PRIME IDEALS IN GAMMA RINGS

Shoji Kyuno

The notion of a Γ -ring was first introduced by Nobusawa. The class of Γ -rings contains not only all rings but also Hestenes ternary rings. Recently, the author proved the following two theorems: Theorem A. Let M be a Γ -ring with right and left unities and R be the right operator ring. Then, the lattice of two-sided ideals of M is isomorphic to the lattice of two-sided ideals of R. Theorem B. Let M be a Γ -ring such that $x \in M\Gamma x\Gamma M$ for every $x \in M$. If $\mathscr{S}(M)$ is the prime radical of the Γ -ring M, then $\mathscr{S}(M_{m,n}) = (\mathscr{S}(M))_{m,n}$. If a Γ -ring M has no unit elements, Theorem A is not, in general, the case. However, it is possible to establish for any Γ -ring M, with or without right and left unities, the result corresponding to Theorem A for a special type of ideals, namely, prime ideals. In this note, we prove Theorem 1. The set of all prime ideals of a Γ -ring M and the set of all prime ideals of the right (left) operator ring R(L) of M are bijective. Applying this result to the matrix $\Gamma_{n,m}$ -ring $M_{m,n}$, we obtain Theorem 2. The prime ideals of the $\Gamma_{n,m}$ -ring $M_{m,n}$ are the sets $P_{m,n}$ corresponding to the prime ideals P of the Γ -ring M, and Corollary 2. If $\mathcal{P}(M)$ is the prime radical of the Γ -ring M, then $\mathscr{S}(M_{m,n}) = (\mathscr{S}(M))_{m,n}$. This corollary omits the assumption of Theorem B.

- 1. Preliminaries. Let M and Γ be additive abelian groups. If for $a, b, c \in M$ and $\gamma, \delta \in \Gamma$ the following conditions are satisfied,
 - (1) $a\gamma b \in M$,
- (2) $(a+b)\gamma c = a\gamma c + b\gamma c$, $a(\gamma+\delta)b = a\gamma b + a\delta b$, $a\gamma(b+c) = a\gamma b + a\gamma c$,
 - $(3) \quad (a\gamma b)\delta c = a\gamma(b\delta c),$

then M is called a Γ -ring. If A and B are subsets of a Γ -ring M and $\theta \subseteq \Gamma$, we denote by $A \Theta B$, the subset of M consisting of all finite sums of the form $\sum_i a_i \gamma_i b_i$, where $a_i \in A$, $b_i \in B$ and $\gamma_i \in \Theta$. A right (left) ideal of a Γ -ring M is an additive subgroup I of M such that $I \Gamma M \subseteq I(M \Gamma I \subseteq I)$. If I is both a right and a left ideal, then we say that I is an ideal or a two-sided ideal of M. An ideal P of a Γ -ring M is prime if for any ideals A, $B \subseteq M$, $A \Gamma B \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$. The prime radical $\mathscr{P}(M)$ is defined to be the intersection of all prime ideals of M.

Let M be a Γ -ring and F be the free abelian group generated by $\Gamma \times M$. Then, $A = \{\sum_i n_i(\gamma_i, x_i) \in F \mid a \in M \Rightarrow \sum_i n_i a \gamma_i x_i = 0\}$ is a subgroup of F. Let R = F/A, the factor group, and denote the

coset $(\gamma, x) + A$ by $[\gamma, x]$. Clearly, every element of R can be expressed as a finite sum $\sum_i [\gamma_i, x_i]$. Also, for all $x, y \in M$ and $\alpha, \beta \in \Gamma$, $[x, \alpha] + [x, \beta] = [x, \alpha + \beta]$ and $[x, \alpha] + [y, \alpha] = [x + y, \alpha]$. We define a multiplication in R by

$$\sum_{i} \left[\alpha_{i}, x_{i}\right] \sum_{j} \left[\beta_{j}, y_{j}\right] = \sum_{i,j} \left[\alpha_{i}, x_{i}\beta_{j}y_{j}\right].$$

Then, R forms a ring. If we define a composition on $M \times R$ into M by $a \sum_i [\alpha_i, x_i] = \sum_i a \alpha_i x_i$ for $a \in M$, $\sum_i [\alpha_i, x_i] \in R$, then M is a right R-module, and we call R the right operator ring of the Γ -ring M.

