into Y, which transforms bounded sets into precompact (resp.
weakly relatively compact) subsets of (Y, p), is a precompact (resp.
weakly compact) operator from X into (F, p).

In particular, every continuous linear operator from a Schwartz
(resp. semi-reflexive) gDF space into a Frechet space is compact
(resp. weakly compact).

Notes and first applications, (a) This special case of Theorem
2.2 contains the above results of Grothendieck, van Dulst and Sentilles.
Note that the very last statement of Theorem 2.3 can be viewed as
an extension of the (trivial) fact, that every continuous linear operator
on a reflexive Banach space is weakly compact, to the case of semi-
reflexive gDF spaces, with the specified restriction on the range
spaces.

(b) The applicability of Theorem 2.3 to the strict topologies
mentioned in §1 has been pointed out already in [33]. A further
concrete situation for which Theorems 2.2 and 2.3 provide new tools,
is Graves' [13] "linearization of vector measures": For a σ-algebra
Σ of subsets of a set S and a Banach space X, the space of bounded
vector measures from Σ into X is in one-to-one correspondence with
the continuous linear operators from the space S^(Σ) of J-simple
functions, endowed with the sup-norm topology, into X: μ H* integra-
tion with respect to μ. W. H. Graves in [13] specified an lc topology
τ on £^(Σ), coarser than the sup-norm topology, which singles out
the strongly countably additive vector measures as exactly those
whose associated operators are τ-continuous. (£^(Σ), τ) is gDF [13,
Thm. 2.2, p. 12], and its completion (S^(Σ), τ) is semi-reflexive [13,
Thm. 10.5, p. 53]. In this way, strongly countably additive vector
measures into a Frechet space X come out to be just continuous

linear operators from the semi-reflexive gDF space (S^(Σ), τ) into X.
Theorem 2.3 thus reveals that the associated operators not only
transform the sup-norm unit ball into a weakly relatively compact
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set (weak relative compactness of ranges of sea vector measures),
but also a certain τ-zero neighbourhood. In [14], proposition 3. of
Theorem 2.2 is used to specify such a zero neighbourhood in terms
of the measure μ [14, Thms. 10 and 11]. (Further applications of
gDF techniques in the context of vector measures are to be found
in [15].)

Proof of Theorem 2.2. The proof consists of two steps: First
it is shown:

(1) There exists a zero neighbourhood U in X and a sequence
(Cn)neN of ^-precompact (rest, p-weakly relatively compact) disks in
Y such that H(U) c Π {Cn + Vn \ n e N}, where (Fn)nejv is a (decreasing)

neighbourhood base in Y.

Proof.
( i ) There exist zero neighbourhoods U'n in X such that H{ Ui) c

Vn, neN dOi-equicontinuity of H).
(ii) There exist zero neighbourhoods Un in X with the property

that, for all a > 0, there exists Bl bounded in X such that Un c
aUι

n + Ba (quasinormability of X).
(iii) V — Π {ocnUn I n eN} is a zero neighbourhood in X for a

suitable sequence (an)neN of positive reals ((chc) for X). Thus,
for neN:H(U) aanH{Un) c(U'n) + H(anB

n

a-ή c H{anB
n

a~ή + 7n, which
proves (1).

Again, based on the more technical result given in Pro-
position 1.7 instead of Theorem 1.4 itself, proposition (1) could have
been derived by a technique analogous to the one used in the proof
of Proposition 2.1. The above independent proof, however, keeps
things more transparent.

Assertion (1) completes the proof in the precompact case. The
"weak case" is completed by means of the following result:

LEMMA 2.4. Let {Y, p) be a sequentially complete les, pL a
metrizάble lc topology on Y, finer than p, and {Vn)neN & przero
neighbourhood base, all Vn disks. If A is a subset of Y with the
property that, for every neN, there exists a p-weakly relatively
compact disk Cn in Y such that AaCn +Vn, then A is p-weakly
relatively compact.

