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ON THE MODE OF AN EMPIRICAL
HISTOGRAM FOR SUMS

PERSI DIACONIS AND DAVID FREEDMAN

Suppose S, is a sum of independent, identically distri-
buted random variables, which are integer-valued, with
span 1, and have finite fourth moment. If 7 is large, S,
is approximately normal. An empirical histogram for %
copies of S, will be close to the normal curve provided %>
vnlogn. Suppose now that vV7n (logn)® <k<«n*%. The
object of this paper is to determine the asymptotic joint
distribution of the location and size of the mode of this
histogram. With overwhelming probability, the mode is
unique. Its location and size are asymptotically independent.
The location is asymptotically normal, while the size is
asymptotically double-exponential. For other k’s, the be-
havior changes. Likewise, the behavior changes if the third
moment is finite but the fourth moment infinite.

1. Introduction. The central limit theorem is often used to
explain the approximate normality of an empirical histogram. How-
ever, even if a random variable S, is approximately normal because
it is a sum of n» independent random variables, further theory is
required to explain the global closeness of a histogram constructed
from k independent copies of S, to the normal density. As shown
in [4], if » and k go to infinity in such a way that k/(v nlog n) —
o, then the largest deviation of the histogram from the normal
curve tends to 0. If the histogram is close to the normal curve,
then the maximum of the histogram should be close to the maximum
of the normal curve. In this paper, the object is to obtain the
joint distribution of the location and size of the maximum of such
a histogram. Under suitable conditions on » and #:

- with high probability, the maximum of the histogram is taken
on at a unique location;

- the size of the maximum is independent of the location of
the maximum;

- suitably normalized, the location of the maximum is normally
distributed and the size of the maximum has a double-exponential
distribution.

To be more specific, suppose the X, are independent, identically
distributed, integer-valued, and have span 1

1.1) ged. {J—Fk:j,keC} =1, where jeC iff P(X;=3)>0.
Suppose the fourth moment is finite:
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1.2) E{X}!} < oo .
Let
(1.8) ¢ = E{X}} and ¢* = Var (X)) .

S, =X, +---+X,.

Thus, (S, — ntt)/eV n is approximately normal. Take % independent
copies of S,, and make an empirical histogram for these £ numbers.
In [4] it was shown that if & and % approach infinity in such a
way that k/v'n logm — oo, the empirical histogram converges
uniformly to the normal curve. If k/v n — « but k=001"nlog n),
the histogram was shown to converge pointwise but not uniformly.
Finally, if k¥ = 0V n ), the histogram does not even converge point-
wise.

This result is refined in [6], which obtains the joint distribution
of the location and size of the maximum derivation between the
empirical histogram and the probability histogram, using the growth
condition

(1.4) [V n (log n)! —> oo .

This paper will borrow several results from [5] and [6].

To state the main result of this paper, let N; be the number
of copies of S, which are equal to j. Up to scaling, N; is the
empirical histogram for the k& sums. Let

(1.5) o = (2m)~og="*

(1.6) I = kjoV 2nn

(L.7) m = 0k

(1.8) &, = m~(2log m)~*

(1.9) w,(x) = (2 log 1 —2log log 3 + x>u2
(1.10) o(y) = (27:)-1/28_& exp <——é—u2)du .

The main result can now be stated; the proof is deferred to the
next section.

THEOREM 1.11. Assume (1.1-10). Let k and n tend to infinity,
with k € n*.  With probability approaching one, M, = max; N; s
taken on at o unique index L,. Furthermore, the chance that
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p\/z log el &L, — np) <y and (M, — DV'T < w,(x)

converges to

O(y) exp {71; e}

What is the role of the regularity conditions? Assumption (1.2)
is that the fourth moment be finite. This can be relaxed somewhat,
but preliminary calculations suggest that the conclusions of 1.11
can fail if only a third moment is assumed. For a related discus-
sion, see §4 of [6].

Assumption (1.4) governs the rate at which % and » tend to
infinity. If V" nlogn € k = O[V' n (log n)’], the conclusions of (1.11)
fail: in essence, the scale w,(x) defined by (1.9) must be revised to
account for large-deviations corrections to the central limit theorem.
This can be accomplished using an expansion developed by Kolchin,
Sevastyanov and Chistyakov (1978), in Lemma 5 of their §11.6. For
more details see [2].

