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THE SATURATION OF k-ANALYTIC RINGS AND
TOPOLOGICAL EQUIVALENCE OF ASSOCIATED
ANALYTIC SET GERMS

ULRICH DAEPP

The objective of this paper is to adapt the theory of
saturation as developed by Oscar Zariski to the case of
k-analytic rings. For the most part & is an algebraically
closed field of positive characteristic. We think that satu-
ration can be helpful in the definition of equisingularity.
The results beneath show that some necessary conditions
for such a task are fulfilled in this particular case. We
do however not go so far as to actually define equisingu-
larity.

In §1 we give definitions and some results concerning k-analytic
rings and their associated analytic set germs. In §2 we apply the
concept of saturation as defined in [18]. In particular, we show
that under certain conditions—which can be met in our framework—
the saturation of a k-analytic ring is defined and is again k-analytiec.
In §3 we show the topological relation between the analytic set
germs associated with a k-analytic ring and its saturation, respec-
tively. This generalizes the results of a paper by A. Seidenberg
[17]. There the same theory is developed in the case k. =C. In
the last section we get some partial results of showing that the
multiplicity of a k-analytic ring and its saturation are the same.
However, some restrictive conditions have to be put on the ring.

Concepts and notations not defined explicitly follow those used
by Zariski and Samuel [20] and [21].

This paper contains part of my thesis. I wish to thank Pro-
fessor W. E. Kuan for suggesting the topic and for his continued
encouragement.

I wish to thank the referee for his or her helpful suggestions
which lead in particular to a better proof of Lemma 2.4.

1. Preliminaries. If k is a field with a nontrivial complete
valuation, then k[[X,, ---, X,]] denotes the ring of formal power
series over k in n variables, k[{X,- - -, X,}] denotes the subring consist-
ing of all convergent power series, see [1] p. 7. By an analytic ring
over & we mean a k-algebra which is the k-homomorphic image of
some convergent power series ring with coefficients in k. A loecal
ring A is called k-analytice if it contains a subring B such that B is
an analytic ring over & and A is a finite B-module. If % is alge-
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braically closed—as will mostly be the case in this paper--then a
ring A is k-analytic if and only if it is an analytic ring over f,
Corollary 1.5, p. 30 of [2].

We will need the following, later on:

LEMMA 1.1. Let &k be an algebraically closed, complete valued
field. Let A be an integral domain containing k[{z, ---, x,}] as
subring where the x;’s are analytically independent. If A is a
Sinite module over kl{x, ---x,}], then A is an analytic ring over k.

Proof. In view of the above remark it is enough to show that
A is local. By Hensel’s lemma as stated in 12.2, p. 95 of [1],
kl{z, ---, z;] is Henselian. Theorem 43.12, p. 183 of |12] gives now
the required conclusion.

We will need the normalization theorem for convergent power
series rings in the following form. (Compare e.g., Theorem 45.5, on
p. 193 of [12].)

LEMMA 1.2. Let k be an algebraically closed, complete and non-
trivially valued field and A a local ring of dimension d.

If A 1s an analytic ring over k and x, ---, €, 1S any system
of parameters of A then k[{z, ---, x}] S A, kl{z,, - -, 241 s k-iso-
morphic to a convergent power series 1ing in d variables and A 1s
a finite k[{x, ---, x,}]-module.

Conversely, if kl{x, ---, 21 S A, A is a finite kl{z, ---, x}]-
module and dim(k[{x,, ---, x,}]) = d, then A is an analytic ring over
koand x, ---, 2, 15 a system of parameters of A.

Whenever we have a complete and nontrivially valued field &
which is algebraically closed and a ring A which is k-analytic then
Lemma 1.2 allows us to write A = k[{x,, ---, z}1 [y, -+, v.]. Here
X, -+, ¥, 18 any system of parameters of A.

We denote by V an analytic set germ at the origin of k. Two
germs V, and V, are topologically equivalent if there are represen-
tatives (V,, U, and (V. U, and continuous maps o: V,-- V., and
Wi Vo —> V, such that @ and @+ are the identity maps on V, and
V, respectively. If in addition ¢ and .» extend to the open sets
U, and U, respectively and are analytic on them then V, and V,
are said to be analytically equivalent. For more details compare
[7], where these concepts are developed in the case k = C.

