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ON THE REGULARITY UP TO THE BOUNDARY FOR
SECOND ORDER NONLINEAR ELLIPTIC SYSTEMS

M. GIAQUINTA, J. NECAS, O. JOHN, AND J. STARA

It is proved the regularity up to the boundary of the
uniformly Lipschitz-continuous weak solutions of a boundary
value problem for the elliptic system

1.1) —Dyai(x, w, Du) + a"(x, u, Du) = f* ; r=1---,m

from the Liouville properties of the system.

In 1.1) u = {u"},~,,...,n is @ vector function and Du = {Du"},-,,....n
is its gradient. We write D,u"=0u"/ox; and the summation convéfllfio';ln
is used throughout the paper.). We follow the ideas of our previous
work (see [1-4]) where interior regularity was shown to be equivalent
(in some sense) to the Liouville property (L) (see Definition 2.2). In
the present paper, regularity up to the boundary is shown to be,
essentially, equivalent to the previous (L) together with a certain
“boundary” Liouville property (L*) (see Definition 2.3).

2. Notation and assumptions. Let R" be an n-dimensional
Euclidean space; for « = (x, -+, %,y ¢,) = (&', x,) e R" let |z| =
max {|x;]; ¢ =1, ---, n}; further let R? = {xre R*; z, > 0}; 2 ={x e R?;
¢ <1}; I' = {xe R"; 2’| < 1; %, = 0}; B(w, R) = {x e @; v — x| < RB};
F(xD) R) = B(x(b R) n F'

Let us denote

a(x’ U, Du) = {a::'(xy u, Du)}i=11,---,n

a(x, u, Du) = {@(x, u, DU)},e1,....m

F@) = {f"@}r=1,m »
where a, @ are once continuously differentiable functions on £ x
R™ x R™™, and fe[W4?*2)]™ for some p, p > n.

REMARK. In what follows we omit the notation of the Cartesian
product. So we write fe W*?(Q) instead of fe[W"?(Q2)]"" ete.
In this notation the system (1.1) can be rewritten as

(2.1) —div (a(x, u, Du)) + a(x, u, Du) = f(x)
on 2. We suppose that the strong ellipticity condition holds:

(2.2) g—;‘—i(w & ML >0
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for every { # 0 and each (z, &, 7)€ 2 X R™ x R™.

To describe the boundary conditions we introduce two disjoint
sets M, N of positive integers such that M UN = {1, ---, m} (both
the cases M = @ and N = @ being admissible). Let {b,},cs,.cn be
the set of real constants. The stable boundary operators B, (r € M)
are given by the formulas

By =u" — 3, b,u, .

seN

Put
/—bm, reM, se N,
C = {¢s}rs=1,-.n , Where c¢,,=— 6,, 7r,8eM,
N 0 , reN,
/bs,, reN, seM.
2.3 C*={ct},=1,... », Where ¢} =—6,,, r,seN,
N0, reM,

ﬁ‘(x, u, Du) = {a;(w, u, Du) + h’r(x: u) - gr(x> - f;(x)}r=1,~~~,m ’

where h and ¢ are given functions; h e C*(” X R™), ge Wb=(I).
Let, finally, u, = {4i},=,..... be a given function from W=>?(Q).
We consider the following boundary value problem for the system
(2.1) (in its classical formulation):
Cu—u)=0 on I,
(2.4) cC*s (x,u,Du) =0 on I,
u—u=0 on oIl .

Denote the scalar product in R™ as well as in R™ by (,) and put
(2.5) V={ve WQ), Cv=0 on I'; v=0 on ol}.

A function u e W4*Q2) is said to be a weak solution of the problem
2.1), 2.4) if

(1) w—ueV,

(ii) for each @e V, it holds
|, @ Do) + @2 — (1, Pldz = | b — g, @)’

(2.6)

(Let us rewrite for once the equation (2.6) (ii) in a more detailed
form:

(2.6) (ii)
|, (@i, w@), Du@)D@ @) + @@, u(@), Du@)P'@) — f(@)p @)de

= | W, u@) - gee@as
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Let us now formulate the regularity of the problem and the
Liouville conditions.

DEFINITION 2.1 (R). We say that the problem (2.1), (2.4) is
regular (and denote this property by (R)) if for each weak solution
% of this problem for which Du € L.(2), the gradient Du is locally
a-Holder continuous on £ U I, and for each Q' for which Q' cQ U T
it holds

Wullgagy = C,

where the constant C depends on ||[Fu|; o, 2 and the data of the
problem.

