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OPERATOR-VALUED PICK’S CONDITIONS
AND HOLOMORPHICITY

JACOB BURBEA

The classical Pick’s conditions on disks or half-planes
are extended in several directions. Specifically, these condi-
tions are shown to be valid in any domain (or a complex
manifold) in C*, for operator-valued functions in the domain
from a Hilbert space into another and for any holomorphic
reproducing kernel in the domain. An interesting related
result of Hindmarsh is also extended.

1. Introduction. The main purpose of this paper is to extend,
in a variety of ways, a body of theorems, classically known as the
Pick’s conditions and holomorphicity, detailed below. We shall state
these conditions in terms of the right half-plane .2 and note that,
in view of their conformal invariance, they may be stated in terms
of any simply-connected domain which is properly contained in the
plane. Let K_(z,0) = (z + {)™* be the Szego reproducing kernel of
% and let S be a complex-valued function on .&#. Define

FH(2,0) ==+ DSk + SO; 2,{eZ .

Clearly, F(z,2) =0, ze.<2, if and only if S(&#)c .2, <2 being
the closure of <. Moreover,

THEOREM A. If S(<#) C.Z and S is holomorphic in B, then
(-, +) 1s positive definite on B X #.

THEOREM B. If (-, -) is positive definite of order 2 on 7 X
Z, then S(#)c .2 and S is continuous on #.

THEOREM C. If <&(-, -) is positive definite in B X .#, then S
18 holomorphic in # and S(#)cC A.

THEOREM D. If <&(-, +) is positive definite of order 3 on F x
2, then S is holomorphic in # and S(F)C A.

Theorem A is known as Pick’s theorem [9] (see also [7, p. 384]
and [8]). Theorem B is rather trivial in this setting and may be
also formulated in terms of the distance-decreasing property of S
with respect to the Poincaré metric of .Z#. Theorem C [9] is known
as the converse of Pick’s theorem. Theorem D is, of course,
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stronger than Theorem C; this remarkable fact was first observed
by Hindmarsh [8] (see also [7, pp. 36-38]).

Sometimes it is more convenient to deal with the disk version
of these theorems. This may be expressed with the aid of the
Szego reproducing kernel Ky (z,l) = (1 — Cz)™* of the unit disk 4.
The disk version of “(z, £) is then

(2,0 = (1 — o)1 — TQOTR)]; 2 Ced,

where T is a complex-valued function on 4 (see [1, pp. 3-4]).

In this paper we shall extend the above theorems in the follow-
ing directions: Instead of .&Z or 4 we take any domain (or a
complex manifold) D in C". Instead of K.(z, {) or K,(z, ) we take
any positive-definite (reproducing) kernel K(z, ) which is holomorphic
in (z, &) for (z,{)eD x D. Finally, instead of S or T we take an
accretive or contractive, respectfully, operator-valued function in D
from a Hilbert space into another. The proofs we use seem to be
even simpler than the classical ones. The contractive version of
Theorem A was proved by us in [5, 6]. A more special case of
this version, where D = 4, K(z,{) = Kz, {) and thus .27z, () =
[I-TQ)*T(2)]/1—Cz), with T(-) being a contractive operator-valued
holomorphic function in 4 from a Hilbert space U into a Hilbert
space W, T(-)* is its adjoint and I is the identity operator of U,
was first proved by Rovnyak [10] (see also [13, p. 231]).

As expected the transition from a contractive version to an
accretive one, and visa versa, is not particularly difficult for, we
have the Cayley transforms at our disposal. Evidently, this also
shows that we may adopt other versions as the dissipative version
and so on. We shall not pursue these points here.

Section 2 is devoted to preliminaries and notation, which will
be used in this paper. In §3 we state the contractive version of
Theorem A, proved in [5], and, establish its accretive version
(Theorems 1 and 1'). We also prove the contractive and accretive
versions of Theorem B (Theorems 2 and 2’). The generalizations of
Theorem C are proved in §4 (Theorems 3 and 3'). In §5 we esta-
blish some auxilary facts on smooth kernels. This is done by,
essentially, following the analysis of Hindemarsh [8], but the
present set up is slightly more general. In §6 we give the gener-
alizations of Theorem D (Theorems 4, 4’, 5 and 5').

