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FINITE HANKEL TRANSFORMS OF
DISTRIBUTIONS

R. S. PATHAK AND O. P. SINGH

Finite Hankel transforms of the second and third kind
of distributions are defined and inversion theorems are
established in the distributional sense. Operational transform
formulae are obtained for the both transforms. These are
applied to solve certain partial differential equations with
distributional boundary conditions.

1. Introduction. Finite Hankel transforms of classical func-
tions were first introduced by Sneddon [8] who applied them in
solving boundary value problems for systems possessing axial
symmetry. There are three kinds of finite Hankel transforms
depending upon the nature of the kernel involved. These are as-
sociated to the three kinds of expansions of an arbitrary function,
viz. Fourier Bessel series [6], Dini series [6] and series involving
cross products of Bessel functions [4] respectively.

Finite Hankel transforms of distributions were given by Zemanian
[11], Pandey and Pathak [3] as special cases of their work on general
eigenfunction expansion of distributions. But, Dube [1] studied finite
Hankel transform of the first kind of distributions independently.
To get a deep insight it is necessary to study the other two trans-
forms also independently. In [12] and [3] the inversion theorems
are given without any consideration of the values of H + v occurring
in the definition of the transform (see (4.4)), where as the classical
Dini series involves a term depending upon it. This motivated us
to study independently the finite Hankel transforms of the second
and third kind of distributions.

The present paper is divided into two parts. In the first part
we extend the classical inversion theorem for finite Hankel transform
of the second kind [6, p. 601] to a class of distributions, which gives
rise to the Dini expansion of the distributions. The series converges
in the weak distributional sense. We derive an operational transform
formula which together with inversion formula is applied in solving
certain distributional differential equations. In the second part of
the paper we extend the inversion theorem for finite Hankel trans-
form of the third kind [4] to a class of distributions. Here also
the series converges in the weak distributional sense. Finally we
give an application of the finite Hankel transform of the third kind.

2. The notation and terminology. We follow the notation
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and terminology of Schwartz [7] and Zemanian [12, 11]. Here I
denotes the open interval (a,d),0 <a <b < . The letters ¢, «
represent real variables in I. D(I) is the space of infinitely differen-
tiable functions on I with compact support contained in I. The
topology of D(I) is that which makes its dual D’(I) of Schwartz’s
distributions. E(I) is the space of all infinitely differentiable functions
on I and E’'(I) is the space of distributions with compact support.
R2,., denotes the differential operator D? + (1/x)D, — (v*/x?).

3. The testing function space U, (I). For any (e, v) <€ R?, we
define
U,,I) = {p: I — C|o(x) is infinitely differentiable
and @ satisfies (3.1)}
(81 7e) = sup @ Lo p@)]] < o
for each £=0,1,2, ---.
Clearly U, (I) is a topological vector space. The topology of U, (I)
is generated by the collection of seminorms {v{*}i,. U.,([I) is a

Frechet space. Its dual U, ,(I) is given the weak topology. Members
of U, (I) will be referred as distributions.

Note. (i) D{I)cU,,I) and topology of D(I) is stronger than
that induced on it by U, (I)= fe U, (I) then f|,eD'(I).

(ii) E’'(I) can be identified as a subspace of U, ,(I).

(iii) Given fe U..(I) there exists » € N* and a positive constant
Cs.t.

I<f, | = Cmax v (@) voe Ud()
sinee f is bounded.

PART 1

In this part we take I = (0, 1) and study finite Hankel transform
of the second kind of distributions.

4, Dini series. The Dini expansion associated with f(¢) is
(4.1) By(t) + 3. bad.O0al)
where J,(t) is a Bessel function of first kind and \,,, m =1,2,3, ---,

are the positive roots (arranged in ascending order of magnitude)
of the transcendental equation
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zJ.)(z) + HJ(z) =0

(4.2) b 1
= 2
b, m=1,23, ---; are given by
thnslt FOTOb)dE
(4.8) b, = 0
Ao = V)i (Mm) + N H(N)
and
0 if H+v>0
20 + l)t”slx”“ f@dr if H+v=0
4.4)  Bt) = '

2)\131,,()\,0t) 1
O3 + I — NI (0n) Soxf (@) I(Mx)da

if H+v<O0.

The condition of validity of (4.1) are given in the following theorem
[6, p. 601].