DEeFINITION 2.2 (L). We say that the system (2.1) satisfies the
Liouville condition (L) if for each z,€ 2 and each £ € R™ the solution
u e WEHR™ of the equation

(@.7) |, (@@ & D), Dp)iw =0 vpeCrRY
R™
for which Du € L.(R") is a polynomial of at most the first degree.

DEFINITION 2.3 (L*). Write Z = {peCy(R™); Cp =0 on {xe R
x, = 0}}. We say that the problem (2.1), (2.4) satisfies the Liouville
condition (L*) if for each x,¢ I'; £ € R™; d € R™ the solution u € WiXR?)
of the equation

2.8) L“ (aliy, &, Dw), DP)de = S« Gy vpeZ

T 7€ R™3 2, =0}
is the polynomial of at most the first degree, provided that Cu is
a polynomial of at most the first degree on {xeR"; x, = 0} and
Du e L.(R").

Our paper contains the proof that (roughly speaking): (2.1), (2.4)
is regular iff (L) and (L%) hold simultaneously. The necessity of the
Liouville conditions is proved in §3 with the definition of the
regularity being slightly changed. In §4 the proof of the implica-
tion (L) A (L*) = (R) is given.

3. The necessity of Liouville conditions. Considering the
definitions 2.1-2.8 we conclude that the property (R) concerns one
fixed problem (2.1), (2.4) whilst the Liouville conditions (L) and (L%)
refer to a system of problems (2.8). We do not know whether the
implication (R) = (L) A (L") holds. To obtain the implication of this
type we modify at first the definition of regularity.



4 M. GIAQUINTA, J. NECAS, O. JOHN, AND J. STARA

DEFINITION 3.1 (R'). Let for each x,c¢R?, £cR™, deR™ and
for each solution u of (2.8) for which Du € L..(R%) and Cu is a poly-
nomial of at most the first degree on {xe R"; x, = 0} there exists

T >0 such that u belongs to the space C*%(B(0, T)) with a =
min {1/2, 1 — »/p} and
3.1) lu|lere = C,

where C and T depend only on ||Du||,, |«(0)| and the data of the
problem.

THEOREM 3.1. (R')=(L").

Proof. Suppose x, = 0. The function uz(y) = (1/R)u(Ry) solves
(2.8). Further || Dug||., = ||Du|l;., and for R > 1 the values |uz(0)]
and Cu, are bounded by the same constants as the corresponding
values of u. Thus u, (R > 1) satisfies (3.1) with the constant inde-
pendent of R. Let xeR%; TR = |x|; Ry = . According to (3.1)
we get

| D,un(y) — Dyun(0)| < Clyl* < c[%]“ ,
hence

|D,u(x) — Du(0)| < C'—;;Li

and it implies that D,u(x) = D,u(0) for R — co.
Let us mention that the necessity of the condition (L) was
proved in [4].

4, Sufficiency of the Liouville conditions. Put for an arbitrary
vector function f = {f"},=1,....0r

B(zp,R) r=11i=1

VB(x, R) = {u € W“(B(x,, R));Cu =0 on I(x, R) and
=0 on 0B, R\I(x, R)}.

“.1) {F(%, R) = R S 'SV | D,fr(x)fdx  and

The following notation will be used in Lemma 4.1 only:
Bz, t) ={xeR%; |z — x| <t} ; tel0, 1].
Let
I'={xeR™ |2'|<1;2, =0}.
With the so defined B(x, t) the symbols F(x, ¢t) and VB(x, t) have
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the same meaning as in (4.1).

LEMMA 4.1. Let B = {Bﬁ{}t,ji,,...,n be a real matriz such that

(4.2) 357 >0 VpeR™  Bipinpiz 27 |9.

Then there exists a positive number K such that for every x, =
©, ---, 0,49, (gel0, 1]) for each ve W *(B(x,, 1)) for which

(4.3) Cv=0 on T

and which solves the system

(4.4) SWO,D (BDv, Dp)dz =0  Vpe VB, 1),
and for every tel0, 1/2[, the inequalities

(4.5) Vi, t) = Kt*V(x,, 1) ,

(4.6) £ st lo(@) — P,Pde < Kt° SMH lv@) — Q[da

hold, where Q 1is an arbitrary wvector such that CQ =0 and P, is
either a value v(%) at an arbitrary point % c B(x,, t) or an integral
mean value of v over any connected subset of B(x,, t).