2. Preliminaries and notation. Throughout this paper we
shall adhere to the following notation: D is a domain (or a complex
manifold) in C™ and C™(D), 0 < m < oo, is the class of continuously
m-differentiable functions (or forms) in D. The class of holomorphic
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functions (or forms) in D is denoted by H(D). We write D ={z ¢
C™: ze D} and thus H(D) is the family of anti-holomorphic functions
(or forms) in D. By H(D x D) we mean the family of functions
(or forms) F(z, {) so that F(-,0)e H(D) and F(z, -)e H(D) for any
z,CeD.

The sets U and W stand for any two Hilbert spaces over C
with inner products ( , ), and ( , )y, respectively. The Banach space
of bounded linear operators from U into W is denoted by <& (U: W).
By a contraction from U to W we mean a Te < (U: W) with
| Tullw < ||u|ly for every we U. The family of all such contractions
is denoted by & (U: W). Evidently, if Te & (U: W) then its adjoint
T* is in &(W:U) and, in fact, ||T] = ||T*|| < 1. We denote by
& (U:U) the family of all Te&(U:U) with T not having the
eigenvalue 1. One shows that Te&(U:U) if and only if T*e¢
&, (U:U). An operator Se<Z(U:U) is said to be accretive if
Re (Su, u)y; = 0 for every we U. The family of all accretive opera-
tors in &Z(U: U) is denoted by .7 (U:U). Clearly, Se &7 (U:U) if
and only if S*e. o7 (U: U).

A function A(z), z€ D, with values in the space Z(U: W) will
be called an operator-valued function in D, or in short A(-)e
FB(U:W)HD]. In a similar fashion one introduces the classes
& (U. W)[D], €(U:U)[D] and 7 (U:U)[D]. The concepts of con-
tinuity, differentiability and holomorphicity extend to operator-
valued functions. Thus, Z(U: W)[CHD)]l, < (U.W)[C™D)] and
FB(U: W)H[C™D)] denote the classes of weakly, strongly and normly,
respectively, continuously m-differentiable operator-valued functions
in &Z(U:W)[D]. The corresponding classes where Z(U:W) is
replaced by & (U: W), «,(U:U), and ' (U:U) are defined in an
analogous way. In the case of operator-valued holomorphic (or
anti-holomorphic) functions the weakly, strongly and normly notions
of holomorphicity coincide. Thus, A(.)e & (U: WH[H(D)], if for
every (u, w)e U x W, (A(-)u, w)y belongs to H(D). When U = W,
this definition of holomorphicity reduces in only requiring that
(A(-)u, u), belongs to H(D) for every we U. Evidently, A(-)e
Z(U: W)[H(D)] if and only if A(-)*e < (W:U)[H(D)]. The families
& (U, WH[H(D)], &7 (U: U)[H(D)] and so on are defined in a similar
way.

By an operator-valued kernel, or in short a kernel, 27 =2¢7(-, -)
we mean any function 97°(-, -)e Z(U:U)D x D). The kernel is
said to be hermitian if S¢°(z, O)* = 9%, 2) for all 2z, {eD. The
notions of continuity, differentiability and holomorphicity extend to
operator valued kernels. For example, if 2" is hermitian and for
each {e D, (-, {) e & (U: U)[H(D)] then 2°(-, -) e Z(U: U)[H(D X
D)]. We may emphasize the last fact in writing .92 (#, {) instead
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of 97(z,), 2 eD. An hermitian .97 ¢ Z(U: U)D x D) is said to
be positive-definite of order N, in short p.d. (N), if

Z (‘%/(zmy zn)um; un)U g 0

for every finite system {z,}%_, of points of D and every correspond-
ing vectors {u,}n_, of U, where M =1, ---, N. The kernel is said
to be positive-definite (p.d.), in short .9 » 0, if it is p.d. (N) for
al N=1,2, ---.

Let K(z, {) be a positive-definite (scalar) kernel so that K(-, )¢
H(D x D). As is well-known [2], the kernel K(z, ) determines a
uniquely defined Hilbert space S#°(D) of elements in H(D) with an
inner product (,) and for which k.(-) = K(-, Q) is its reproducing
kernel. Thus, for any 2z, {eD

FQ =, k), fesz (D)

and
K(Z, z) = k;(Z) = (kC) kz) = K(Cy E}s K<zy E) = (kzy kz) g O .