If k is of order v/ nlog n, the situation changes radically. The
maximum will not in general be assumed at a unique location, and
its distribution does not converge, but oscillates. For details, see
[2]. Related phenomena are discussed in Anderson (1970) or Iglehart
(1977). We plan to explore the case k& = 0[V n (log n)°] elsewhere.

At the other end of the spectrum, if %k is of order »*?, the
location and size of the maximum are no longer asymptotically
independent; and the asymptotic distribution of the location is
discrete. If %k grows faster than »*2, the maximum can occur only
at one or two locations, with probabilities depending on the arith-
metic properties of ¢, and on higher moments. This will be discussed
in §3.

2. The proof. The object in this section is to prove Theorem
1.11, but first, some heuristics. Let A be a large positive constant
and ¢ a small positive constant, to be chosen later. It is convenient
to distinguish three zones:

2.1) the inner zone, |j — npt| = Am(2 log m)"*
(2.2) the midzone, Am(2log m)"* < |j — npt| < 6oV’ 'n
(2.3) the outer zone, |j — ny| > doV n .

Only the inner zone contributes to the maximum, as will be shown
later. The inner zone can be handled using [5], but some effort is
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needed to get into that framework. Clearly,

NJ"‘"lzN]_ka—}“ka—l

(2.4) = VT [,;Z0; + Vail

where | was defined in (1.6) and p; = P{X, = j} and

(2.5) &z, = oV 2,
(2.6) v.; = V1[0V 2mnp,; — 1]
2.7) Z,; = (N; — k,)|V'kep; .

The Edgeworth expansion shows that
(2.8) a,; =1

(2.9) Vi = — —;—p?(j — )’ m’?

where p was defined in (1.5) and m in (1.7). To get into the frame-
work of [5], choose ¢, so that

(2.10) & \/ZIog L o= yme
€

this is the motivation for (1.8). Of course, ¢, —0 because m =
n*[k"* — oo, due to the assumption that k € #*2. In [5, (1.1)], take -

2.11) Bai = A/,,,-/ Jz log 81 .
The center ¢, is ny, so in [5, (1.3)]

(2.12) tu = el — n) -
In [5, (1.4)], put e,(t) = 1. In [5, (1.5)]
(2.13) B.() = 7.5(t)
where

(2.14) 72 = log m/log 61 — 1
and

2.15) Bt) = -—%p*tz.

Clearly, 3, and 3 take their maximum at ¢ = 0, where they vanish.
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For I, take the interval [— A4, A]. Conditions [5, (1.6-23)] are easily
verified, [5, (1.19)] being the present (1.4): note that

For any ¢ > 0, there is a 6 > 0 such that for » large,

2.16 — __
( ) |j — np|/oV n < 6 entails (1 —¢) <oV 2mnp; <1+c¢.

Now [5, (1.24)] establishes the conclusions of the present Theorem
1.11, once conditions [5, (1. 4-5)] are verified. That is the point of
the next lemma.

LemMmA 2.17. Uniformly over j with t,;€ 1,
(a) a,; =1+ o(1/log 1/e,)
() Buj = Bults;) + o(1/log 1/e,).

Proof. This follows from the Edgeworth expansion. As n—c,
uniformly in j, because there is a fourth moment and the span is 1,

2.18)  oVZnp; = exp (——%-wf,,- )[1 + aHy(,,)/V 7] + 0(1/n)

where

Ln; = (.7 - n/")/al/%

a = tt,/60°
ts = B[(X, — ¢)]
Hy(x) =2 — 3x .

For a discussion of this result, see page 205 of Petrov (1975).

The argument for claim (a) is relatively easy and is omitted.
For claim (b), recall (2.6) and (2.11). An error 7 in estimating
oV'2np; is harmless, provided

VTn/\/Zlog 1

2

= o(l/log sl,, > .