THEOREM 4.1. Let f(t) be a function defined over the interval
1
0, 1), and let S 2 f(t)dt exist and (if it is improper integral) let it
0
be absolutely convergent. If f(t) has limited total fuctuation in
(a, b) where 0 < a < b =1 then the series (4.1) converges to the sum
1/2[ft + 0) + f(t — 0)] at all points ¢ s.t. a + 4=t < b — 4 where
4 1s arbitrarily small; and the convergence is uniform if f(x) 1s
continuous in (a, b).

If, instead of the coefficients b,, we introduce the finite Hankel
transform of second kind of the function f(x), deonted by H,(m),
and defined by equation

(4.5) Hm) = [ tr@ 700t m =1,2,3, -,

the above theorem on Dini series yields the inversion formula

_ S 25 Hy(m)
(4.6) 7O = B0+ e 8700 + 2T 0w

The Theorem 4.1 will be extended to a class of generalized
functions.

5. The generalized finite Hankel transform of the second
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kind. Throughout this part we always have @« = 1/2 and v = —1/2.

DEFINITION. For fe U, ,(I) we define its finite Hankel transform
24 (f) of second kind as:

(.1) (ZA.)m) = Fy(m) = {f(x), 2Jo(\2)) m=1,2,3, ---.

(5.1) is well defined since zJ,(\,x)e U, (I),m =123, ---, for a +
vy = 0. Note that for a function f(x) defined on I such that

1'1;1“"] f(@)|dx exists for @ = 1/2, we get a regular distribution T,
0
which we identify with f, defined as

T, 9 = [ f@r@ds, peU.D.

Let us define

N 27\)2
Ty, 5 H) = Ay, 1) + 3, 772"‘ L), (N t)
where
N = N — V) I(N) + Mdm(Nm)
and

0 if H+v>0
20+ Dty if H+v=0

201, (M) 1, (\ot) if H 0
N+ 0y — MLy st

AO(CC, t) =

Notice that xzA(x, t)e U, (I) if a« + v = 0. Therefore
2Tyt x; Hye U, (I) when 79, +0.

6. The inversion of (5.1). The following theorem provides an
inversion formula for the distributional transform (5.1) which in
turn gives a Dini series representation for fe U, (I).

THEOREM 6.1. (Inversion). Let fe U, (I), a=1/2, v=—1/2. Let
Fy(m) be the finite Hankel transform of f. Then

6D 7@ =lmS BERmL0W + (f@), el 0)

2
m
in the sense of comvergence in D'(I).

Proof. We have to prove that
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(6.2) (3 ZERmI0, 7@) + (Bla), @)
— (B, pt) a8 N— e
for any @ ¢ D(I), where Byxz) denotes {(f(t), tA,x, t)>. Now @(x)e

D(I) if and only if x@(x) € D(I). So that (6.2) is equivalent to showing
that

(6.3) (2 Z=Fm)J v, 29(@) + (Bia), p(a)

m

— {f(t), tp(t)) as N— co .

Suppose that support (@) C (a, b) & [0, 1]. Now left hand side of (6.3)

(6.4) -I=l 27;“3 F(m)J, () + Bia) [op(@)da

Since B,(x) = {f(t), tA,x, t)y and (2\./7%)Fy(m)J,(\x) are locally in-
tegrable over (0, 1) and supp (@) C[a, b]; (6.4) can be written as

J.L25 220, 6,00 TL0w) + A0, 140, ) oot

m=1

= ({10 5 2510.07.000) + Aula, ] joptrts

2
m

(6.5) = | <r@), ¢7att, 3 Hpap(o)do
(6.6) = (7, t{ Tt 25 Bop(a)dn)
(6.7 — (f0), tP()) as N— o

Once we prove the equality of (6.5), (6.6) and (6.7) our proof of the
theorem will be complete. We prove the above by the following
series of lemmas.

LEMMA 6.2. Let feU,,I). Then for any Ne Nt and ¢ ¢ D(I)
we have

| F®), tTatt, 5 H)ap()da
(6.8) ¢

= <f(t), S:tTN(t, x; H)wgo(x)dx> .