The reproducing kernel K(z, {) is said to be of class ¢, if K(z,2)>
0 for every zeD. Clearly, K(z,Q) is of class _#" if and only if
for each ze D, there exists an fe 22 (D) with f(z) = 0.

3. The Pick kernels. Let K(z, ) be the reproducing kernel
of 22 (D), T(-)e ZF(U:W)[D] and S(-)e & (U:U)[D]. For z,{eD,
we define the operator-valued Pick kernels

3.1) (2, €) = K(z, Ol — TQ)*T(2)]
and
(3.2) Filz, 0) = Kz, QIS(z) + S©)*1,

where I = I, stands for the identity operator of U. These kernels
belong to &Z(U:U)D x D) and they are hermitian.

In many instances the space £7°(D) may be realized as the
space of all fe H(D) so that

171 =, 5@ Pdpe) < =, 1511 = VD -

Here g is positive measure acting on D, where D, is either D or
any part of the boundary 0D which determines the holomorphic
functions in D as, for example, the Silov boundary of D. In the
case that D, is not D, f in the last integral stands for the non-
tangential boundary values of the holomorphic function f(z),ze D.
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In this way we may regard o7 (D) = H,(D: st) as a closed subspace
of L,(D,: ) in a natural manner. The corresponding reproducing
kernel K(z, {) of such a space 57 (D) = H,(D:p) will be called a
-measure reproducing kermel. The class of all such p-measure
reproducing kernels and their limits, via a cannonical exhaustion of
the domain D, is denoted by _#. This class includes the familiar
wetghted Bergman and Szego kernels, the Rudin kernels and the so
called “gemeralized Szego kermels” (see [3, 4, 11, 12] for details).

The following generalization of Pick’s theorem is proved in [5]
(see also [6, 10]):

THEOREM 1. Let K(z,0) be a reproducing kernel of class _#
i the domain D and assume that T(-)e & (U:. W)H(D)]. Then
(-, ) e (U UNH(D x D)] and .97 > 0.

A similar statement holds for the kernel <% when S(-)e
7 (U: U)[H(D)]. This will be done by relating the accretive and
contractive operators via the Cayley transforms. More specifically,
let 4 ={zeC:|z| <1} be the unit disk and .&Z = {ze C; Rez > 0} be
the right half-plane. We write

(3.3) g@) =1+ 210 —2)7" hz)=(—DE+ 1)

where, of course, ¢ is a univalent holomorphic function of 4 onto
% with h as its inverse. With these pair of functions one is able
to establish the following relationship between the families &,(U: U)
and .7 (U: U) (see, for example, [13, p. 168]):

PROPOSITION 1. The Cayley transform relations
S=g)=UT+T)I—-T)4% T=nwS)= —I)S + I

establish a bijection between the operators T in & (U:U) and the
operators S in .7 (U:U). Moreover, this bijection preserves the
adjoint operation.

As a result of this we obtain:

COROLLARY 1. The Cayley relations g(-) = g[T()]; T(-) = h[S(-)],
where S(-) e .7 (U: U)[D] and T(-) e &, (U: U)|D], establish a bijection
between the corresponding kermels &, and 277 by the formulae:

(2, 0) = 2[I — T(O)*]7 %=, O — T()]™
and

(2, ) = 28" + I7 Az, OIS(2) + IT™
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for any z, e D.

This corollary, coupled with Theorem 1, leads to the acecretive
version of Pick’s theorem:

THEOREM 1'. Let K(z,0) be a reproducing kernel of class .z
in the domain D and assume that S(-)e.co7(U:U)H(D)]. Then
F(+, Ve B (U D[H(D x D)] and <> 0.

In order to deal with the converse of these two theorems, we
let 4 be any unit vector of U ond consider the scalar kernels

kr(z, Cou) = (Z57(z, Ou, w)-
and
/S(zy C: u) = (%(Z, C)U/, u)C ’

where K(z,0), 2, {eD, is any holomorphic reproducing kernel and
7, % are as in (8.1)-(3.2). Recall that K(z, () is of class s~ if
K(z,Z) > 0 for every ze D. The following proposition is trivial:

PrOPOSITION 2. Let K(z,C) be of class _y°. If for any unit
vector ue U, ky(z, z:u) =0 for every ze D, then T(-)e % (U: W)[D].
Similarly, if for any unit vector we U, #(z, z:u) = 0 for every z¢
D, then S(-)e.o7(U:U)[D].