Proof. Let ke N be such that W**G)c CYG) for a bounded
domain GCR". Let 1=¢t,>¢ > >t,=1/2 be an equidistant sub-
division of the segment [1/2, 1].

Let @ e C~(B(x,, 1)); supp @ B(x,, (¢, + £,)/2); 00 <1, &=1 on
B(x,, t,); | D®| < C[(t, — t,).

Let CQ = 0 and put

P=0(v—Q)

in (4.4). By usual calculations we obtain (denoting in what follows
all the constants by C)

4.7 S | Do 'de < CS lv — Qda
B(zgpty) B(2q,1)
If B(x,, t,) < B(x,, 1) we use the fact that all the derivatives up
to the order %k solve the system (4.4) and we get finally the estimate

(4.8) | Dt e < CS o — QId .

53(10,1/2) Blzg,1)

If B(x,, t,) reaches up to the boundary, only the tangent deriva-
tives D;w (j = 1, - -+, n — 1) of the solution » solve again the boundary
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value problem. For them we get

(4.8) L( _IDD)fds = CSB |Dv|dz .
@0 tg

(zg,t)
The second normal derivative can be expressed from the equation
BiD,v* =0 ; r=1---,m,

which holds a.e. in B(x, 1). Advancing this process up to the
estimate of the derivatives of the kth order we obtain (using the
Sobolev imbedding theorem)

(4.9) maxz{;Dv(x)[; @ eB<xO, %)} <C Sm v —Qds.

Let now t€]0, 1/2], «, ¥ € B(x,, tx). Then

lv(x) — v(@) | < Ce maxz{wm)]; e B(xo, .é_)} — CSM v —Qlda .

Let us recall that the constant C does not depend on the position
of the point z, satisfying the assumptions of Lemma 4.1. Its value
will be needed in the next text; because of an easier quotation we
denote it by K. Integrating the last inequality over B(x, t), we
get (4.6) for the case P, = »(%) with ¥ € B(x,, t). The case of P, being
an integral mean value can be reduced to the previous one by means
of the integral mean value theorem.

To prove the inequality (4.5) we start with the estimate (4.8')
and applying the same method as before, we obtain

(4.10) (max {|Dv(x)]; e B(xo, %)}) —C SBW | Dolids .

The inequality (4.5) is an immediate consequence of (4.10).
The main result of this section is the following

THEOREM 4.2. Let (L) and (L*) be satisfied. Let uwe W4-¥(R2)
with the gradient Du € L.(Q) be a weak solution of the problem (2.1),
(2.4). Then Du is a-Holder continuwous on RLUI with a=
min (1/2, 1 — n/p) and for every domain Q' such that Q'C 2 UT the
inequality holds:

win vz < €D oy 10l 115 [
”g ”Loo’ dISt <‘Q,7 R:\‘Q)) .

Schema of the proof of the Theorem 4.2. In Lemma 4.8 we
shall prove that Du belongs to certain Morrey-Campanato space and
use then embedding of this space into C*°.
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For the case 2'c Q it follows from the condition (L). We can
prove it by the method described in [4] modifying it slightly.

For the case 2'NI # @ more substantial modifications of the
method are needed. Denoting tangent derivatives as ] = Du";
r=1---,m;l=1 ..., n—1, we decompose them on B(zx, R) as

W =v+w
in the following way:
(i) The function w solves the linearized equation in variations
(see (4.14)) and satisfies the nonhomogeneous boundary conditions

Cw, = CDu, on I(x, R),
w; — D, =0 on oB(x, R\['(x, R),

l=1,.---,n—1. The L,norm of Dw can be easily estimated (see
Lemma 4.3).

(ii) The second component v = @w — w solves the homogeneous
linearized equation (4.15) and satisfies the homogeneous boundary
conditions Cv;, = 0 on I'(z, R) and nonhomogeneous boundary conditions
v, = @, — Du, on 6B(x, R\['(x,R), L =1, ---, m — 1.

In Lemma 4.4 we shall prove that, starting with sufficiently
small oscillations of v on B(x, B) we can describe how they decrease
on Bz, TR), (r €(0, 1)).