If A is a k-analytic ring with representation A = k[{X,, - -, X, }H/¥
where F, ..., F; generate ¥ then we can associate an analytic set
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germ of k* with A as follows: Let U be a neighborhood of O in
k* on which F,, ---, F, converge. Let W be the set of common
zeros of F, ---, F, in U. The analytic set germ associated with
A is the class containing the representative (W, U). We denote it
by V,. It does not depend on the particular set of generators we
took. Also, the radical of 2 gives rise to the same set germ. The

analytic set germ does not depend on the particular representation
of A:

LEMMA 1.3. Let k be an algebraically closed, complete and mon-
trivially valued field. If k[{X,, ---, X}/ and E[{Y, ---, Y.}I/B
are k-isomorphic then their associated analytic set germs are ana-
lytically equivalent.

The proof is left to the reader.

The following well known result and its corollary give some
information about the dimension of the ambient space of an analytic
set germ associated with a given analytic ring over k.

LeEMMA 1.4. Let k be a complete, nontrivially valued and alge-
brateally closed field. Let A be an analytic ring over k and y,, - - -, Y,
a set of gemerators for the maximal ideal in A. Then A=k[{y, - - -, ¥}

COROLLARY 1.5. Let k be a complete, nontrivially valued and
algebraically closed field. Let A be an analytic ring over k of
embedding dimension n. We have associated analytic set germs in
E for all 1 = n.

2. Strongly separating systems of parameters. In this section
we will show that a saturation in the sense of Zariski [18] pp. 961-
693 of a k-analytic ring can be constructed. However, certain con-
ditions which will be specified later have to be satisfied. Also, we
will have to choose a suitable field K with respect to which to de-
fine the saturation. The saturated ring is then again k-analytic.

We will need the following lemma:

LEMMA 2.1. Let k be a valued field which 1s perfect and let A
be a reduced analytic ring over k. The integral closure A of A in
its total ring of quotients ®(A) is a finite A-module.

D(A) is the direct sum of fields @A) =F, D --- D F, and if ¢,
is the identity of F, as an element in ®(A), then A is the direct
sum of the integral closures of the Ae.’s in the F’s.
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Proof. Since A is a finite module over a convergent power
series ring we have by [12], 45.6 on p. 194 that A is a Weierstrass
ring and hence is in particular pseudo-geometric. That is, if pe
Spec(A) then the integral closure of A/p in its field of quotients is
a finite A/p-module. The lemma follows now from 19.23, p. 167 of
[1].

The total ring of quotients of a Noetherian ring, and hence of
a ring A which is reduced and analytic over k can be described
more precisely. Namely @(A)=>0(A/p,) B - - P O(A/p,) where p,, ---, p,
denote the minimal primes of A.

We introduce the following definition:

DErINITION 2.2. Suppose A = k[{x, ---, )}y, -+, Yn] where
X, -+, %; is a system of parameters for A and the y, ---, ¥y, are
integral over k[{x, ---, #;})]. The system of parameters z, ---, z; is
said to be strongly separating if there exist m monic polynomials
P(Z) in k[{x;, ---, #}l[Z] such that P,(y,) =0 for 1<7<m and
which are separable considered as polynomials over the field
k({xy, -+ -, 2a}).

An analytic ring over k which has a strongly separating system
of parameters is called strongly separable.

LEMMA 2.8. Let k be an algebraically closed, complete and non-
trivially valued field. Let A be a reduced and equidimensional
k-analytic ring and @A) = F, P --- D F, its total ring of quotients.

&, denotes the unit of F, in ®(A). If x, ---, x; 18 a strongly separ-
ating system of parameters of A then F,; is a finite algebraic and
separable extension of ek({x, -« -, x;}) for 1 =1 =< s.