For the subsets $N \subseteq M$, $\Phi \subseteq \Gamma$, we denote by $[\Phi, N]$ the set of all finite sums $\sum_i [\gamma_i, x_i]$ in R, where $\gamma_i \in \Phi$, $x_i \in N$. Thus, in particular, $R = [\Gamma, M]$.

For a subset $Q \subseteq R$ we define $Q^* = \{a \in M | [\Gamma, a] = [\Gamma, \{a\}] \subseteq Q\}$. It follows that if Q is an ideal of R, then Q^* is an ideal of M. For a subset $P \subseteq M$, we define $P^{*'} = \{r \in R | Mr \subseteq P\}$. It follows that if P is an ideal of M, then $P^{*'}$ is an ideal of R, and $[\Gamma, P]$ is also an ideal of R.

Similarly, we can define the left operator ring L of M. For $N \subseteq M$, $\Phi \subseteq \Gamma$, we denote by $[N, \Phi]$, the set of all finite sums $\sum_i [x_i, \alpha_i]$ in L with $x_i \in N$ and $\alpha_i \in \Phi$. In particular, $L = [M, \Gamma]$.

For a subset $S \subseteq L$ we define $S^+ = \{a \in M | [a, \Gamma] = [\{a\}, \Gamma] \subseteq S\}$. If S is an ideal of L, then S^+ is an ideal of M. For $P \subseteq M$, we define $P^{+\prime} = \{l \in L | lM \subseteq P\}$. If P is an ideal of M, then $P^{+\prime}$ is an ideal of L, and $[P, \Gamma]$ is also an ideal of L.

Let a Γ -ring M be given. If $M_{m,n}$ (resp. $\Gamma_{n,m}$) is the additive abelian group of all m by n (resp. n by m) matrices over M (resp. Γ), $M_{m,n}$ forms a $\Gamma_{n,m}$ -ring. Denote the right operator ring of $M_{m,n}$ by $[\Gamma_{n,m}, M_{m,n}]$. Suppose R_n be the ring of all n by n matrices over the right operator ring R of M. Then, by the straightforward calculation on matrices one can verify that the right operator ring $\Gamma_{n,m}$, $\Gamma_{m,m}$ and the matrix ring $\Gamma_{n,m}$ are isomorphic via the mapping

$$\phi \colon \sum_i \left[(\gamma_{jk}^{(i)}), \; (x_{uv}^{(i)})
ight] \longmapsto \sum_i \left(\; \sum_{t=1}^m \left[\gamma_{jt}^{(i)}, \; x_{tv}^{(i)}
ight]
ight) \,.$$

Similarly, the left operator ring $[M_{m,n}, \Gamma_{n,m}]$ of $M_{m,n}$ is isomorphic to the matrix ring L_m over the left operator ring L of M. Therefore, it may be considered that the right operator ring of the $\Gamma_{n,m}$ -ring $M_{m,n}$ is R_n and the left one L_m .

2. Prime ideals in gamma rings.

LEMMA 1. Let P, Q and S be a prime ideal of a Γ -ring M, a

prime ideal of the right operator ring R and a prime ideal of the left operator ring L respectively. Then, $P^{*'}$ is a prime ideal of R, $P^{+'}$ is a prime ideal of L, Q^* and S^+ are prime ideals of M.

Proof. Let $\{U, V \text{ be ideals of } R \text{ such that } UV \subseteq P^{*'}, \text{ where } P^{*'} = \{r \in R \mid Mr \subseteq P\}.$ Since U(V) is an ideal, $U\Gamma MV = URV \subseteq UV$, and then $U\Gamma MV \subseteq P^{*'}$. Thus, $MU\Gamma MV \subseteq P$, but since P is prime, it follows that $MU \subseteq P$ or $MV \subseteq P$. Hence, $U \subseteq P^{*'}$ or $V \subseteq P^{*'}$, which proves $P^{*'}$ is prime.

Similarly, it can be verified that $P^{+\prime}$ is a prime ideal of L.