The Liouville eondition (L*) yields, for each z,c I, the fact that

li}znoinf V(x,, B) =0. (See Theorem 4.5.)
=0+
Combining this result together with the estimates of v and w,
we obtain the assertion of Theorem 4.2.
First we shall describe more precisely the decomposition of w.
Let # be a solution of (2.6) with Du e L.(2). Using the finite
difference technique, we prove that w e W2%2) and that each com-
ponent w, of the tangent gradient w solves the equation

SQ {(aaD o, + %0, + 9% D¢> (g‘:} 22 D,

7 PRt ™
(4.12) + g‘; o, + g% go)}dx - S (2L 39{1 9 )de
+S {(‘;}E‘ l+§%—%,¢>}dm’, VpeV.

Moreover, C(w, — Dyu,) =0 on I'.
Let z,e2UTl; R>0 and 2,< R (ie., I'(x, R) # @). Define

w = {W}=,..n€ W"(B(x, R)) as a unique weak solution of the
problem
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(4.13) w, — Dyu, € VB(x, R) ,
Vo e VB(x,, R)
L(TO N {(g—f;(x, u, Du)Dw,, D¢)+<-§—f}-(w, u, Du)Dw,, ¢)}dm

(4.14) — —Smo ) {(g_gw, + g;‘l Do) + (Z_g“” + g‘z, ?)da

+ SB(@O,R) (gi; ) + Sf(zo R) {gg ot g_a};bl— + gg/ ¢}dw

The relations (4.12) and (4.13), (4.14) imply that (defining v, = @, — w,)
the component v, solves the equation

vo € VB(x,, R)
(4.15) Smo . {(g_;‘_;(x, w, Du)Dw,, D<p> + <_‘;%(x, u, Du)Dw, q))dw =0,

and satisfies the boundary conditions

Cv,=0 on I'(z, R)

(4.16)
v, = @, — D, on 0B(x, R\I'(x, R) .

The components v, and w, depend on the choice of x, and B. We
shall denote them by v = {v;};—,,...,.,_1, Omitting to express the depen-
dence on z, and R if not necessary.

Taking into account the assumptions on the coefficients, the
right-hand side, the boundary conditions, and the solution u (Du €
L.(R2)), we get easily that the problem (4.13), (4.14) can be rewritten
as follows:

(4.17) w — w, € VB(x,, R) ;
SB( _{(4Dw, Do) + (ADw, Pds
(4.18) .
=\, Fod+| (@ vpeVBm,R),
B(:co,R) I'(zy,R)
where
(4.19) (1) 4= {gg 9415,} & L(B(a, B)) ,

(An, ) = £ |9° VpeR™"Y,

(2) A= {37} ¢ L(Blw, R),
(3) w, = Dage W*(Blz, B)),
(4) FelL, (B, R),
(5) He LT, R).
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(Let us remind here that w, is bounded on 2 and (as it solves the
system 4.12) it belongs to the space Wii(2 U I'); thus it has a well
defined trace on I" and, since ||Du|, < C, we have ||w|...n = C,
too.)

Putting ® = w — w, and using the assumptions (4.19), we get

LEMMA 4.3. There exist a positive constant C and a positive
radius R, such that, for every Re(0, R, and for every solution
w e W4 B(x,, R)) of the problem (4.17), (4.18) satisfying (4.19), the
inequality

(4.20) | Dw |1y, mny = CR™2-1P
holds.

The local behaviour of the oscillations of the second component
v is shown in the next lemma.

LEMMA 4.4. For every 2'; 2 c QU T, for every positive C and
each 7€(0,1), there exist a positive ¢ and R, such that, for every
solution w of the problem (2.6) with ||Dul|l,, < C, for every x,€ 2’

and Re]0, min (R, 1 — |2,))[, the implication
(4.21) Vi, R) < & = V(x,, R) < 2Kz*V(x,, R)

holds.
(Here

Vs, R) = R S \Dvlde,  Viw, tR) = (R} SB

B(zg, R)

| Dv|*dx
(%3, TR)
and, in both the expressions, v is the component of the decomposition
of ® on B(x, R)). K is the maximal of the constants from Lemma
4.1, corresponding to

da;
B;’; = 2 y Gy ,
aa(wo &8

2, € 2; |1&] = C and the upper bound for  derived as the upper bound
for wealk solution of the problem (2.6) for which ||Du ||, o =< C.