Proof. Since tTy(t, x; H)e U, ,(I) for fixed z, the left hand side
of (6.8) makes sense. Also since
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S(An) (X t)

Sl tTy(t, x; H)op@)de = tﬂ: > 2N
0 L=
+ Ay(x, t)]:w(x)dx

and since SJ App)rP(x)dr < oo and SAO(w Drp(x)dr < <, we have
S tTy(t, x; H)xp(x)dx € U, (I); the right hand side of (6.8) makes sense.
Now left hand side of (6.8)

= {70, T, 3 Dyap@)de

[l (g

- i N ¢ £(8), (M, t)>§ J.Ov2)ep(@)ds

J>xq)(x)dx

= <f(t), (' 4,(a, ap @)z

A
s tSOJu<xmx>Ju<xmt>x¢<x>dx>

+ (10, ¢ | Aa, top()az)
= <f(t), tS:TN(t, x; H)xcp(x)dw> .
This proves the lemma.
LEMMA 6.3. Let a,be R such that 0 < a <b<1l. Then

limeTN(t,x;H)xdx=1, a<t<b.

N—ow Ja

Proof. We have
SbTN(t, z; H)ade

= be[TN(t, x) — Sy(t, z; H)ldx .

b
Now for a <t <b, S 2Ty, x)de —1 as N— o [1, p. 368]. And
b a
s Sy(t, x; H)xdx —0 as N — « by the analogue of Riemann Lebesgue

femma [6, p. 599].
Ty(t, ) is defined as:

Tt o) — 5 2L Gat).

=t (g
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where j,, m =1,2,3--., are the positive zeros of J,(z) arranged in
ascending order. Sy(¢t, x; H) is defined as Ty(t, x) — Ty(t, x; H).

\ LEMMA 6.4. Let y(x)e D(I). Then for a =1/2 and v = —1/2
t"‘s Ty, x; H)[y(x)— ) ]ede — 0 as N —co uniformly for all te (0, 1)
where supp. () Clea, b] & (0, 1).

Proof. We have (0,1) =[(0, a) U (b, 1)]U[a, b]. For te(0,a)U
(b, 1); 4(t) = 0. Therefore

(726, 5 Dl — vOkde = [oTott, 25 Hyy@)de
= bea/r(x)TN(t, x)dx — Sbwqu(w)SN(t, x; H)dx .

In view of the analogue of Riemann-Lebesgue lemma [6, p. 590 and
p. 600], given ¢ > 0 there exists N, such that for N = N, we have
8C% _

7C2(1 — bWt

8C:
7CX2 —t — bVt

[ov@ Tatt, o] = <

and

b ) 2C.e 26, _
igaa’"/”(x)szv(t, €5 H)dx‘ < 2—t—btv't < 11—t ©

where C, C, and C, are some constants. Thus

C _ C
ta 1/2
i-5 < “T-v

since @ = 1/2, where C is a constant. So that

15

tu

S:TN(t, x; H)W(w)dxl <

b
6.9) t“S To(t, o3 H)[y() — (@) Jeds — 0 as N— oo
uniformly for all ¢ (0, a) U (b, 1).
Next we have to deal with the case ¢t €[a, b]. From [1] we know
that
(6.10) t“SbTN(t, D[(@) — y(O)Jade — 0 as N—— oo
uniformly for all ¢ e[a, b]. Hence we have merely to show that
b

t"s Sy(t, x; H)(@) — $(@)]zdz — 0 as N— oo

uniformly for all ¢ e[a, b].

Let F(t, x) = a7 [y(x) — ()] for 0 <2 <1,0<t<1. Clearly
F(t, x) is continuous for 0 < 2 < 1,0 <t < 1. So that
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[8utt, 23 Dlopt) — y(0))ede = [lorFe, 284, o My

Divide [a, b] into » equal parts by means of the points a = wx,,
2, -+, %, =b. For ¢ >0 arbitrary, choose p large enough so that

Epl (Um - Lm)(xm - xm—l) <e

where U, and L, are upper and lower bound of F(¢, x) in (%,_,, %)
fora <t<hb.

Let F(t, 2) = F(t, 2,_,) + W,(t, ). Then |W,(, 2)|=U, — L,.
Therefore for all N = N,(depending on &)

[83(t, @ DDl (@) — y(O)lde

Tm

= i F(t, xm_l)s 2 Sy(t, x; H)dx

+ zi‘] Sxm leWm(tp x)SN(t, X, H)dx
2C,
et . 600] .
<gars 6 P 600]
Therefore
(" ; - 2C;  ain 2C,
g LSN“' o5 H)lop(a) — p(t)]ada < 24t < =se

This together with (6.9) and (6.10) proves the lemma.