Let A, B be ideals of M such that $A\Gamma B \subseteq Q^*$, where $Q^* = \{x \in M | [\Gamma, x] \subseteq Q\}$. Then, $[\Gamma, A][\Gamma, B] = [\Gamma, A\Gamma B] \subseteq Q$, where $[\Gamma, A]$, $[\Gamma, B]$ are ideals of R. Since Q is prime, $[\Gamma, A] \subseteq Q$ or $[\Gamma, B] \subseteq Q$, which means $A \subseteq Q^*$ or $B \subseteq Q^*$. This proves Q^* is prime.

Similarly, it can be verified that S^+ is prime.

We now prove the analogous result to Theorem 2 in [2].

THEOREM 1. The sets of all prime ideals of a Γ -ring M and its right (left) operator ring R(L) are bijective via the mapping $P \mapsto P^{*'}(P \mapsto P^{+'})$, where P denotes a prime ideal of M.

Proof. Let P be a prime ideal of M. By the definitions of $^{*\prime}$ and * we have

$$(P^{*\prime})^* = \{x \in M | [\Gamma, x] \subseteq P^{*\prime}\} = \{x \in M | M\Gamma x \subseteq P\}.$$

Since P is an ideal of M $M\Gamma P \subseteq P$, and then $P \subseteq (P^{*'})^*$. On the other hand, since $M\Gamma(P^{*'})^* \subseteq P$ and P is prime, $M \subseteq P$ or $(P^{*'})^* \subseteq P$. Then, in either case, $(P^{*'})^* \subseteq P$. Therefore, $(P^{*'})^* = P$.

Let Q be a prime ideal of R. Then we have

$$(Q^*)^{*\prime} = \{r \in R \mid Mr \subseteq Q^*\} = \{r \in R \mid [\Gamma, Mr] \subseteq Q\}.$$

Since Q is an ideal of R $[\Gamma, M]Q \subseteq Q$, and then $Q \subseteq (Q^*)^{*'}$. But, since $[\Gamma, M](Q^*)^{*'} = R(Q^*)^{*'} \subseteq Q$ and Q is prime, $(Q^*)^{*'} \subseteq Q$. Hence, $(Q^*)^{*'} = Q$. This proves that the sets of all prime ideals of M and R are bijective.

Similarly, it can be verified that $(P^{+\prime})^+ = P$ and $(S^+)^{+\prime} = S$, where S is a prime ideal of L. Thus, the sets of all prime ideals of M and L are bijective.

COROLLARY 1. Let R and L be the right operator ring and the left one of a Γ -ring M respectively. Then, the sets of all prime ideals of R and L are bijective via the mapping $Q \mapsto (Q^*)^{+\prime}$, where Q is a prime ideal of R.

Proof. Let Q and S be prime ideals of R and L respectively. Then, $(Q^*)^{+'}$ is a prime ideal of L. Set $(Q^*)^{+'} = T$. By Theorem 1, we have $(T^+)^{*'} = Q$, that is, $(((Q^*)^{+'})^+)^{*'} = Q$. Similarly, we have $(((S^+)^{*'})^*)^{+'} = S$.

3. Prime ideals in matrix gamma rings. We note that Lemma 1 and Theorem 1 hold also for the matrix $\Gamma_{n,m}$ -ring $M_{m,n}$.

For any ring R with or without an unit element, Sand proved the following fact.

LEMMA 2 ([4] Theorem 1). The prime ideals of R_n are the sets A_n corresponding to prime ideals A of R.

We prepare the following lemma.

LEMMA 3. Let Q be a subset of the right operator ring R of a I-ring M. Then, $(Q_n)^* = (Q^*)_{m,n}$.

 $Proof. \quad \text{Recall} \quad (Q_n)^* = \{(x_{ij}) \in M_{m,n} | [\varGamma_{n,m}, (x_{ij})] \subseteq Q_n\} \quad \text{and} \quad Q^* = \{x \in M | [\varGamma, x] \subseteq Q\}.$