Proof. Suppose that the assertion of the lemma does not hold.
Then there exist Ce(0, ), z€]0, 1], sequences ¢, \,0, R, \,0, =, —
2,cRlUTI and u,; ||Du,||,, < C, such that

(4.22) Viz,, R) =€

and simultaneously
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(4.23) V(z,, TR, > 2Kz*V(x,, R,) .

If x,eQ, all B(x,, R,) < 2 for a sufficiently large and the proof
is substantially the same as in [4]. A similar situation occurs if
x,€l” but R, < x,, for infinitely many indices v (i.e. the closed sets
B(z,, R,)c 2). In what follows, z,; will denote the jth component
of the vector =z, (i.e., x, = {x,;}7,). The same notation will be used
for sequences u,, v, ete.

Suppose that x, —x,€I” and z,, < R,. Using the decomposition
®,; = w,, + v,, on B(zx,, R,) and estimating Dwv, by (4.22) and Dw, by
Lemma 4.3 we get

(4.24) || Dw,|iyee,2y = (B + R, 1=1,--,m—1.

The second normal derivatives o%u,/ox% can be expressed from the
equation

oa; oa; oar | -
=D, 0+ —=Du’ + — r— fr=0; r=1.--,m,
oany T T G, ow, Y

which is satisfied a.e. on 2. Thus we get

(4.25) | D*w, |2y 50e,.m,0 = C(RIP + ERITY) .
Put
(4.26) S = L |, . @y,
meas,_, ['(x,, B,) Jr,.z,)
26, = S0h-1,in
(4.27) VY —,
where
xz, =x, + Ry’ t=1 .-, n—1,
€, = Ry, ,
(4.28) a, =1+ % e<l, 2.

v

Then the substitution «;* transforms the sets B(x,, R,) into
(4.29) B, ={yeR|y;|<lfori=1,---,n—1, 0<y,<a}
and the sets I'(x,, R,) into

4300 I'y={weR%|y;|/<lfori=1,---,m—1, y,=0}.
Moreover, put -

B, . = 4, (B(x, tR) .
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Defining

(4.31) 5.(y) = siy{vywy(y)) — 27y,
we get from (4.22), (4.23) that

(4.32) S, = Lh |Ds,'dy =1,
(4.33) S,. = SBy |Ds,dy > 2Ke* .

Applying the following type of Poincaré’s inequality to s, and using
(4.32), we obtain

(4.34) I8, [lwr2e, = C .

Poincaré’s inequality. There exists C > 0 such that for each
ve N and for each fe W4¥B,)

wss) | [ro-—L— swarfay=c| Drray

meas, ; I,

holds.

In what follows, we dare to pass to a suitable subsequence
without notice and without changing the notation.

We distinguish two cases

(@) a.\a; N B DB
veN

(4.36) ={yeRy |y <L;e=1,:---,n—=10<y, <aj};
(b) a, " ay ':'VB” =B, .

We shall prove that {s,} converges on B, to a function s solving
the system with constant coefficients and such boundary conditions
that Lemma 4.1 can be applied to s. Then the passage to the limit
in the relations (4.32), (4.33) gives the contradiction.

From (4.34) we can conclude that there is a function se W“*(B,)
such that

(4.37) s,—s and ¢s5 ——0 a.e. on B,

and
(a) s,— s in W"¥B,), weakly
(b) s,—— s in W*G,) weakly for each
G; GcB\yeR; vy, = a) .

(4.37)

Taking into account the definition of s, (see (4.81)), we get
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(4.38) @, (y,(¥) = &3,(y) + 57, + t.(y) ,
where
(4.39) tL.(Y) = w9 () -

The boundedness of @ together with Lemma 4.3 and (4.87) yield the
existence of a constant vector ¢ = {67};-,,...... such that 5£,, — o,
r=1,+0,m

and
(4.40) @,(,(y)) — Dwu(x,) + 0, a.e. on B,.

A similar technique may be used for the normal derivative.
Put

1

D (', x,)dx’ .
meas,_;, I'(z,, R,) SN%,R,) AT T

vn T

By Poincaré’s inequality and (4.25) we get
(4.41) | Daw () — S5 ll2nis,) = OB + &) — 0.

This and the boundedness of Dwu imply the boundedness of the
sequence .57, and thus the existence of such a constant vector £, =
{2} e=1,....w that

(4.42) D, u,(4,(y)) — &, a.e. on B;.