LEmMMA 6.5. Let @ € D(I) with supp (@) Cla, b]l. Then for a =
1/2 and v = — 1/2

25| | 7att, 5 Bapia)ds — o)) — 0
as N — o uniformly for all te€(0,1).

Proof. It is easily seen that
‘Qy,w[TN(ty x; H)] = ‘Q»,t[TN(ty x; H)] .

Therefore by integration by parts,
2k, SbTN(t, v; H)xp(x)de
= Ttt, 2 BDQLIP@)ade

Using Lemma 6.3 we get, as N — oo,
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2] [ 7utt, 23 Bp@reds — 20
= {1, o5 BNGLIP@) - QdPONda
= [\, &5 Bv@) - vOda

where (x) = 2F,9(x) € D(I) and supp (v) C [a, b]. Now an application
of Lemma 6.4 proves the Lemma 6.5.

THEOREM 6.6. (The uniqueness theorem.) Let f,gec U,.(I). If
Fy(m) = G,(m) for each m = 1,2, ---; and

<f(x): on(x, t)> = <g(x), on(x, t)> .
Then
f =9 1in the sense of equality in D'(I) .

The proof is trivial.

7. Illustration of the inversion theorem by means of a nu-
merical example. For 0 <k < 1,0 — k)e E'(I)c U, (I). The finite
Hankel transform of 6(¢t — k) s

25,0t — k))(m) = 6@ — k), tJ,00nl))
=kJ, M) m=1,2,---,
and
O — k), tAx, t)) = kA(z, k) .
For any @ e D(I)

(= %fm—wxmzo).fmw), 2p(2)) + bASa, 1), 5p(@)

= kS: S 2N 7 o 0 (O m)ep(@)da

m=1 773”

+ lcS:Ao(x, k)xp(x)dx

= ksl[ ﬁ 2\%, L) (Nt) + A2, k) :lxgv(w)dx
o 7

o 2
m=1 'm

- kS:TN(t, v, H)ep@)ds — kp(k) as N— oo .

But 46(t — k), to(t)y = kp(k). Therefore the inversion theorem is
illustrated.
This also yields Dini series expansion for 6(t — k) as
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o(t — k) = lim Zf‘. 20/ Nl (M) (At) + EA(K, )
in the sense of convergence in D'(I).

8. Applications. Now we obtain an operation transform for-
mula which together with inversion theorem is useful in solving
certain distributional differential equations.

Now for @ ¢ U, ,(I) and fe U, (1)

(8.1) QL f(@), ) = {f(x), 22, 27 'P)) .

(8.1) defines a generalized operator 2F, on U,, (I) adjoint of the
operator x2, 27 on U, (I).

p)e U, (I) — 22, 2 '¢x) e U, ,(I) .

Therefore 27, is well defined by (8.1).
Now since @(x) — x2, 27 '¢(x) is a linear continuous map on U, ,(I),
2%, is linear and continuous on U, (). By induction on k¥ we get

(8.2) QL (), p(a)y = {f(2), v .27'P(®))
and 2}* is linear and continuous on U, ,(I). So that
QL (@), 2d,(\)) = (f (@), 22%,.T,(Ma))
= (=1 f (@), 2, (M)
Thus

G625 1m) = Q51 f (), 2 (M)

(8.3) = (“DMEFAm), m=1,2,

For f a regular distribution in U, ,(I) generated by elements of D(I),
we get

Q. f =2..f (integration by parts).

Also for f a regular distribution in U, ,(I), if we put some suitable
condition on it so that the limit terms in integration by parts in
(8.1) vanish, we get

. =2..1.
Now consider the operational equation
(8.4) PRrtyu=9, 0<z<l1.

We wish to solve (8.4) for P a polynomial such that P(—2%) # 0,
m=1,2 ---; and ge U, (I) is given; ue U,;.(I) is unknown to be
found.
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Apply generalized finite Hankel transform to (8.4) to get
(P25 u(x), 2 ,(Mp)) = Go(m) .
Now left hand side = P(—\2,)U,(m) by (8.3), hence

Go(m)

(8.5) U,(m) = Pl

Applying the inversion theorem to (8.5) we get

8.6)  u =lim ﬁ%— ﬁ%mm + Cult), tAlz, D) .

We have to find {u(t), tA,(x, t)).