For any $\sum_{k=1}^{q} [(\gamma_{ij}^{(k)}), (x_{uv}^{(k)})] \in [\Gamma_{n,m}, (Q^*)_{m,n}]$, where $(\gamma_{ij}^{(k)}) \in \Gamma_{n,m}$ and $(x_{uv}^{(k)}) \in (Q^*)_{m,n}$, $1 \le k \le q$, we have

$$\textstyle\sum_{k=1}^{q} \left[(\gamma_{ij}^{(k)}), \ (x_{u^{c}}^{(k)}) \right] = \sum_{k=1}^{q} \left(\sum_{t=1}^{m} \left[\gamma_{it}^{(k)}, \ x_{t^{c}}^{(k)} \right] \right) \in ([\varGamma, \ Q^{*}])_{n} \subseteq Q_{n} \ .$$

This means that $[\Gamma_{n,m},(Q^*)_{m,n}] \subseteq Q_n$, which proves $(Q^*)_{m,n} \subseteq (Q_n)^*$. Conversely, for any $(x_{uv}) \in (Q_n)^*$, we have $[\Gamma_{n,m},(x_{uv})] \subseteq Q_n$. For any $\gamma \in \Gamma$, $[(\gamma)^{1,u},(x_{uv})]$ is a matrix of $[\Gamma_{n,m},(x_{uv})]$ which has the element $[\gamma,x_{uv}]$ as its (1,v)th component, where $(\gamma)^{1,u}$ denotes the matrix which has γ in the first row and uth column and zero elsewhere. Hence, $[\gamma,x_{uv}] \in Q$. This is true for each element $\gamma \in \Gamma$; hence $[\Gamma,x_{uv}] \subseteq Q$, and then $x_{uv} \in Q^*$. Hence, $(x_{uv}) \in (Q^*)_{m,n}$, which proves $(Q_n)^* \subseteq (Q^*)_{m,n}$. Therefore, $(Q_n)^* = (Q^*)_{m,n}$.

THEOREM 2. The prime ideals of the $\Gamma_{n,m}$ -ring $M_{m,n}$ are the sets $P_{m,n}$ corresponding to the prime ideals P of the Γ -ring M.

Proof. Let A be a prime ideal of $M_{m,n}$. Apply Theorem 1 to the $\Gamma_{n,m}$ -ring $M_{m,n}$. Then,

$$A=(A^{*\prime})^*$$
 $(A^{*\prime}$ is a prime ideal of R_n)
= $(Q_n)^*$ (by Lemma 2, $A^{*\prime}=Q_n$, where Q is a prime ideal of R)

 $=(Q^*)_{m,n}$ (by Lemma 3) = $P_{m,n}$ ($Q^*=P$, and by Lemma 1 P is a prime ideal of M).

Conversely, let P be a prime ideal of M. By Theorem 1, $P=(P^{*'})^*$, where $P^{*'}$ is a prime ideal of R. Set $P^{*'}=Q$. Lemma 2 implies Q_n is a prime ideal of R_n . Then Lemma 1 yields $(Q_n)^*$ is a prime ideal of $M_{m,n}$. By Lemma 3, $(Q_n)^*=(Q^*)_{m,n}=((P^{*'})^*)_{m,n}=P_{m,n}$. Hence, $P_{m,n}$ is a prime ideal of $M_{m,n}$. This proves the theorem.

COROLLARY 2. If $\mathscr{S}(M)$ is the prime radical of the Γ -ring M, then $\mathscr{S}(M_{m,n}) = (\mathscr{S}(M))_{m,n}$.

Proof. If $\{P_i | i \in \mathcal{U}\}$ is the set of all prime ideals in M, Theorem 2 implies $\mathscr{S}(M_{m,n}) = \bigcap_{i \in \mathcal{U}} (P_i)_{m,n} = (\bigcap_{i \in \mathcal{U}} P_i)_{m,n} = (\mathscr{S}(M))_{m,n}$.

Corollary 2 omits the assumption of Theorem 8 in [1].

REFERENCES

- 1. S. Kyuno, On prime gamma rings, Pacific J. Math., 75 (1978), 185-190.
- 2. ——, A gamma rings with the right and left unities, Math. Japonica, 24 (1979), 191-193.
- 3. N. Nobusawa, On a generalization of the ring theory, Osaka J. Math., 1 (1964), 81-89.
- 4. A. Sand, Prime ideals in matrix rings, Proc. Glasgow Math. Assoc., 2 (1956), 193-195.

Received June 20, 1980 and in revised form September 15, 1980.

Tohoku Gakuin University Tagajo, Miyagi 985 Japan