We also have:
THEOREM 2. Let K(z, Q) be of class 1~ such that for any wunit
vector we U, k,(-, -:u) 18 p.d. (2) on D X D. Then
(T() — TO i — | T@ul} || TQu i + [(T(R)u, TQu)y*

(3.4) < 11 — |K(z, D) 1 — (T T 2
= U g e g |1 (T@w TOw,
Sfor any z2,{eD and any wunit vector we U. Moreover, T(-)e
(U W)H[CYD)Y], i.e., T(-) is a contraction from U to W which is
also strongly continuous on D.

Proof. Proposition 2 shows that T(.)e&(U: W)[D]. Since
ky(-, -:w) is p.d. (2) we have

(272, Ou, w) " = (Z2(z, Du, w) (2, Ou, w),

for z,{e D, and, a unit vector uw € U. Hence
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| Kz, D — 2
X HEC D 11— (T(zyu, T(Qu)w|

== IT@wli][L — [ TEw [l

and the inequality of the theorem follows. To prove the continuity
assertion, we argue as follows: Let (e U be fixed. We write
w() = T(Ou and w(z) = T(z)u, z€ D, and observe that ||w®)|ly,
Jw(@)|w < 1. We have

Nw(z) — wQ [} — lw) [ w5 + | (w), w)w|* = 4a(z, {)
where

alz ) =1 — | K(, E)lz_
’ Kz, 2)K(, ©)

and thus lim, ., a(z, {)=0. We must show that lim, .. [|w(z)—w(Q)|ly=
0. We may assume that w({) # 0 for otherwise the result is im-
mediate. In this case the left-hand side of (8.4) is precisely

L @) — w©@, w@l + L= O U 0 13 w0 1

lw(@) I3 lw(@) |5
— [(w(z), wO)w’} -
Therefore, in view of (3.83) and the Cauchy-Schwarz inequality,
(3.5) [(w(z) — w(), wQ)w|* = 4dal(z, §)
and

3.6) [1 — [[w@IFHw@ [} [ wO I — [(w@), w)w} = 4z, ) .

We distinguish two cases: (i) ||w(@) |y =1 and (i) 0 < ||w(@) |}y < 1.
In case (i), by (3.5), we have lim,.. (w(z), w{))y = 1. But,

[(w(@), wQw* = [lw@) iy =1

and, therefore, lim,.. ||w(z)|} = 1. It follows that lim, . |w(z) —
w() |3 = 0. In the case of (ii), we have, by (3.5)-(3.6), that

hg} [(w(z) — w(@), w@)w|*=0
and
lzij? {llw@ I | w@ i — [(w®), wQ)w|} =0.

Since

2 1 _ 2
| w(z) — w@) iy = Tl {l(w(z) — w(&), w@)wl

+ [lw@) % |w@) | — [(w@), w@))wl]},
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we deduce that lim,_; [Jw(z) — w() ||} = 0. This concludes the proof.
The accretive version of this theorem is:

THEOREM 2. Let K(z, Q) be of class 4~ such that for any unit
vector we U, (-, -:u) s p.d. (2) on D x D. Then, for any 2, {eD
and any unit vector ue U,

[s(2) +s@)]-[s(0) +sO1 ~ _ |K O . s(2) = (S, w). .
Is(z) + Q) ~ K, 2K 0O’ ’

Moreover, S(-)e . o7 (U: U)[C(D)], i.e., S(-) is accretive in U and
18 weakly continuous on D.

Proof. The distortion inequality is straightforward and Pro-
position 2 shows that S(-) is accretive. The weak continuity follows
from the above inequality. In fact, since s(z) ¢ % for every zeD,
writing ¢(z) = h[s(z)], where h is given in (3.3), we obtain that
t(z) e 4 and

1 — [t — (Ol K@ O

11— t©tR)[? ~ Kz, DK Q)

Therefore,

— KO _ _1B&OF L1y i@
)~ UQ)F = {1 — b 11— 10t
and thus lim,.. {(z)=t(). Consequently, lim,.. (S(z)u, w),=(S)u, u),
and the proof is complete.
The following example (see also [7, p. 36]) shows that in
Theorems 2 and 2’, one cannot expect that 7'(-) or S(-) to be holo-
morphic:

ExAMPLE. Let D =4 be the unit disk, U= W =C and let
K(z,0) = (1 — 20)™* be the Szego kernel of 4. We choose T(z)=|z]
and observe that

KD _ (= [a[A =[P _ A —[zH —[CP)
K(z, DK, 0) 1-zZF  © @[l
(TGP — (TOFT
11— TOTF

This shows that 277 is p.d. (2) on 4 x 4 but T(-) is not holomor-
phic in 4.