In other terms,

77=o<1/ llog sln)

or from (1.6) and (1.8),
7] — 0[k—1/2n1/4(10g m)—uz]
We claim

(2.19) 1/n = o[k—*n"*(log m)~""] .
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Squaring and reorganizing, the assertion is that
k/n** £ 1/log m
or
1/m* £ 1/log m ,

proving (2.19). In particular, the O(1/n) in (2.18) is harmless.
We claim

2.;/V 1 = o[k~"*n"*(log m)~"?]
uniformly in j with ¢,;€1.

(2.20)

Indeed, z,; = O[n""*m(log m)"*]. Taking fourth powers and reorganiz-
ing, the assertion is that

1/m* = k/n** € 1/(log m)® ,

proving (2.20). Thus, the term in H;(x)/V » is harmless.
Finally, we claim

w:u — 0[k—1/2n1/4(10g m)—1/2]

2.21
( ) uniformly in 5 with £,;e 1.

This boils down to the assertion
E>V n(logm)y?,

which follows from the growth condition (1.4). So exp (—(1/2)x%;)
can be replaced by 1 — (1/2)x%;.
To sum up, (2.18) implies that uniformly over j with ¢,;¢€ I,

(2.22) 0V 2mnp; = 1 — (§ — np)/(20°n) + o[k*n**(log m)~7] .

From this, claim (b) is immediate. O

This completes the argument for the inner zone, and shows
that max; (N; — )}V Tis of order w,(x), where j is restricted to
the inner zone. We must now deal with the midzone, and show
that for any «,

P{max; (N; — DV'T > w,(x)}— 0,

2.23
(2.23) where 7 is restricted to the midzone (2.2).

It will be convenient to make a more general argument, for use in
§8. In particular, k¥ is allowed to be of order »** or more, so m
may converge to a finite limit, or even to zero.
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LEMMA 2.24. Fix ¢ > 0. There is a large positive L and a
small positive 6 such that: for all large n,

L<|j—nyl£éoVn
entails

1 —e)(j — nw?20°n < 1 — 0V 2xnp; < (1 + &)(j — np)*/20°n .

Proof. This follows from (2.18). The remainder term O(1/n)
can be merged into the e(j — np)*/20°n, because 1/n is only a small
multiple of

(J — npe)'/20™n ,

because |5 — npt] is large by assumption. Likewise for the term in
Hyx,,)/V n:

al;, V' 8wV

because |x,;| < d, and x,;/V % is a small multiple of a%; by previous
reasoning. Finally

'exp <——21—w2)—1 + %xg j < —ex?

for |x| <4, if 6 is small enough. O

Recall v,; from (2.6), and the definition of p,! and m from
(1.5-7). With present assumptions, m may converge to 0.

COROLLARY 2.25. There is a large positive L and a small
positive 6 such that: for all large n,

L<|j—nyl<écvVn

entails 0 < a,; <1 and v,; < —p*(7 — np)’/4m’.

COROLLARY 2.26. Fix x and 3 nonnegative. There is a large
positive L and a small positive é such that: for all large m,

L<|j—npl £éoVn
entails
Pla,;Z,; + 7. > —x — m™*B} £ exp {—\'/256} ,
where

\ = plj — nplim .
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Proof. As 2.25 implies, —v,; > \*/4. For L large, A\/8 > x +
m~*R. Then

OpiZp; + Vos > —% — M0

entails Z,; > A\*/8. By [3], this last has probability at most

exp {——égx’/[l + —;—(kpj)*”z)&]} .

We must now get rid of the term (kp,) Y2 In view of (2.16),
there is a & so small that kp; > (1/2)k/cV2zn for all j with
| —np| <60V n. Then

A (0YmP)do’n
and
(kp;)~V2\E < 2Y2(2m)V40%%° < 8

for small 6. O
We can now prove a result sharper than (2.23).

LEMMA 2.27. Suppose k £ n”?, so m — . Then >,; P(N; > l}—0,
where j is restricted to the midzone (2.2), provided A is sufficiently
large and 6 is sufficiently small.

Proof. Start from the identities (2.4-7). The idea is to bound
3% (@t Zu + s > 0},
using (2.26) with x = 8 = 0. The bound is
(2.28) %‘, exp{— 0(j — np)*/256m'} < 2m SA,. exp {— p*u‘/256}du
where for m large,
A, = A@log m** — m~ > %A(Z log m)" .
To verify (2.28), let j, be the least integer exceeding

ne + A,.2log m)“t.

