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COLLECTIONS OF COVERS OF METRIC SPACES

TED R. PETTIS

In this paper cardinality « collections of open covers
of a topological space satisfying various conditions are
studied. When « = » some of the conditions are equivalent
to the space being metrizable and the union of a compact
set and a discrete set. For a metrizable space some of the
conditions are equivalent to complete metrizability. If r x o
then the relationship between some of the conditions and
the existence of scales is examined.

1. Introduction and definitions.

1.1. An ordinal number is the set of all ordinals which precede
it and a cardinal number is an ordinal which cannot be put in a
one-to-one correspondence with any ordinal which precedes it.
Throughout this paper @ will denote the set of all finite ordinals
and k£ will denote an infinite cardinal number.

If M is a set, x is a point, and 57 is a collection of sets, then
the star of M with respect to 57, denoted st(M, 57°) is the union
of all members of 24 which meet M and sit(x, 57°) = st({x}, 5#). A
sequence ¥ = &, &, &,, --- of open covers of a topological space
S is called a development for S iff for each zeS and open set U
containing 2 there is an % such that st(z, &, SU. Moreover, a
development is monotonic iff &,,, £ &, for all n. A space which
admits a development is called a developable space and a regular-T,
developable space is called a Moore space. A development Z for a
Moore space is star complete (see [16]) provided that if {M,, M,,
M,, ---} is a sequence of closed sets such that for each n, M, , &
M, < st(x, <,) for some €S then NM, # @. A Moore space having
a star complete development is said to be star complete. A Moore
space S is Moore-closed (see [5] and [6]) iff S is closed in each Moore
space in which S is embedded.

A space S is a wd-space (see [3]) iff there exists a sequence
B DB, B, -+ of open covers of S such that for eachxe S, if x, ¢
st(x, .<Z,) then the sequence {x,, x,, #,, - - -} has a cluster point. A space
S has a G}-diagonal (see [10]) provided there is a sequence %, %,
,, -+ of open covers of S such that if # and y are distinct points
of S, there is an n such that y ¢ st(x, &,).

A nonempty subset M of a topological space S is called discrete
iff for each x € M there is an open set U such that UN M = {x}. A
collection of sets is discrete if the closures of the sets are mutually
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exclusive and the union of any subcollection of these closures is
closed. A topological space is k-collectionwise Hausdorff iff for every
closed discrete subset M having cardinality at most £, there is a
pairwise disjoint collection of open sets covering M, no member of
which contains more than one point of M. A space which is #-col-
lectionwise Hausdorff for all cardinals & is called collectionwise Haus-
dorff. Regular-T, spaces are w-collectionwise Hausdorff.

1.2. For a topological space S, &(S) denotes the collection of
all closed discrete subsets of S and =2*(S) denotes the collection of
all infinite closed, discrete subsets of S. Consider the following
conditions on a cardinality £ collection & = {Z,: a € k} of open covers
of S.

Condition A(k). For each De 2(S) and open set U containing
D there exists an a ek such that s¢(D, &,) < U.

Condition wA(x). For each De =2*(S) and open set U containing
D there exists an infinite subset D’ of D and an a e« such that
st(D', &,) < U.

Condition B(k). For each De &7(S) there is an a ek such that
if # and y are distinct points of D, then st(x, &,) N st(y, Z,) = @.

Condition wB(k). For each De 2*(S) there exists an infinite
subset D’ of D and an a ek such that if x and y are distinct points
of D' then st(x, &,) Nstly, &,) = .

Condition C(k). For each De 2(S) and EFe 2 (S) with DN E=
@ there exists an a ek such that st(D, &,) N st(E, &) = O.

Condition wC(k). For each De 2*(S) and Ee =2(S) with DN
E = @ there exists an infinite subset D’ of D and an « € £ such that
st(D', )N st(E, Z,) = D.

Condition wwC(k). For each De =*(S) and Ee 2*(S) with
DN E = @ there exist infinite subsets D’ and E’ of D and E respec-
tively and an a ek such that st(D’, &,) N st(E', T,) = @.

A space is said to satisfy one of the conditions above if it admits
a collection of open covers which satisfies the condition. For the
case where £ = @ reference to w is dropped whence by condition A
is meant condition A(w) and so forth.

2. Moore spaces.

2.1. If S is a developable space which has a collection of open
covers satisfying a condition defined in 1.2 for # = @ then S has a
monotonic development satisfying that condition.

THEOREM 2.2. For a regular T.-space S containing mno infinite
open and closed discrete subset the following statements are equivalent.
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(1) S 1s a compact metric space.

(2) S is a Moore space and every infinite subset of S has a
limat point.