For p = Pi = Banach space topology, this is to be found in [17,
V, 4.1, Lemme on p. 296]. Reasoning as in the proof of this result
in [17] the Alaoglu-Bourbaki Theorem reveals that it is enough to
show that the weak*-closure of A in the p-bidual of Y is contained
in Y, for A is ^-bounded. By assumption, we have (bars denoting



[WEAKLY] COMPACT OPERATORS AND DF SPACES 433

weak*-elosure in the ^-bidual of Y): A c Π {Cn + Vn\neN) c Π
{Cn+ Vn\n 6 N}. Hence, for zeA, there exist bn e Y and vn e Vn, n e iV,
such that z — bn + vn for all neN. For F a ô-zero neighbourhood,
there exists noeN such that VnaV for all w > n0. It follows that
z — bn — vne Vn(zV for all w > nQ. This shows that (bn)neN is a p-
Cauchy sequence in Y. (Y, p) being sequentially complete, (bn)neN is
^-convergent to an element y eY. It is now easy to conclude that
z — y eY, which completes the proof.

The proof of Proposition 3 of Theorem 2.2 now follows from
two observations:

( i ) U= Γ){nBn + iϊ(~1)(FTO)|^6iVΓ} is a zero neighbourhood in
X (X is gDF and H is ^-equicontinuous), and

(ii) H{U)d Π {H{nBn) +Vn\nsN}, which is proposition (1) of
the proof just given.

A particular application of the above results to general [weakly]
compact operators is the following extension of a well known Banach
space result:

PROPOSITION 2.5. Let X be a gDF space and Y a Frechet space.
The spaces K(X, Y) and W(X, Y) of compact and of weakly compact
linear operators from X into Y, respectively, are closed linear
subspaces of the space Lb(X, Y) of continuous linear operators from
X into Y, endowed with the topology of uniform convergence on the
bounded subsets of X. In particular, Kb(X, Y) and Wb(X, Y) are
Frechet spaces.

Proof. Whenever ueL(X, Y) is the δ-limit of a sequence (un)neN

in L(X, Y)9 then, given a bounded subset B of X, for every zero
neighbourhood V in Y, there exists neN such that u(B) c un(B) + V.
This shows that u transforms bounded sets into [weakly] relatively
compact ones, provided that all un's are [weakly] compact (for the
weak case, again use Lemma 2.4). Theorem 2.3 now yields the
desired conclusion.

Before turning to further applications of Theorems 2.2 and 2.3,
we conclude this section with a discussion of two more classes of
gDF spaces.

Whenever X is an lcs whose strong dual is Frechet, then X"
(resp. X"c) is semi-Montel gDF (resp. semi-reflexive gDF). Hence, by
Theorem 2.3, every continuous linear operator from X" (resp. X"c)
into a Frechet space is compact (resp. weakly compact). Exactly the
same is true for the particular linear subspace Xc (resp. Xwc). But
more can be said: Xc and Xwc are even gDF.

PROPOSITION 2.6. Let X be an lcs whose strong dual is Frechet,
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and denote by XC[XWC] the space X, endowed with the topology of
uniform convergence on the [weakly = o(X\ X")] compact disks of
X'b. Then the spaces Xc, Xwe and (X, τ(X, X')) are gDF, and every
continuous linear operator from Xe[Xwe] into a Frechet space is
[weakly] compact.

Proof. The gDF property of X with the Mackey topology is
immediate from the assumption. For a proof of the gDF property
for the other two spaces, it has to be shown that a linear operator
from any of them into a Banach space is continuous as soon as its
restrictions to the bounded sets are. Let (Bn)neN be a fundamental
sequence of bounded sets in (X, τ), all Bn disks, Bn + Bn c Bn+l9 Y a
Banach space, and u a linear operator from X into Y.

Case "we7'\ If the restrictions of u to the Bn's are wc-continuous,
then u is continuous from (X, τ(X, X')) into Y, for σ(X, X') a we a
τ(X, X'), and the latter topology is gDF. Plain duality implies that
u" is continuous from (X", τ(X", X')) into (Y", τ{Y", Y')). But the
range of u" is contained in Y: for x" e X", there exists neN and
a net (xλ)λeΛ(zBn which is τ(X", X')-convergent to x". By assumption
on u, the net (uxλ)λeΛ is norm convergent to some ysY. Clearly,
u"x" = yeY.

In this way, u" comes out to be a closed graph linear map from
the gDF space (X", τ(X", X')) into Y", which transforms bounded sets
(σ(X", X')-closures of the Bn's in X") into weakly relatively compact
sets. Proposition 3.4 of [31] implies that u" is weakly continuous,
and hence continuous, from (X", r(X", X')) into Y.