The sum on the left includes all j = j,; the rest of the j’s are
similar and will not be discussed. Due to monotonicity, the jth
term in the sum is at most
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7
S exp {— oKt — mee)256m)dt ,
Ji—1

so our half of the sum is at most
S‘” exp (— Xt — np)/256mdt .
Jo—1

Now make the change of variables u = (¢ — nt)/m. To upper bound
the right hand side of (2.28), multiply the integrand by «® =1 for
m large. Provided p*A* > 2°-256, the bound tends to zero. O

Finally, we must dispose of the outer zone (2.3), and it is con-
venient to do this even if k is of order »n*? or bigger.

LEMMA 2.29. For any 6 > 0, there is a 0; <1 such that, con-
fining j to the outer zone (2.3),
Pimax N; < 6,1} — 1.
J
Proof. The basic idea is that the empirical histogram is close
to the normal curve, and hence falls off quite rapidly. To be more

precise, define x,; as in (2.18). From that result, or the local Berry
Esseen theorem, there is a C < « such that

<CVn

o V2nnp,; — exp (——l—aﬁ”)
(2.30) 2
for all 5.

Fix D > o7"*2r)~"*. By [3, (8)], with probability approaching
one,

N; < kp; + T for all j, where

2.31
(2.31) T = Dk'*(log n)"*/n'* .

We will use (2.30) to force the right hand side of (2.31) below I,
for all j in the outer zone. Indeed, |z,;| = 4, so

exp {—-;—ac‘:‘bj} <6 = exp {—%52} <1,

and from (2.30),
kp; < 0l + o7'(27)"*Ck/n .

But k/n < I, for the latter is of order k/v'n. And T < ! in (2.31),
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because k> V' nlog n. O

3. When k is large. The object in this section is to indicate
how Theorem 1.11 breaks down when %k is of order n*® or larger.
To state the first result, let

y(t) = _;_pz(—ﬁ + ¢t + d), where
(3.1) ¢ = t:/30® and d = (¢, — 30*)/40°
t, = EB{(X, — p)'} and L= E{X}.

Let W, be independent, with common N(0, 1) distribution, for ¢=0,
+1, 2, ---.

For real «a, let L,, and M,, be the location and size

3.2
8-2) respectively of
max (W, + M@ — a)} .
3.3) Let I(x) and F(x) denote the integer part and fractional

part of x.

THEOREM 3.4. Assume (1.1-7), except that (1.4) is replaced by
the condition that k/n** converges to a finite positive limit 1)\
Thus, m — \. Suppose (3.1-3). Suppose, by passing to a subsequence
if mecessary, that F(npt) — a. With probability approaching omne,
M, = max; N; is taken on at a unique index L,. Furthermore, the
joint distribution of L, — I(ngt) and (M, — 1)V T converges weakly
to that of L;, and M,,.

Proof. The argument will only be sketched. Fix a large,
positive number L. The j’s which count are those satisfying
| — npt| £ L. Refer back to (2.4-7). For j = I(ntt)+4 and |i|<L,
the Z,; are asymptotically distributed like the W,. This follows
from (3.17) below.

The Edgeworth expansion (2.18) can be taken out to the term
of order 1/n, which cannot be dropped; but the remainder o(1/n) is
negligible. The conclusion: for |j — ny| < L,

(XM———-)].

3.5
(8:5) Yui — N (G — np) — 0.

Clearly, for |j — npt| < L,
(3.6) ~(j — np) — v — I(ngt) — a) — 0 .
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Thus, the joint distribution of

3.7 QoiZin; + Yait §=I(npt) + 4, [i[|= L
converges to that of

(3.8) W+ 2@ —a):|i| = L.