4, The converse of Pick’s theorem. We now prove the
following generalized converse of Pick’s theorem. The present proof
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of this theorem (which may be regarded as a converse of Theorem
1) is even simpler than the classical proof for the less general case
embodied in Theorem C of the introduction.

THEOREM 3. Let K(z, C) be of class 1~ such that for any wunit
vector we U, ky(-, -:u) s p.d. on D x D. Then, for any {eD,
TO*T(HY ez (U: U)[H(D)]. In particular, if for some (€D,
T)* is imgective, then T(-)e & (U: W)[H(D)].

Proof. Let we U be a unit vector and consider the scalar kernel
/)'T<zy (:: %) = (T(C>/’T<z)u/y u)l‘: a’y CGD .

This kernel is clearly positive definite. It therefore follows that
the kernel K(z, {)r,(z, {: u) is positive definite on D x D as a product
of two positive kernels (cf. [2, p. 36]) or [7, p. 93]). Now,

kp(z, C:w) = K(z,0) — K(z, Ory(z, L u)

is by assumption positive definite on D x D and it is a difference
of two positive definite (or reproducing) kernels. It follows, by a
theorem of Aronszajn [2, p. 354], that the reproducing kernel space
of K(z, O)r,(2, {:u) is contained in that of K(z, ). But the repro-
ducing kernel space of K(z,{) is the space S#°(D) which contains
H(D). In particular, for any fixed {eD, K(-, Or,(-, {:w)e H(D).
Consequently, o,(-, &:w) = (T(QO*T(-)u, ), is meromorphic in D.
However, by Theorem 2, T(.)e & (U: W)[CX(D)]. Therefore, (T({)*
T(-)u, w), is in fact holomorphic in D. Since we€ U is an arbitrary
unit vector we deduce that T(Q)«T(-)e & (U: U)[H(D)] for any e D.
Assume that for some (, €D, T((,)* is injective. We have that
(T(Hw, T)u), is holomorphic in D for any we U. The injectivity
of T(()* implies that the range of T({,) is dense in W. Consequ-
ently, T(-)e &(U: W)[H(D)] and the proof is complete.

REMARK. When the Hilbert space W is the scalar space C, the
condition of the theorem that T({,)* is injective for some {,eD
means that T(z)* is not identically zero for zeD. Here, for any
zeD, |Txu| < |lull- for every ue U and || T(z)*|l,- = 1.

The accretive version of this theorem is:

THEOREM 8'. Let K(z, Q) be of class 4~ such that for any wnit
vector we U, #(-, -:u) ts p.d. on DxD. Then S(-)e.o7(U: U)H(D)].

Proof. Let uwe U be a fixed unit vecter and write

Az, Cw) = Kz, Dls(z) + s@); s(z) = (S@)u, w),
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for z, (e D. As before, we let t(z) = h[s(z)] with t(z)e 4 and s(z)e
7. Then

Kz, D1 — HOH2)] = %{1 — )] [1 — Oz, &) -

It follows that K(z, O)[1 — t(0)t(z)] is p.d. on D x D. As in Theorem
3, this implies that, for any fixed {e D, t(Q)t(-) e H(D). Let U, be
the set of all we U for which (S(z)u, u) =1 for all ze€ D, and let
U,=U-— U, Evidently, (S(-)u, w),e€ H(D) for all we U, Con-
sequently, S(-) e .o (U: U)[H(D)]. This concludes the proof.

5. Smooth kernels. This section is devoted to some auxilary
facts on smooth kernels which are of some interest in their own
right and will be needed in this work. The present analysis is
essentially similar to that of Hindmarsh [8] but it is slightly more
general (see also [7, pp. 35-38]).