Case (1): When H + v > 0, Az, t) = 0. Therefore

<u(t)1 tAO(x: t)> = 0 *
Case (ii): When H + v = 0, Az, t) = 2(v + 1)x*t".
Now, let us assume that
Px) = ia,xf, a, = 0.
Then
(9(@), Ay, 1)) = (PR )u(®), xAz, t))
= (3 a(2mu(), 24w, 1)

= (u@), 3 0,0(02.)@ 0 Asw, 1))
= aou(@), x4y, 1)) -
Thus

ud), tAw, ) > = %@(t), LA, 1)) .

Case (iii) When H + v < 0,

20T, ()L (Not)
7

Ao(x, t) =

where
75 = (A + V)EMN) — ML) -
Now using the fact that
Qk Az, t) = NFA(x, T) ,

449
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we have
CQ5w(@), €A, 1)) = N u(®), vAq, 1)) .
So that
(9(x), #Ay(®, 8)) = (P(25.)u(@), zA\(z, £))
= PO\ {u(®), zA\(x, 1)) .
This gives

Cult), tAfz, ) = ﬁ(—%@(w, tAx, 1)

provided that P(\}) #= 0.
Thus finally from (8.6) we have

8.7 u(w) = lim é‘,% P_%YZ—;)J”O“"‘”)’ (H + v > 0)
— lim ¥ 2M  Gi(m) 1
(8.8) w(®) = 11\}_1'2 ’nglﬂ—fnme]u()\»mw) + —(;;(g(t), tAy(z, t))

(H+v=0,a,0)

im & 2 Gum) 1

(8.9) u(x) = lel;roegl 7]; P(-—)\,?n) Jy (7\:7,;%) + P()\%)<g(t)’ tAO(x, t)>
H+v<0,P0\3)=0).

u(x) given by (8.7)-(8.9) gives the solution of (8.4) with equality in

the sense of D'(I). This solution is in fact a restriction of u € U, (1)

to D(I), and is unique in view of Theorem 6.6.

It can easily be shown that u given by (8.7) — (8.9) is also a
solution of

(8.10) P2, )u=g.
Now for
P@) =(x —a) -+ (x — az)
where a,’s are distinct real numbers, the general solution of (8.10)

in D'(I) is given by

N 2
u(@) = Jim 33 ZAEIL 7 0.2

+ ,,Z J,(akmi)[:c,c S”} [672(a,ti)] " dt + d,,}
=1 1/2

where C,, d, are arbitrary constants, when H + v > 0. Similarly
when H + v =0 and H + v < 0, the solution in D’(I) is obtained by
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adding

% . 3 dt
v C S —_— :‘
lcE-_—1J (akﬂn)li 3 et T agti) + ay

to the right hand sides of (8.8) and (8.9) respectively.

9. Application of the finite Hankel transform of the second
kind. (Heat flow in an infinite cylinder with a radiation condition.)

We wish to solve the heat equation in cylindrieal coordinates inside
an infinitely long cylinder of radius unity, by using the theory of
the finite Hankel transform of second kind developed in the preceding
pages. We seek a conventional function w(r,¢); where » is radius

and ¢ is time, (u does not depend on @ and 2) satisfying the differen-
tial equation

9.1) D+ LDu=Du ©0<r<1,0<t< o)
"

and the following initial and boundary conditions:
(i) As t—0% u(r, t)— f(r)e U, (I) in the sense of convergence
in D'(I).
(ii) As »—1°, Dou+ H,—0 in D'(I) for each fixed ¢ > 0,
where H > 0.
When u denotes the temperature within the cylinder, H > 0 means
that the heat is being radiated away from the surface of the cylinder.
The differential equation for w can be written as

ou
9.2 Q2 = =,
( ) 0,ru at

Let us apply the generalized finite Hankel transform 5%, to (9.1)
to get

N, Uy(m, t) = a% U(m, t)

where
Um, t) = &4 Ju(r, t)] = lulr, t), rd(a?))
so that
Uy(m, t) = A(m)e *nt .
The initial condition determines the constant A(m). Thus

A(m) = Fy(m) = {f(), rJe(An?)) -
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Hence
Uy(m, t) = Fy(m)e nt .
Therefore, by inversion Theorem 6.1 we have

X ze(m)e—ﬁn’ ou?)
9.3 t)=1
9.3) ulr, O = i S = o) T 70w

in D'(I), since H > 0. Here A\, are the roots of the equation
Mo(n) + HI (W) = 0.