(3) S satisfies condition A.

(4) S satisfies condition B.

(5) S satisfies condition C.

(6) S 1s developadble and satisfies condition WA .

(7) S 1s developable and satisfies condition wC.

(8) S s Moore-closed and satisfies condition wB.

(9) S is Moore-closed and satisfies condition wwC.

Proof. That (1) is equivalent of (2) is well known and that (1)
implies each of the conditions (3) through (9) is immediate.

(3)—(2). A sequence of covers satisfying condition A is a
development; thus S is a Moore space. Let < be a monotonic
development for S satisfying condition A. Suppose M = {x,, x,, ., - -}
is an infinite set of limit points of S and M fails to have a limit
point. Since S is w-collectionwise Hausdorff there is a pairwise
disjoint collection of open sets U, U, U,, --- with x,€ U,, 2, € U,, - - -.
For each m, let y,est(x,, ) NU, — {x,}. Then S — cl{y, ¥, ¥, - -}
Is an open set containing M but there does not exist an n such
that st(M, =) < S — el {y,, ¥, ¥», ---}. Thus M must have a limit
point.

(4)—(2). It follows immediately from the definitions that a
space satisfying condition B is a w4 space with a Gj-diagonal and
hence is developable. Let «  be a monotonic development satisfying
condition B and let M and {y, v, %, - - -} be as in the proof of (3) —
(2). Then either {y, ¥, ¥, ---} is closed in which case M’ = M U
{Y, ¥y, -+ -} 18 a set for which condition B fails or {y,, %, ---} has a
limit point ¥ in which case M’ = M U {y} is a set for which condition
B fails.

(5)—(2). The proof is similar to (4) — (2).

(6)-—(2). The same proof as (3) — (2).

(7)->(2). Similar to (4) — (2).

(8)-—-(1). If < is a monotonic development for S satisfying
condition wB then it is a star complete development. For if not,
there exists a sequence {M, M, M, ---} of closed sets such that
M, , < M, and a sequence {x, %, ®,, ---} of points of S such that
M, < st(x,, &,) for all n and N M, = . Without loss of generality
it may be assumed that M, — M,,, = @ foralln. Lety,eM,—M,,,.
Then {y,, ¥, ¥, - - -} € Z*(S). Condition wB fails to hold for this
set. A star complete Moore-closed space is compact ([6, Theorem
1.5)).

(9)--»(1). Similar to (8)— (1).
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2.3. Since a Moore space which is the union of a compact set
and a discrete set is paracompact the next theorem follows immedia-
tely from the proof of Theorem 2.2. See Theorem 1.6 of [6] for a
related result.

THEOREM 2.4. For a regular T.-space S the following statements
are equivalent.

(1) S is a Moore space which is the union of a compact set
and a discrete set.

(2) S is a metric space and the set of all limit points of S is
compact.

(3) S satisfies condition A.

(4) S satisfies condition B.

(5) S satisfies condition C.

(6) S s developable and satisfies condition WA.

(7) S is developable and satisfies condition wC.

2.8. The next theorem shows that Moore-closed was needed as
part of the hypothesis in Theorem 2.2.

THEOREM 2.5. For a metrizable space S the following statements
are equivalent.

(1) S has a complete metric.

(2) S satisfies condition wB.

(3) S satisfies condition wwC.

Proof. By the proof of Theorem 2.2 if S satisfies condition wB
or condition wwC then S is star complete and hence complete Moore
and thus has a complete metric by the result of Roberts [15].

(1)—(2). Suppose S has a complete metric d. Let B(x, ¢) =
{yeS:d(z, y) < &}

For each n let &, = {B(x, 1/2*"): n e w}. Let M be a countably
infinite, closed, discrete subset of S. For each

n, A, = {x e M: st(st(z, &,), &, N M is finite} .

Suppose A, is finite for each n. There is a point 2,6 M — 4,. Then
let x,,, €st(st(x,, &,), ) N M — A,,, — {x, 2, ---, x,}. The sequence
{xo, 21, s, -+ -} is Cauchy and hence converges to a point y. Thus y
is a limit point of M which is impossible. Thus, there is a &k such
that A4, is infinite. Let {a, a,, a,, ---} be the points of A4,. There is
a least positive integer =, such that a, € st(st(a, ), &,). Thereis
a least positive integer m, such that a,, ¢ st(st(a,, a,, Z3), ). This
process may be continued. The set A = {a, a,, a,, ---} has the
required property.
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The proof of (1) — (3) is similar.
3. First countable spaces.