Case "c". If the restrictions of u to the bounded sets are c-
continuous, then they are wc-continuous as well, and thus the range
of u" is contained in Y. Again, plain duality implies that v," is
continuous from X" into Yc, and hence closed graph from the gDF
space X" into Y. Moreover, u" transforms bounded sets (c-closures
of the Bn's in X") into relatively compact subsets of Y: the restric-
tions of u to the Bn's are even c-uniformly continuous into Y, and
the Bn'$ are c-precompact. This time, Proposition 3.4 of [31] directly
reveals that u" is continuous from Xc" into Y.

[Weak] Compactness of continuous linear operators on XC[XWC]:
Whenever u is a continuous linear operator from XC[XWC] into a
Frechet space Y, then it has a unique continuous linear extension u
to the completion XC"[X"C]. But X" is semi-Montel gDF, and X'Je is
semi-reflexive gDF. The desired conclusions follow from Theorem 2.3.

3* Extensions of Schauder's and Gantmaher's theorems, and
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tensor product representations of K(X, Y) and its dual* The basic

idea of Theorem 2.3 of the foregoing section is to conclude [weak]
compactness of a linear operator u from the (formally) weaker
assumption of u being continuous and transforming bounded sets
into [weakly] relatively compact sets. In this section, a different
direction of thought will be pursued: roughly, it will be shown that
such operators are [weakly] compact not only for the original topology
of the domain space but also for an even coarser lc topology (Thm.
3.1 below). A particular consequence will be a new representation
for the space K(X, Y) of compact linear operators and of its strong
dual K\X, Y), for X and Y Banach, or, more generally, for X gDF
and Y Frechet (Thms. 3.3 and 3.4 below).

Starting point is the following extension to the gDF-i^-situation,
together with a refinement to coarser lc topologies, of Schauder's
and Gantmaher's Theorems:

THEOREM 3.1. Let (X, τ) and Y be lcs such that Y and the strong
dual Xr

b of (X, τ) are Frechet, and let u e L((X, τ), Y).
(a) The following are equivalent:
(1) u transforms bounded sets into relatively compact sets.
(2) uf is compact from Y'c into X[.
( 3) uT is compact from Y[ into X'h.
( 4 ) u is compact from Xc into Y.
In particular, if, in addition, (X, τ) is sequentially evaluable,

then all four propositions are equivalent to
(5 ) u is compact from (X, τ) into Y.
(b) The following are equivalent:
(1) u transforms bounded sets into weakly relatively compact

(2) ur is weakly compact from Y'wc into X'h.
( 3 ) u' is weakly compact from Y[ into X[.
(4) u is weakly compact from Xwc into Y.

In particular, if, in addition, (X, τ) is gDF, then all four proposi-
tions are equivalent to

(5) u is weakly compact from (X, τ) into Y.

Of particular interest is the special case where X and Y are
Banach spaces (in accordance with the usual Banach space notation,
the topological dual of a normed space Z will be denoted by Z*):

THEOREM 3.2. Let X be a normed space, Y a Banach space, and
let u e L(X, Y).

(a) The following are equivalent:
(1) u is compact.
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( 2 ) u* is compact.
( 3 ) u* is compact weak*-weakly (σ(Y*, Y) — σ(X*, X**)) con-

tinuous.
(30 u* is compact from Y* into X*, i.e., there exists K compact

in Y such that u*(K°) is relatively compact in X*.
(4) u is compact from Xc into Y, i.e., there exists K compact

in X* such that u(K°) is relatively compact in Y.

(b) The following are equivalent'.
(1) u is weakly compact.
( 2 ) u* is weakly compact.
(3) u* is weakly compact and weak*-weakly (σ(Y*, Y) — σ(X*9

X**)) continuous.
(3') u* is weakly compact from Y*,c into X*, i.e., there exists C

weakly compact in Y such that u*(C°) is weakly (σ(X*, X**)) rela-
tively compact in X*.

(4) u is weakly compact from Xwc into Y, i.e. there exists C
weakly (σ(X*, X**)) compact in X* such that u(C°) is weakly relatively
compact in Y.

Notes, (a) The following particular result is included in prop-
osition (a) of Theorem 3.1:

Every continuous linear operator from a sequentially evaluable
lcs with a fundamental sequence of bounded sets into a Frechet space,
which tranforms bounded sets into relatively compact sets, is compact.