Let K(z, &) be a complex-valued C*-kernel defined for z,Z€D
where D is an open set in R". For weR", u= W', ---,u"), we
write

D, = ki‘,;lu”azz; , x=(x' -, x")eR".
For v e R* we write
D, =>v0., g=(, -, &)eR".
For a fixed point (x,&8)eD x D, uy, -+, u,eR*, vy, -+, v, € R" and

for a small ¢ >0 we form the (m + 1) x (m + 1) matrix & = (k)
defined by

koo = K(x, E)y kij = K(Cl'/' + ey, s: T SUJ')’ iy .7 = 17 e, Mo

We have
ks = o+ 6Dy, + DK + (D, + DK + o(e),
oj = ki + €D, K + ;pwz)viz{ +oe)
ko = Ji + eD, K + %QDuiDuiK + o),

where 4, j =1 and K = K(x, 5). We now form the matrix k() =
(k.;) given by
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koo = Mgy = K

By = %(ko,- — k) = D, K + o(1)

Eio = %(kw — ky) = DuiK + o(1) ,

i, = é(kﬁ + Foog — kg — ko) = D, D, K + o(1) .

Let

be an (m + 1) X (m + 1) matrix where I, is the identity matrix of
order m. Then

K DK --- D,K

DK D,D,K---D,D,K

(5.1) k() = EXkE, = + o),

D.KD,DK---D,D,K

In the case that the open set D is in C* = R™ and K = K(z, {)
is a C*kernel in D x D, we shall use the following notation: The
points z and { will be written as z =2 + 7y and { = ¢ + 9 with
x, Yy, &, neR". We shall use vectors in R*" of the form:

u:(uly ..‘,un; O, "'90)) v:(vly”':vn; Oy ”',0)’
#:(O,""O; uly"'yun)9 ”2(07 "‘,O; 1)1, "'yvn)‘

We write
n k3
D, = kE_j,lu"a,k, D, = gl’vkafk ,
n n»
D, = > uko,k, D, = > v*0, .
=1 =

Corresponding to (5.1) we now have the (@m + 1) x @m + 1)
matrix
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(5.2)

]Z(S) =K EkE,,=
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K DK
DK D,D,K ---
D.K D,D,K --

D, KD, DK---
—D/th D‘UMD’)IK A

° .D{,leva D‘ulDV’mK

D, K DK
D.D, K D,D, K

+o(1) .

D.D,KD,D, K
D, D, K D, D, K-

We consider the (2m + 1) x (2m + 1) matrix

where

with

Then

BZm’lE(S)Bzfn =

where

1:0---0
X sz
0
{Jg 0---0
C. — 1/0 J,---0
2L :
0 0 ---J, |
g= T
Tl 4
- K §,K 6, K 0, K -
0,K 3,3,K -+ 8,0, K 8,0,,K
TuK B0, K -+ 800K 30K |
0y, K 8,,00,K -+ 8,,0,,K 8,,0,,K
5, K 3, 0,K -+ 8,,3,,K ,,0,, K-

3, = 27D, — iD,) = 3 u¥.r ,
k=1

5. = 27D, + iD,) = kz W4,
=1

5, = 2D, — iD,) = 3\ v*d:c ,
k=1

3, = 274D, + iD,) = S v"3-x .
k=1
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Finally, we shall be needing the following result:

LEMMA 1. Let D be an open set in C* and let K(z, () be a C*
kernel which is p.d. (8) on D x D. Then, for any 1 < j < n, the
matrie

T K 04K 04K
(5.4) 0,iK 0,i0.;K 0,i0.;K
5;5K 5zféch nggin (2,5)=(z,2)

is p.d. (3) for every z€D. Here, z = (2, ---,2"),{ =, ---,{")eD
and K = K(z, 0).

Proof. We use (5.1)-(5.3) by specialising m =1 and u; = v; =
©,---,1;;0,---,0). The result then follows in an obvious manner.

6. Positive-definitness of lower order. We now extend the
result of Hindmarsh as described in Theorem D. Let K(z, ) be of
class ¢~ and let w e U be an arbitary unit vector. From Theorem
2" we know that if (-, -:u) is p.d. () on D x D, then S(-)e
Z(U: U)[CYD)]. We also noted that, in general, the p.d. (2)
property does not entail the holomorphicity of S(-). On the other
hand, Theorem 3’ shows that if /(-, -:u) is p.d. of any order, then
S(-) e .7 (U:U)[H(D)]. It is, therefore, remarkable that under centain
mild assumptions the replacement of p.d. (2) by p.d. (3) in Theorem
2’ entails the holomorphicity of S(-). For the classical case that D
is the right half-plane .72, K..(2,0) = (z + )™ and S(-) maps .
into itself, this fact was first observed by Hindmarsh [8] (see also
[7, pp. 35-38)).