Put £ = {5{}531,...,,,,; & = Dui(x,) + o5 for r=1,---, mand Il =1, ---,
n —1. Then (4.40) and (4.42) give

(4.43) Du(y(y)) — & a.e.on B for r=1,---, m,l=1,---,m,

and the norm of ¢ is bounded by the same constant as the L.-norm
of Du,.

Deduce now the equation for s:
Substituting « = 4,(y) into (4.15) and using (4.81), we obtain

(4.44) S {(MDs,, Dp) + R(MDs,, @)}dy =0 VveN, vpe VB, ;
BV
where

M= (w50, Dyegyeom - MG, Y) = %%’_(%(y), u,(9.(9)), Du9.(9))) »

1,-00,m

M = {mzj(v: y)}z’rjlz,,m ’ ”70%(”, y) = Z_Z;(ﬂl"y(y), u’y("/"y(y)), Duu(”h(y))) .

1,000ym

Taking into account that (y) —x, on B, u,(4,(¥)) — on B, and
Du,(y,(y)) — & a.e. on B,, we can conclude that
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rs, rs aa’r
(4.45) mii(v, ¥y) — B} = 377—1(%, 8 a.e. on B,
J

and passing to the limit in (4.44), we get finally
(4.46) S (BDs, Dp)dy =0  Vpe VB,.
By

According to (4.16), Cv, =0 on I'(x,, R) for each ve€ N, hence
Cs, =0 on I, for each ye N and

(4.47) Cs=0 on I,.

Thus the function s solves the boundary value problem of the
type required in Lemma 4.1 and

4.48) 8. = SB | Ds'dy < Kz'zs | Ds|'dy = Kz*S ,
0,7 By

where B,. = {yecR" |y;| <z for ¢ =1, ---,n—1, |y, —a, + 1| < 7},
and K is the constant described in Lemma 4.4.

The weak lower semicontinuity of the functional &: s — S | Ds |*dy
B
together with (4.87), (4.32) gives ’

(4.49) S = SB |Dslidy < 1.
0
To get the contradiction it is sufficient to prove that
S,.— 8. =+ S | Dsfdy .
Bo,z’
We shall prove (by the choice of a test function) that Ds, — Ds in

L,,.(B,). Let us sketch the choice for the case (a): Take v,e N so
large that

B,.C {yeR";yn <a-1+%% 1} ;
2
let @ € C.(R%); supp @ C B,U I';; @ =1 on U,z,, B...; Then ¢ = (s, — 5)@*
(prolonged by zero if necessary) is an admissible test function for

both (4.44) and (4.46). Therefore

(4.50) S {(MDs,, D(s, — s))0* + 20(MDs,, (s, — s)D®
’ By _
+ (MDs,, s, — 8)0%dy =0,

(4.51) SB {(BDs, D(s, — 8))0* 4+ 20(BDs, (s, — 8))D@}dy = 0 .

Finally, using the ellipticity condition
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2 _ 2 L 2 — —
@D, - 9dy < < |, FMDs, — ), Ds, — )iy

0

(4.52)

= %{Lo ®*(MDs,, D(s, — s))dy — SBO@Z(MDS, D(s, — 8))dy} .

Now we can estimate the first integral on the right hand side
of (4.52) from (4.50) and the second one from (4.51) and we get

(4.53) SB @ D(s, — 5)['dy — 0 .
0
To bound the difference S,. — S. we write

S,. — 8. = r{g o(Ds; — Dsdy + | | Dspdy

0,7\B,

+ SBy,:\BO,.- | Ds de} )

Here the first integral on the right hand side tends to zero by (4.53)
and the second and third ones because of the uniform absolute con-
tinuity. Thus

(4.54) S.=1mS, . = 2Kz* = 2K*S,

y—00

which contradicts (4.48).

THEOREM 4.5. Let the system (2.1), (2.4) satisfies the condition
(L"), let u be a weak solution of (2.1), (2.4) for which Du € L.(Q).
Then for each x,e€ I, there exists a sequence R,\, 0 such that

(4.55) lim Z(x,, R,) =0,

y—0

where z = Du — Du,. (For Z(x, R,) see (4.1)).