It is not clear whether this variant of the theme of § 2 is covered
by Theorem 2.3, for it is not known whether the (cnc) property and
quasinormability hold for the spaces just specified. An example of
such a space which is not gDF has been exhibited by M. Valdivia
(oral communication by H. Jarchow). Note that, for a gDF space
(X, τ), all spaces (X, p), with p an lc topology between the c-topology
and the Mackey topology τ(X, X'), are sequentially evaluable. Also
note at this point that, for an lcs with a fundamental sequence of
precompact sets, the properties of being sequentially evaluable and
of being gDF are equivalent.

(b) Proposition (a) of Theorem 3.2 is implicit in Grothendieck's
early work in functional analysis: compactness of u translates by
polarity into continuity of u* from Y? into X*. Compactness of u*
for these topologies then follows from Grothendieck's result [16, Cor.
1 of Thm. 11, p. 114] (see the beginning of section 2 above) and the
fact that Y* is a Schwartz space, the latter being a consequence of
the Banach-Dieudonne Theorem. Equivalent formulations of prop-
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osition (a), in particular, the coincidence of compact operators with
the quasi-oo-nuclear operators of Persson/Pietsch [28, p. 56], have
been given in [43, Thm. 1] and in [29].

Proof of Theorem 3.1. Case (a): The assumption of (1) (resp.
of (3)) translates by plain duality techniques into uf (resp. u") being
continuous from Y'e into X[ (resp. from X" into Y"). In both cases,
Theorem 2.3 reveals the compactness of the respective mappings for
these topologies. This, in turn, implies (2) (resp. (4)). Finally,
whenever (X, τ) is sequentially evaluable, then τ is finer than the
c-topology, and (5) is implied by (4). Case (b): Proceeding as in
the proof of (a), the assumption of (1) (resp. (3)) translates into
u' (resp. u") being continuous from Y'wc into X[ (resp. from X"c

into Y"). Again, the weak compactness of the respective mappings
for these topologies, and thus (2) (resp. (4)), is a consequence of
Theorem 2.3. Finally, whenever (X, τ) is gDF, then, according to
just this theorem, (1) and (5) are equivalent.

Theorem 3.1 is a useful tool for the investigation both of
individual [weakly] compact operators (factorization, representation)
and of the whole space of [weakly] compact operators, see [35] for
a survey. Confining ourselves here just to the space K(X, Y) of
compact operators, one of the most fruitful consequences of Theorem
3.1 are the following new tensor product representations of K(X, Y)
and of its dual:

THEOREM 3.3 Let X be a gDF space and Y a Frechet space.
(a) The Frechet space Kb(X, Y) of compact linear operators from

X into Y with the topology of uniform convergence on the bounded
subsets of X is topologically isomorphic to the strong dual of the
protective tensor product space X" (&πY'c.

(b) The dual space K'b(X, Y) of the space Kb(X, Y) is algebraically
isomorphic to the protective tensor product space X['®πY'c. Top-
ologically, this latter space is exactly the c-dual of Kb(X, Y).

Of particular interest is the special case of Banach spaces:

THEOREM 3.4. Let X and Y be Banach spaces.
(a) K(X, Y) with the operator norm is isometrically isomorphic

to the dual space of the (locally convex) protective tensor product
space X** 0*17, endowed with the (Banach space) topology of uniform
convergence on the set ΓBX**®BY*.

(b) K*(Xf Y) is isometrically isomorphic to the space X** ® K F*
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with norm unit ball ΓBX** (g) BF*.

Proof of Theorem 3.3. (a): For a given ueK(X, Γ), Theorem
3.1 assures the existence of Kx compact in X[ and K2 compact in Y
such that u"(Kf) c K2. In this way, the associated bilinear form
Bu: X" xY'->K, defined by Bu(x", y') = (u"x"9 y'}, turns out to be
continuous from X" x Y'c into K. This shows that the correspondence
u\->Bu is a topological isomorphism from Kb(X, Y) onto Bbh(X", Y'e).
But Theorem 1.9 reveals that the latter space is just the strong dual
of XΪ&Y:.

(b): According to Corollary 1.12, the space X" ®πY'c is semi-
Montel, and thus also semi-reflexive. Together with Proposition (a),
this proves the first assertion of (b). The second one follows again
from Corollary 1.12, and the fact [31, Thm. 3.8] that any two semi-
Montel gDF topologies which are comparable already must be identical.

Finally, the additional information on the isometries in Theorem
3.4 is provided by Theorem 1.9.