3.1. An interesting generalization of development due to E. E.
Grace [1], is the concept of a quasi-development. A sequence ¥ =
Gy &y &y, -+ of collections of open subsets of a topological space
S is called a quasi-development for S provided for each point p of
S and open set U containing p there is an » such that st(p, &)+ @
and st(p, &,) SU. The conditions defined in 1.2 can be modified to
conditions on quasi-developments by requiring that the collection &,
in the definition cover the closed discrete sets. The following theorem
results from these modifications.

THEOREM 3.2. For a regular T, space S containing no infinite,
discrete, closed and open subset, the following statements are equi-
valent.

(1) S is compact metric.

(2) S has a quasi-development satisfying condition A.

(3) S has a quasi-development satisfying condition B.

(4) S has a quasi-development satisfying condition C.

(5) S has a quasi-development satisfying condition wA.

(6) S has a quasi-development satisfying condition wC.

Proof. That (1) implies each of statements (2) through (6) is
immediate.

By modifying the arguments of Theorem 2.2 only slightly, it
can be shown that each of statements (2) through (6) implies that S
is countably compact. By a result of Wicke and Worrell [17, Theorem
2.10] countably compact quasi-developable spaces are compact.

3.8. Another generalization of the results of §2 is obtained in
the following fashion. Using the notation of Hodel in [11] let (S, 7)
be a regular T, space, and let g: S X w — = be a function such that
x e g(x, n) for all e S and n e ® and such that gz, » + 1) C gz, n)
for all n. If D is a nonempty set then g*(D, n) = U{g(x, n): x € D}.
If C is one of the conditions defined in §1.2 and st(x, &,) and st(D, Z,)
are replaced by g¢g(z,n) and g¢*(D, »), respectively, the resulting
statement defines g to have condition C. The next theorems follow
from the corresponding proofs in §2.

THEOREM 3.4. For a regular T, space S containing no infinite,
open and closed subset, the following statements are equivalent.
(1) S is a first countable, countably compact space.
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(2) There is a function g for S which satisfies condition A.

(8) There is a function g for S which satisfies condition B.

(4) There is a function g for S which satisfies condition C.

(5) S is first countable and there is a function g for S which
satisfies condition wA.

(6) S 4s first countable and there is a function g for S which
satisfies condition wC.

THEOREM 3.5. For a first countable, regular T, space S the
Jollowing statements are equivalent:

(1) The set of all limit points of S is countably compact.
(2) Then is a function g for S which satisfies condition A.
(8) There s a function g for S which satisfies condition B.
(4) There is a function g for S which satisfies condition C.
(5) There is a function g for S which satisfies condition WA.
(6) There is a function g for S which satisfies condition wC.

4. Uncountable collections.

4.1. If each definition in §1.2 is viewed as a cardinal function,
a natural question is what is the minimum cardinal £ such that a
space S admits a cardinality & collection of open covers satisfying
that condition? Also one might ask if a space S admits a cardinality
k£ collection of open covers satisfying a condition in 1.2 what does
this imply about S? In this section some partial answers to these
two questions are given.

A topological space S is said to have property D(k) iff for each
closed discrete subset M of S with cardinality at most £ there is a
collection &7 of mutually exclusive open sets such that (1) 27 covers
M and each member of 7 contains only one point of M, and (2)
if Nis a set covered by 2£7° such that each member of ©# contains
only one point of N then N has no limit point. A space which has
property D(w) is said to have property D (see [13, page 69]). For
an infinite cardinal £ a space having the property that each of its
subsets of cardinality £ has a limit point will be called k-compact.

THEOREM 4.2. If £ is an infinite cardinal, and S is a regular
T, space which has property D(k), which satisfies at least one of the
conditions A(k), B(k), or C(k), and which contains no infinite discrete,
open and closed subset of cardinality k, them S is k-compact.

Proof. Suppose the theorem is false. Then there exists a closed,
discrete subset M of limit points of S. Let 2~#” be an open cover
of S satisfying (1) and (2) of the definition of property D(x). Pro-
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ceeding as in the proof of Theorem 3.2 will yield a contradiction.

4.3. Notation and definitions from set theory not stated here
may be found in [12]. The usual axioms for set theory, the Zermelo-
Fraenkel axioms including the axiom of choice, will be denoted by
ZFC, the continuum hypothesis will be denoted by CH, and Martin’s
axiom will be denoted by MA. If «a is a limit ordinal, the cofinality
of « denoted cf(w), is the least ordinal 5 such that there is a function
f from g into a such that sup{f(x):xc g} = a.