This completes the argument for j’s with |j — ny| < L. And
max; (N; — 1)/ T over such j’s has a proper limiting distribution.
What remains is to show that j’s with |j — ng| > L do not contri-
bute to the maximum, with probability approaching one as L— oo,
For j’s with |j — ng| > 60V n, Lemma 2.29 applies. For j’s with

(3.9) L<|j—mnpl£d0vn,

Corollary 2.26 can be used. Let 0 <a < . We have to show
that

(3.10) 2 Pla,Zy; + Ve > —w)

3

is small, where j is restricted to satisfy (3.9). Use (2.26) with 3 =0,
to bound (3.10) by

(3.11) 2§ exp {— p'u/256m*)du .
L-1
This is small for L large. O

Note. L,, is discrete; L;, and M,, are dependent. Thus, the
behavior is qualitatively different from that described in 1.11. It
is also interesting that different subsequences can produce different
limits, due to the presence of a, the limiting fractional part of np.

When k increases faster than n®?, the situation changes again.

THEOREM 3.12. Assume (1.1-7), except that (1.4) is replaced by
the condition

n5/2 << k << n7/2 ;

and (1.2) is strengthened to E{ X,|’} <. Suppose (3.1-3). Suppose,
by passing to a subsequence, that v(j — ny), as a function of the
integer j, takes its maximum at the unique integer j = j,. Then,
with probability approaching one, max; N; is taken on at j = j,.

Proof. The argument, like that in (3.4), is only sketched. The
Edgeworth expansion (2.18) must be carried out to the term in 1/n,
with a remainder O(1/n%**) which is negligible. Confine j to the
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range |j — ny| = L. Then a,; —1 and
Vas — V(J — n)m*——0 .

The Z,; are asymptotically independent standard normals, as in 3.4.
An elementary argument shows that for |j—np|<L, max;{«,;Z,;+
Y.;} 1S assumed at j,, with probability approaching one. This max
is essentially

(3.13) Ba/m? + W + o(1)

where B, = v(j, — n#tt) is bounded, and W is standard normal. Note
that B, may be positive, zero, or negative, and m > 0 but m — 0.
In any case, for |j — npt| < L, max; N; is essentially

(3.14) I+ vV T{B./m*+ W + o(1)} .

Since V'T/m* <1, the display (3.14) is of order I, and j’s with
[§ — mge] > 601V n do not contribute to the maximum, by (2.29).
This leaves only the problem of eliminating j’s with

(3.15) L<l|j—mnp Sdovn .
It is enough to prove that for any positive z and g3,

(3.16) 2 Pla,;Z,; + va; > —x — mTS)
J

is small for L large, 5 being restricted to the midzone (3.15). This
can be argued as in (8.4). Since m — 0, the expression (3.11) tends
to zero for any L > 1. However, the bound in (2.25) is valid only
for large L, thus (3.11) can be used as a bound on (8.16) only for
large L. O

If v(j — ng) takes its maximum at two j’s, then max; N; can
be assumed at either one, with probabilities computable from the
Edgeworth expansion. Likewise, if k& is n”* or larger, more moments
are needed, and more terms in the Edgeworth expansion.

It may be useful to give 3.17 in a bit more generality. Let
J be a finite set, and fe¢J. Let zw,;: jeJ U{f} be positive numbers
whose sum is one. Let %k, be a positive integer. Let M,;:jeJ U
{7} be multinomial, with parameters %k, and z,;. That is, k, balls
are dropped independently into boxes labelled by J U {f}; each ball
lands in box ;7 with probability w.; and M,; is the total number in
box j. Let W,; = (M,; — k,7.;)/V' k...

ProposiTION 38.17. Suppose =,; —0 and k,z,;— = for each
jed. Then the joint distribution of W,;: j€J converges weakly to
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that of independent standard normals.

Proof. Fix constants ¢;, and consider S = 3., ¢;W,;. As is
easily verified, S is the sum of %, independent, identically dis-
tributed random variables, each bounded by .,|¢;|/VE,x,; — O:
there is one variable in the sum for each ball. An elementary
computation shows that E(S) = 0 and

Var S = >¢; — %
Y

where
77 =2 Z CjCj'-l/ﬂ',,,ﬂT“j' ’

the last sum extending over j = j/, both in J. But 7 — 0 because
7,; — 0. Now S is asymptotically normal, with mean 0 and variance
> ¢%, for instance by the Berry-Esseen bound. O
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