Notes, (a) Theorem 3.4 is at the base of a unified approach to
a broad variety of structural properties of the space K(X, Y) and
its dual: compactness, weak compactness and weak convergence in
K(X, Γ), reίlexivity of K(X, Y), geometric properties of K*(X, Y)
etc. In joint papers with H. S. Collins [6, 7], this program is carried
out in detail. For a survey of the results, consult [8]. A chara-
cterization of compactness in K{X, Y) is the object of §4.

(b) The proof of part (a) of Theorem 3.3 above reveals that for
Banach spaces X and Y, and an operator u e K(X, Y), the associated
bilinear form Bu on Γ x f , defined by Bu(x", y') = (u"x"y y'), is
continuous from X" x Y'c into K. Thus, according to the compactness
of Bx,, x Bγ, in X" x Y'e, there exist x" e Bx,, and yf e Bγ, such that
\\u\\ = (u"x", yr}m We conclude that every compact linear operator
from a Banach space X into a Banach space Y attains its norm on
Bxn. This shows that in the corresponding result of Baker [1, Thm.
l(i)], the assumption of Bx,, being weak* = σ(X", X')-sequentially
compact is superfluous.

4* Compactness in K(X, Y). A particular example of the
range of applicability of the techniques developed so far is the
following characterization of (operator norm) compact sets of compact
operators:

THEOREM. Let X be a normed space and Y a Banach space.
Then, for a subset H of K(X, Y), the following are equivalent:

(1) H is relatively compact (in the operator norm).



[WEAKLY] COMPACT OPERATORS AND DF SPACES 439

(2) HBX and H*BY* are relatively compact in Y and X*,
respectively.

(3) HBX is relatively compact in Y, and H*(y*) is relatively
compact in X* for all y* eY*.

(4) H*BY* is relatively compact in X*, and H(x) is relatively
compact in Y for all x e X.

( 5 ) There exists K compact in X* such that H(K°) is relatively
compact in Y.

Notes, (a) The equivalence of (1) and (3) and (4) is a result of
Palmer's [27, Thms. 2.1 and 2.2]. In the presence of the approxima-
tion property for either X* or Y, the equivalence of (1) and (2) has
been proved by Holub [22, Cor. to Thm. 1].

Finally, the equivalence of (1), (2) and (5) can also be deduced
from L. Schwartz' ε-product techniques [38; especially I. 1, Prop. 2,
p. 22, and Prop. 10, p. 45], together with Theorem 1.4; see [35] for
details.

(b) Together with the Davis/Figiel/Johnson/Pelczynski factoriza-
tion theorem for weakly compact operators [9], the equivalence of
(1) and (5) can be used to factor an operator norm convergent sequence
of compact operators through one and the same reflexive Banach
space in such a way, that the convergence of the sequence even
takes place for the respective new (stronger) operator norm. Pro-
blems of this kind are being discussed in [36, 37].

Proof of the Theorem. First, recall the following isometric iso-
morphisms (Theorem 3.4):

(*) κ(x, Y) = B(xr, Yί) = (xr ®r*)j.
π

Since Xf* ®πYf is semi-Montel gDF, its c-topology coincides with
its original topology, i.e., the equicontinuous and the strongly re-
latively compact subsets of its dual coincide. Hence, the equicon-
tinuous and the relatively compact subsets of Bhh(Xf*, Yt) coincide.
Furthermore, according to Theorem 1.4, they are the same as the
equihypocontinuous subsets. Together with (*), this establishes the
equivalence of (1), (2) and (5).

The first condition of proposition (3) (resp. of (4)) means that if*
(resp. H) is equicontinuous from Y* into X* (resp. from Xc into Y).
According to a consequence of the Arzela-Ascoli Theorem (c.f. [17,
0.7, Cor. 2 of Thm. 6, p. 17]), H*czL(Y?,X*) (resp. i fcL(X c , Y))
is precompact with respect to the topology of uniform convergence
on the precompact subsets of Y* (resp. of Xc), if and only if i ϊ* | P
(resp. H\P) is equicontinuous for all P precompact in Yf (resp. in
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Xc), and H*(y*) (resp. H(x)) is precompact in X* (resp. in Y) for
all #* e Γ* (resp. for all £ e X). Since Γ* and Xc are gDF spaces
whose bounded sets are precompact (Examples 2 in §1, and Prop-
osition 2.6), the equivalence of propositions (1), (3) and (4) is now
apparent. This completes the proof.
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