We want to prove that u(r, t) given by (9.3) is truly a solution
of (9.1) that satisfies the given initial and boundary conditions. Using
the boundedness property of generalized functions we have

|Fy(m)| = C max Y (rdy(*hg))

so that
F,(m) = O\ as m— o

for some nonnegative integer n. Also
xm~n<m+%> as m— oo

as m-— co .,

Ti0u) + Ji00) ~ —2
N,

Hence
[Jgo\'m) + Jf()\'m)]—l = O(m) as m-— co ,

Using the above facts we see that the series (9.3) and series obtained
by applying 2,, and D, separately under the summation sign of (9.3)
converges uniformly on 0 < <1 and ¢ > 0. So by applying £2,,, —
D, and using the fact 2, [J\(\.7)] = —\aJ(M,7) we see that (9.3)
satisfies the differential equation (9.1).

Let us verify the boundary condition (ii). We have

2F2<m>e—*i»tJo<x,,o~>}
W) + S Nm)
= 2Fy(m)e ' T, (M)

T T F 0w

lim [D,u + Hu] = lim [ﬁ’; D,{
r—1" 1

r—1""

and since the convergence is uniform, we can take the limit » — 1~
inside the summation sign and arrive at the conclusion.
Next we wish to verify the initial condition (i). For any @ € D(I),



FINITE HANKEL TRANSFORMS OF DISTRIBUTIONS 453

we have

2 2F,(m)e ntJ,(Ap)
<m=x Te(wm) + Jf((xm) , 7))
gl & 2F,(m)emt
0m=1 JE(Np) + T (M)
_ S e 2F,(m)

0=t JE(N) + JE(Nm)

lim
t—0+

= lim
t—0+

Jo(Na?)P(r)dr

Jo () P(1)dr

(since the convergence is uniform on 0 < » < 1 and ¢ > 0)

= {f(»), (»)> by Theorem 6.1.

PART II

10. Finite Hankel transform of the third kind. The finite
Hankel transform of the third kind of an arbitrary function f(x),
defined on 0 < a < # < b is defined by

(10.1)  Hym) = Sbt FOCKat, 1D)AE, m=1,2,8, - ;
where
Cla, B) = J( @)Y (B) — Y ()].(B)
and v, is the mth positive root of the equation
Claz,bz) =0,

The following theorem [4] provides an inversion formula for the
transform (10.1).

THEOREM 10.1. If f(f) is summable over (a,d) and of bounded
variation in the neighborhood of the point t = x, then the series

(10.2) 3, a,C.(7a, 7.b) ,
where
(10.3) Q= o008y ()

" 2T (vaa) — JATD]

and v is any real number, converges to the sum 1/2[ f(x + 0) + f(z — 0)].

We extend the above theorem of Titchmarsh for fe U;,(I),
where v is any real number, I = (a,0),0 <a <b < «. For con-
venience we shall write U/(I) in place U, (I).
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DEFINITION. For feU,I),ve R, we define the distributional
finite Hankel transform of f of third kind by

10.4) (2Z,.f)(m) = Fy(m) = {f@), tC(Vut, Tub)) m =1,2,---.

Throughout the second part of the paper we always have ve R. Also
we set

= _ T L)
T T T a) — )
and
N
(10'5> RN(t, x) = zzll ﬁ;Cy(A/mx, "/mb)Cv('ymty ’Ymb) .

11. The inversion of (10.4). We will now prove the following
inversion theorem for our generalized finite Hankel transform.

THEOREM 11.1. (Inwersion). Let f be an arbitrary distribution

in the space U)(I), v e R and let Fy(m) be the finite Hankel transform
of the third kind of f. Then in the sense of convergence in D'(I),

(L. £(&) = lim SYTLFMIC.(1at, D) -

Proof. Since p(x) € D(I) = x@(x) € D(I), it suffices to prove that

S TER(IC,(1,t, 1,0), 29(@)) — (F(8), t2(0)
as N— oo .

The proof is similar to the proof of the Theorem 6.1. To complete
the proof we have to prove similar lemmas as needed in the proof
of the Theorem 6.1. We do it next.

LeEmMMA 11.2. Let fe U/(I). Then for any NeN* and ¢ € D(I)
we hawve

ar12) [, tRat, 2) japwis = (5@, | tRu(t, Dep@az)
Proof is similar to that of Lemma 6.2.

LEMMA 11.3. For 0 < a < b < o we have

N-ooo

(11.3) lim SbRN(t, ppde =1 (0<a<t<b).