The set “w of all functions from @ to ® has two natural orders.
If f and ¢ are functions from @ to w then f < g iff f(n) < g(n)
for each new, and f < *g iff there is an m such that f(n) < g(n)
for all n > m. A subset & of “w is called a scale provided for each
fe“w there is a ge.9” such that f < *g. A subset . of “w is
called a dominating family iff for each fe“w there is a g€.9” such
that f < g. If there is a scale with cardinality £ there is a dom-
inating family of cardinality £. See [8] for results on the existence
of scales. Among the results there, Hechler shows that MA implies
all scales have cardinality ¢ and for each cardinal £ such that w, <
cf(k) £ k < ¢, it is consistent with ZFC that there exists a scale
whose cardinality is k.

REMARK 4.4. Whether the converse to Theorem 4.2 is true,
even for metric spaces, depends on the type of set theory assumed.
The case for w,-compactness is of particular interest, since in metric
spaces @,-compact, Lindelof, separable, and second countable are
equivalent and important.

THEOREM 4.5. CH implies that if S 1s a metric space which
has mo uncountable, discrete, closed and open subset, the following
are equivalent.

(1) S is w,-compact.

(2) S satisfies condition Alw,).

(3) S satisfies condition B(w,).

(4) S satisfies condition C(®,).

Proof. An argument similar to the one used in the proof of
Theorem 2.2 will establish each of the implications (2) — (1), (3) —
(1) and (4) — (1). That (1) implies each of the statements (2), (3), and
(4) follows from the fact that an w,-compact metric space is second
countable.

ExAMPLE 4.6. If k£ < ¢f(c), there is a subspace S of the real
line such that if =" = {<’:a €k} is a collection of open covers of S,
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there is a De =(S) such that if gek, there is a member of =,
containing more than one point of D. Thus S does not satisfy
condition A(k) or condition B(k). A modification of the argument
which follows shows that S does not satisfy condition C(k) either.
There is a subset S of the set R of real numbers such that both S
and R — S have cardinality ¢ and, moreover, both S and R — S
intersect every uncountable, closed subset of R [4]. Suppose there
is a collection & = {&,: ® ek} of open covers of S contrary to the
claim. For each point t€ R — S there is a sequence {¢, t,, f,, ---} of
points of S which converges to {. The set of terms of this sequence
is discrete and closed in the subspace topology on S. For each a ek,
let T, be the set of all points ¢ belonging to B — S such that no
member of &, contains more that one point of the sequence {¢, ¢,
t, ---}. Since ¢f(¢) > k£ and Uge, Tx = R — S, for some ack, T, has
cardinality ¢. The closure in R of T, contains a point » of S. The
point p belongs to some member V of &,. There is a set U open
in R suchthat V=UnNS. Moreover, UNT,#* @. IfteUNT,U
contains a tail of the sequence {¢, ¢, ¢, ---} associated with ¢, but
then so does V and this is a contradiction.

4.7. In what follows the space Y will denote the set to which
a point x belongs iff # is a nonnegative integer or for nonnegative
integers » and k, x = n — 1/(k + 2). The topology on Y is the sub-
space topology Y inherits as a closed subset of the set of real
numbers with the usual topology.

LEMMA 4.8. If S is a metric space and the set of all limit
points of S is mot compact, then S includes a closed subspace which
18 homeomorphic to the space Y.

LEMMA 4.9. If £ is an infinite cardinal; there is a cardinality
£ collection of open covers of Y which satisfies at least ome of con-
ditions A(k), B(k) or C(k) iff there 1s a dominating family of car-
dinality k.

Proof. If © ={<, aeck} is a collection of open covers of Y,
define f, as follows. For each =, let f,(n) = inf{s:n — 1/(z + 2) ¢
st(n, <)}. The set {f,: « €k} forms a dominating family provided the
collection of covers {Z,: a € k} satisfies condition A(x) or B(x) or C(k).

Conversely, if » and k¥ are nonnegative integers and f ¢ “w, let
Un,ky=n}U{n —-1/@+2):i=kland &, ={{n—1/(k+ 2)}: n, ke w}U
{Uln, f(r)):new}. If &7 is a dominating family of cardinality «,
then {G;: fe€.9”} is a cardinality £ collection of open covers satisfying
conditions A(k), B(k) and C(k).
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THEOREM 4.10. If k is an infinite cardinal and S is a g-compact
metric space whose set of limit points is not compact, the following
statements are equivalent.

(1) There is a dominating family of cardinality k.
(2) S satisfies condition A(k).
(8) S satisfies condition B(k).
(4) S satisfies condition C(k).