Proof. Be xz,el'’; 0 < R < dist (x,, 02\I"). Put

(4.56) y=yx) =2 ”}‘2% ’
(4.57) unly) = U0+ RY) — wz,)
R

Then y(B(x, R)) = B(0,1). Put 0, = y(2). For each T, let R(T) be
such a positive radius that it is B(0, T) c 0, for R < R(T).

In the following part of the proof we use the fact that for
every T > 0 the set of second gradients {D*uz; R < R(T)} is bounded
in L,B(0, T)). More precisely, it holds
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LEMMA 4.6. Let u be a solution of the problem (2.1), (2.4) for
which Du € L.(2). Then for each x,e€I” and for every T, there exist
R(T) and C such that

(4.58) !]DzuR”Lz(B(O,T)) =C VR < R(T) .

The value of C depends on ||Dul|,, || fllwee, ||%ollwer, ||gllwtes T
and dist (x,, 02\I).

Proof of the Lemma 4.6 is standard: using the finite difference
technique and Nirenberg’s lemma, we get the estimates for D,u,,
©j #+ nn. The bound for D,,u, can be obtained by means of the
equation in variations, which is valid a.e. on B(0, T'), and which
enables us to express D,,up through the other second derivatives
which we had estimated before.

Returning to the proof of Theorem 4.5, we see that the set
{Duz; R < R(T)} is bounded in L.(2)-it follows from the assumption
Du € L.(2) and the simple equality

usy) _ 9% p 4 Ry).
0Y; 0x;
Taking into account that u(0) = 0, we get finally the boundedness
of the set {uz; R < R(T)} in W»*B(0, T')). The compactness of the
imbedding of W2*B(0, T')) into W-*(B(0, T)) allows us to choose a
sequence R,, R,\,0, such that up — p in W"¥B(0, T)), and, using
the diagonal process, also
limue, =p in Wi(RY),

y—0o0

4.59
( ) lim Dup = Dp a.e. on R% .

Deduce now the equation for the limit function »: To this end
we substitute (4.56) and (4.57) into (2.6); after the passage to the
limit we obtain

@60) | (@@ & Do), Doy =| @ ewndy .

{ye
Using the theorem on traces and (4.59), we get

lim Cup, = Cp a.e. on {yeR"y,=0}.

y—00

The transformed boundary conditions give

Cup, = C(uo(xo + Rl,,é/) — uo(xo)> ’
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but u, € C,(2), hence
Uo,, = B (U@ + RY) — uo(@)) — 1 Dio(@o) + - -+ + Y Dau(a,) ,

so that Cp is a polynomial of at most the first degree on {ycR";
¥, = 0}. The condition (L*) implies that p is a polynomial of at most
the first degree on R".

Because of (4.59) and the fact that Dp is a constant vector, we
have that

Dy B) = | 1Dus@) — (Dus)oslidy —0
here (Du),, is the integral mean value of Du, i.e.

1
Du)y; = ——m—nv S Dudy .
(D meas, B(0, 1) Jzon wey

After an easy calculation (u,€ W*»? with p > n) we obtain that also

(4.16) Ao B) =\ | Dltg, = o.]0)

B(0,1)

- (D[uR, - uo,Ry])o,112dy —0.

The following lemma shows the relations between Z and Z.

LEMMA 4.7. Let the notation of the preceding lemma be preserved.
Then there exists comstants v >0, v, > 0 such that for each point
2, el’, R < dist (x,, 0Q2\I"), the estimate

(4.62) 2(w, £) < 72w, B) + 1) Do, R

holds.

The proof of this lemma is similar to that of Lemma 4.1 — we
insert a suitable test function of the type @ (w — w, — ¢) (here w, =
{DUe}iz1,....n1; € is @ constant vector satisfying the condition Cc = 0)
into the equation in variations.

From (4.61) and (4.62) the assertion (4.55) of Theorem 4.5
follows.

To finish the proof of Theorem (4.2) it remains to observe that
the difference between Z(x, R) and V(x, R) is small for small R
thanks to the assumption u,e W*»?(2) and to use the same procedure
as in [2], proof of Proposition 1.1 for the estimates of tangential
derivatives. As for the second normal derivative, we repeat the
estimates of (4.25). In such a way we get that the whole gradient

belongs to the Morrey-Campanato space and thus u e C“*(B(x,, R,)
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with some R, sufficienty small.

REMARK. With some modification the same method can be used
to prove the analogous theorems for any bounded domain with
sufficiently smooth boundary.
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