We begin with:

THEOREM 4. Let K(z, ©) be of class 1~ such that for any unit
vector we U, Z(-, -:u) is p.d. (8) on D X D. Assume further that
S()e Z#(U: HCD)]. Then S(-)e.o7(U: U) H(D)].

Proof. Let we U be a fixed unit vector. By assumption, the
kernel

L(z, ) = 4z, &:u) = K(z, Dlsk) + s s(z) = (S@u, u)y ,

is a C*kernel on D x D, and, it is p.d. (8) on D x D. According
to Lemma 1, for any 1 < j < n, the matrix (5.4), with K replaced
by L = L(z,{) is p.d. (8) for every ze D, DcC". Now, in view of
the Cauchy-Riemann equations
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ngL(z, C) = K(Z, E)ézjs(z)
and so
0,i0.iL(z,0) =0 .

Therefore, the element whose position is the entry (3,3) in the
matrix (5.4) is zero. This implies, since the matrix is positive
definite, that, the elements with the positions (8, 3), (3, 2), (3, 1),
(2, 8) and (1, 8) are all zero. In particular, for the element of the
(8, 1)-position, we have

3. Lz, O)._. = K(z, 2)3..8(2) = 0 .

Since K(z, {) is of class .77, K(z, Z)>0 and, therefore, 3,;(S(z)u, u), =
0. This is true for any zeD, any unit vector we U and any
j=1,.--,n. Hence S(-) is holomorphic in D and, by Proposition
2, also S(+)e.o7(U: U)[H(D)]. This concludes the proof.

The contractive version of this theorem is somewhat weaker:

THEOREM 4'. Let K(z,0) be of class _+# and Let T(-)e
(U O)CLD)]. Assume that for any unit vector we U, ky(-, -:u)
is p.d. () on D X D and that T(z)u = 1 for every z<€ D, then T(-) e
= (U: C)[H(D)].

Proof. Let we U be a unit vector and z,{eD. In this case

kr(z, S u) = Kz, OI1 — t(2)- Q)] ; t(z) = T(2)u

is a C*kernel on D x D and is p.d. 3) on D x D. As in Corollary
1, we write s(z) = ¢g[t(z)]. This gives

K(z, Dls(z) + 5] = 2[1 — tO)] kulz, & )1 — U=)]™

and the proof proceeds as in that of Theorem 4.

In the case that K(z, ) is the reproducing kernel K.(z, {) =
(z + )™ of the right half-plane . and S(-) maps .Z# into itself,
one is able, as is done in [8], to remove the assumption of S(-)e
C*(<2) in Theorem 4 by using a standard mollification argument. In
the present more general case the removal of the assumption S(-)e
Z(U: U)[CYD)] requires some further mild assumptions on the
kernel K(z, (), detailed below.

Before we proceed with the next theorem we briefly recall some
standard facts on mollifiers in C". We choose a C>-non-negative
function ~» whose compact support B, is inside the unit ball of C”
and such that
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Www@=1

where do(z) is the Lebesgue volume element in C*. For ¢ >0 we

define
P(2) = e"‘z"¢<§> .

Suppose that f is locally integrable in the domain D of C*. We
may assume that f =0 outside a compact set and thus fe L,(C").
The mollification of f is

0 = (Fr)©) = [£@w € — 2dote) = {v@r (€ - edota) .

As is well-known, f.€C=(D). Moreover, if in addition f is continu-
ous on D, then it is uniformly continuous on compacta of D, and,
lim, , f. = f uniformly on compacta of D.

For a fixed teC" we define D, = {z€C™: 2z — te D}, and, for an
operator-valued function P(-)e <z (U: W)[D], we define P(-)e
Z(U. WH[D,] by P,z) =Pz —1t) for zeD,. Clearly, D,=D and
P(-) = P(-). We now prove:

THEOREM 5. Let K(z, C) be of class 4~ such that for any umnit
vector we U, and for any fixed t€C" with DN D, # ¢, 4,(-, -:u) s
p.d. 3) in DN D, Then S(-)e.o”(U: U)H(D)].