Proof. Suppose there is a dominating family & having car-
dinality k. There exists an increasing sequence {F|, F, F,, ---} of
compact sets whose union is S. For each pair of nonnegative
integers n and k&, let <% be a cover of F', by open balls, centered
at a point of F',, with radius less than 1/2*™. For each g € .&” define
G, ={gi"™: new}). If De Z(S) thereis a function f€“® such that
if x and y are distinet points of D, at least one of which belongs
to D, then d(x, y) >1/2/™. It is then easily seen that & ={Z,: g€ .9}
satisfies each of conditions A(k), B(k), and C(k).

To prove the implications (4) — (1), (8) — (1), (2) — (1), note that
S includes a closed subspace homeomorphic to Y. Each of conditions
A(k), B(k) and C(k) is hereditary on closed subsets. Lemma 4.9 gives
the desired result.

REMARK 4.11. Example 4.6 shows that Theorem 4.10 does not
hold in general for all metric spaces. The next result improves 4.10
slightly, but the collections of sets are no longer covers.

THEOREM 4.12. If there is a dominating family with cardinality
w, and S is an w.-compact metric space which is the union of w,,
compact sets, there is a collection <& of each type below.

(1) ¢ ={Z,axecw} is a collection of sets of open subsets of
S having the property that if De 2 (S) and U is an open set includ-
ing D, there is an a € ®, such that &, covers D and st(D, &,) € U.

(2) & ={C,aecw} is a collection of sets of open subsets of
S having the property that if De Z(S), there is an «€w, such
that <, covers D and if x and y are distinct points of D, then
8t<x, r§o:> N St(yy Sg&) = @

(3) © ={T.aecw} is a collection of sets of open subsets of S
having the property that if D and E are pairwise disjoint sets,
De 2(S), and Eec <7(S) there is an a € w, such that <&, covers
DU E and st(D, <) Nst(l, <) = @.

Proof. There is a collection {F,: x € w,} of compact subsets of
S whose union is S. For each acw®, the collection {F;: Bea} is a
countable collection of compact sets and if De <2(S) there is an
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« € w, such that {F,;: 3 a} covers D. The construction in 4.10 applied
to this collection yields a cardinality w, collection of open covers of
U{Fs Bea}. Then the family of all collections for all g8 € w, satisfies
each of conditions (1), (2), and (3) and has cardinality ,.

REMARK 4.13. If there is a dominating family of cardinality w,,
then the irrationals—indeed, every metric space which is the con-
tinuous image of the irrationals—is w,-compact and is the union of
a cardinality @, collection of compact sets (see [9]). If CH is false
then the space of Example 4.6 is not the union of a cardinality w,
collection of compact sets.

5. An application for the set of real numbers.

5.1. A scale . which is order isomorphic to the ordinal « is
called an a-scale. Hausdorff in [7] showed that CH implies there is
an o,-scale. The set of rational real numbers is denoted @, the set
of irrational real numbers is denoted P, and the set of real numbers
is denoted R. & will denote the set Z(Q) N Z2(R).

THEOREM 5.2. If there is a dominating family of cardinality
®,, and @, < ¢f(c), then every subcollection o7 of F with cardinality
¢ has a subcollection 227" with cardinality ¢, and such that U o7’
has mo irrational limit point.

Proof. It follows with the aid of Theorem 4.10 there is a col-
lection & = {Z,:aew} of open covers of R satisfying condition
B(w,) and such that for each a, G, is countable and locally finite.
For acw, let ¥, ={V,:new}. For each n,«f, a7, 27, --- are the
points of the set @ N V,. There is a dominating family & with
cardinality w,. For f€.5 define D} = U, {27: ¢ < f(n)}. The set
w ={D%* aecw, and f .5} has cardinality at most w,. Each D% is
a closed disecrete subset of R. Moreover, & has the property that
if Fe s there is an aew, and an f e .9 such that FF < D}. Thus
since 57° has cardinality ¢ and ¢f(c) > w, there is an fe.9” and an
a € w, such that D% includes ¢ members of 57 Let 977 be those
members of £# which are contained in D7.

THEOREM 5.3. Assuming CH, there is a subcollection 57 of F
having cardinality ¢ and such that if 277" is any subcollection of
7 with cardinality ¢, then U 577" has an irrational limit point.

Proof. For each nonnegative integer =, let {x7, 7, a2, - - -} denote
the rational numbers in the interval (n,n + 1). CH implies there
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is an w,-scale .&~2 For each fe.%” let D; = {xr:t < f(n) and n € w}.
Let &7 = {D;: fe . &}. For each subset 57’ of 5~ having cardi-
nality ¢, &' ={fe S D;e 57"} is cofinal in & Hence USZ' is
dense in R.
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