Proof. See [4, equation (7)].
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LEMMA 11.4. Let f(t) be a bounded function in (a,b), 0 < a < b.
Then ¢ > 0, there exists Nye Nt such that for all N = N,,

2Ke

z

(11.4) Sjt Ry, )dt <

where ¢ < A < B< b, and « lies out side the interval [A4, B], K is
a constant, and

p. = dist(z, [4, B]) > 0.

Proof. Let F(t) = t™f(t). Then following the same line of proof

as in Lemma 6.4, we get
(11.5) SBt FORE, )t = 3, F(t,_) S”” #HR(E, w)dt
A m=1 t

m—1

s S"‘ #HR(E, @) Wo(t)dE .

m=1Jt, 1

Let M = max{A4**', B*""}.
Choose the partition p so fine that

i (Um - Lm)(tm - tm—1>M <e.

Let K, be the upper bound of F(t) in [A, B]. From [4], we know
that

k
| Ry(t, x)| < T 7]
bu—H k k
lgtt By (s, “)dtl < A,(b — ) * Ayt — ) @<?
¢ v+1 k k
Sat B, (¢, x)dt] b e R e R

where
Yv < Ay < Yyir -

Using the above relations in (11.5) we get

[trorae, 0| < ﬂ%p bo]< 2o

z

This proves the lemma.
LemMMA 11.5. Let (x) e D(I). Then

(11.6) ERN(t, D) (@) — () Jedw — 0
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as N — co uniformly for all t e(a, b), where supp (1) C[4, B] C(a, b).

Proof. The proof can be given by using Lemma 11.4 and follow-
ing the pattern of proof of Lemma 6.4.

LEMMA 11.6.
s | Batt, wwp()ds — 9(t) | — 0
as N — oo, uniformly for te(a,b) and for each k=0,1,2, ---.
The proof is similar to that of Lemma 6.5.

THEOREM 11.7. (The uniqueness theorem). Let f, ge U)I). If
Fy(m) = Gy(m) for each m =1,2, ---, then f =g in the semse of
equality wn D'(I).

The proof is trivial.

We verify our inversion Theorem 11.1 by means of an easy
example. 6(t — k) e U, (I).

(7 (0(t — k)(m) = kC(Yuk, vud) m=1,2, -
For @ e D(I),
<m§=‘1 N nkC.(Ymk, Ymb)C,(Yn®, YD), xq)(w)>
— kp(k), as N— o0

= O(t — k), te(t)) .
We also get

8t — 1) = lim 3 72C,(7k, 1aB)C b, 7aD)

—00 m=1

12. Application of the finite Hankel transform of the third
kind. Consider again the operator equation

12.1) P@Q*w=g.
By applying finite Hankel transform of the third kind we get

(12.2)  Um) = -ﬁ% m=1,2--; (P(—\)#0).

Then using inversion Theorem 11.1, the solution can be written as

i e = Gy(m)
) =1 _bs(m) )
(12.3) u(t) lim mz=‘,17},,, Py C(Yut, Tmb)
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Now we solve diffusion equation in an infinitely long hollow
cylinder bounded by 7 = a, * = b(b > a) when these surfaces are kept
at zero temperature. Let us determine a function wu(r,t) which
satisfies the differential equation

o’u , 1 ou _ ou

(12.4) i ==
or? r or ot

aZr<h t>0

and the following boundary and initial conditions:
(i) wu(a,t)=0
u(b, t) =0
(ii) lim, o+ u(r, 1) = f(r) e U/(a, )
where equality is in the sense of D’(a, b).
Applying the finite Hankel transform of the third kind we can
reduce the above differential equation to

(12.5) — 7 Uim, ¢) = 2Um, 1),
where
Uy(m, t) = 22;,(u(r, 1)) = (ulr, t), 7C(Tn?, Yub)) -
The solution of (12.5) is given by
Uym, t) = A(m)e "nt

where A(m) is an arbitrary constant. Applying initial condition we
find that
A(m) = Fy(m) .
Hence
U(m) = Fy(m)e "mt .

Therefore, by inversion theorem

im 3% AT (m)e T Gy, 7, 1.0)

1
Nooo m=

u(r, t) =
equality in the sense of D'(a, b).
Formally we take

(12.6) u(r, 1) = 3, TEF(m)ewCy(r,r, Yub) -

Various steps involved above and that (12.6) is a solution to (12.4)
can be justified as in §9.
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