Proof. Since S,(-) = S(-), we deduce from Theorem 2’ that
S()e.or(U: H[CUD)]. For a fixed unit vector u € U, we write

s(z) = (S(R)u, w)y; =z€D
and we consider the kernel
L.z, 0) = K(z, O[s.(2) +5.0)]; 2 CeD,

where s. = s, is the mollification of s. This kernel is p.d. (3) on
D x D. Indeed, for any three points z, 2z, 2, € D and corresponding
scalars a,, a,, a,€C, we have

kzzlLS(zky zm)ak&m = Z aka’mK<zk, Em)[ss<zk) + ss(zm)]
>
k,m=1
RICEDS

o, K(z,, m)l:gfl//‘(t)-?(zk — et)da(t) + S’l/‘(t)S(z —et)da(t)]

o, Kz, 2,)[s(z, — et) + s(z,, — et)] }do(t)

Il

(t){ s, (Rhy 2, u)}da(w
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which is non-negative by assumption. Since s.€ C>(D), we deduce
from Theorem 4 that s. € H(D). It follows, because of the continuity
of s and the uniform convergence of s. to s, that se H(D) and the
proof is complete.

COROLLARY 2. Let K(z,0) be of class .4~ such that for any
fized teC™ with DN D, #+ ¢, the scalar kernel K(z, 0)/K(z —t, — t)
s p.d. B) in D ND, If for any unit vector we U, (-, -1 u) 1is
p.d. 8) on D x D, then S(-)e.o7(U: U)H(D)].

Proof. Let we U be any unit vector and ¢ C"™ with D D,=4.
The kernel

4z, Cw) = Kz, Ols(z — t) + s(C— 0)]; s(z) = (S)u, u) ,

is p.d. 3) in DN D, Indeed, this kernel may be written as a
product of two p.d. (8) kernels namely,

Kz, D)
Kz—1tC—1

Kz —t,0—tlsz — t) + s(C— D],

and therefore, in view of Schur’s theorem [7, p. 9] it is p.d. (3) in
Dn D, The corollary now follows from Theorem 5.

The result of Hindmarsh, as stated in Theorem D of the intro-
duction, is a special case of the following corollary:

COROLLARY 3. Let K(z, 0)=|K..(z, O)I", where K (2, 0)=(z+0)7,
2, (e.#, is the Szegd kernel of the right-half plane F# and m =1
is an integer. ILf for amy unit vector we U, (-, -:u) is p.d. (3)
on . #F X ., then S(-)e.o7(U: U)|H(#)].

Proof. In view of Corollary 2 it is sufficient to show that for
any fixed teC with .ZN. 2, %4, [(z —t) + {C — b))z + 2 is p.d.
(3) in .%# N .%#,. However, this is a trivial consequence of Pick’s
theorem as stated in Theorem A or Theorem 1'.

Finally, the contractive versions of Theorem 5 and its corollaries
are proved in a similar way to that of Theorem 4’. We have:

THEOREM 5'. Let K(z, {) be of class 4~ and let T(-)e = (U: C)|D].
Assume that for any unit vector we U, and, for any fixed teC"
with DN D, # ¢, kr (-, -:u) 15 p.d. (3) in DN D, and that T(z—t)u=
1 for every ze DN D,. Then T(-)e & (U: C)[H(D)].

COROLLARY 2'. Let K(z,() be of class _4~ such that for any
fized t€C™ with DN D, = ¢, the scalar kernel K(z, O)/K(z —t, L —t)
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18 p.d. () iw DN D, and assume that T(-)e < (U:C)[D]. If for
any unit vector we U, ky (-, -:u) p.d. 3) on D X D and T(z)u # 1
for every ze D, then T(-)e & (U: C)[H(D)].

COLOLLARY 8'. Let K(z,T)=[Kuz, 0)]" where K (z, {)=(1—C{z)"!
is the Szegd lermel of the unit disk 4 and m =1 is an integer.
Assume also that T(-)e Z(U: C)[4]. If for any umnit vector ue U,
kr(-, -:u) 48 p.d. 8) on 4 X 4 and T(z)u =1 for every ze€ 4, then
T(-)Ye e (U: C)[H(4)].
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