Proof. We first consider the case where A is a domain. We
have then the following commutative diagram where all maps are
the obvious inclusions.

k({ml’ Ty xd})(yl’ ) ym)

7/ AN
/ AN
k({xly ) xd}) k[{xly ) xd}][yh ) ym]
/
AN /

klfa,, - - -, xa}]

Clea’r]y k({xlp Tty xd})(yly Tty ym) = Q(k[{xly Tty xd}][yly ) ym]) = Q(A)'
The monic irreducible polynomial of ¥, over the field k({z,, - -, x,})
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divides P; which is separable. Hence, 7 is separable.

We can now look at the general case and denote the minimal
primes of A by », -+, »,. We claim that Ek[{x, ---, 2;}] N p; = (0)
for 1<¢<s. To see this we notice that for each p, we have a
chain of prime ideals p,cq, C---Cgq, of length d + 1 in A. Con-
tracting this chain to k[{x, ---, x;}] we get another proper chain in
this ring of length d + 1, hence p, N k[{x, ---, 2] = (0). This es-
tablishes the claim.

Consider the following diagram:

o(A)

N5

k(=) (3)

lle=w

k({x)) K (x)15) Alp, (1))

e

x stands for z, ---, z; and y for y, ---, ¥.. ¥ denotes ¥y + p..
We define the maps in the diagram above as follows:

Ny ail-uimyfl‘ Y+ D) = 3} ailmimgilmg;m .

Since k[{x, ---, ;3] N », = (0) this is an isomorphism. f, is defined
analogously. g¢,(a) = (a + p, ---,a + p,). g, is defined in the same
way. ¢ and h are the natural embeddings. It is clear that all sub-
diagrams commute, except for diagram D.

If P(Z) is an integral relation for v, over k[{x, ---, x;}] then
it is also one for ¥, over the same ring. The special case treated
first shows now that F', is a finite separable algebraic extension of
k({x, -+, 2;}). The lemma will be proven if we show that
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hfe(k({x))) = e.9.(k({a})). But hfe(a) = h(a +p) =0, ---,a +p; -,
0) = efa + oy, -+, @ + D) = &,0:(a).

Our next goal is to show that all k-analytic rings are strongly
separable.

LEMMA 2.4. Let k& be an algebraically closed, complete and non-
trivially valued field. Let A = k[{x,, ---, x,}] be a reduced and equi-
dimenstonal k-analytic ring of dimension d. p,, -:-, p, denote its
minimal primes. There is a k-linear transformation

n
Y, =Zia,.jx,~, 15i1=d,a,;€k
1=

such that vy, ---, Y, 18 a system of parameters of A and the quoti-
entfields O(A/p,) are finite algebraic and separable over e.k({y,, - - -, Ya})
for all 1,1 <4 < s. )

Proof. This lemma is a generalization of 24.5 in [1], p. 201.
The proof given there can be changed to our situation. Therefore,
we will only sketech the proof and indicate the changes. See [1]
for more details.

For each minimal prime p, we set &5 = @®(A/p,). We can then
construct 0 = P(B) = P(---, B;, ---)€ </[B]. Here p = char(k) and
B=-..-- By, --,1<1=<d,1<j=mn are indeterminants. For each
1,1 <1< s one can find 0 = Q,(B) € k[B] such that Q,(a,;) + 0 implies
Pa;;) # 0 where a;;€k. Set Q(B) = Q(B)QxB) --- Q(B). Then
0% Q(B)ek[B]. According to 23.5 of [1] there is a k-linear trans-
formation y, = >3, a;;2;, 1 < i < d, such that v, ---, ¥, is a system
of parameters for all A/p, and hence for A, and also Q(a,) # 0.
Hence Pj(a;;) # 0 for all [. It can be shown that & = &L &k{y,, -,
¥5})). Hence, by Theorem 8 of [20] p. 69, we get that &7 is se-
parable over k({y,, ---, ys}) forall [, 1 <1< s.

THEOREM 2.5. Let k be an algebraically closed and montrivially
valued field. A reduced and equidimensional k-analytic ring is
strongly separable.

Proof. Write A = k[{y,, ---, y}lle, - - -, ©,] where vy, ---, y, is
a system of parameters as constructed in Lemma 2.4. For p € Ass,(0)
we have Irr,, (@, ck({y,, -+, ¥3})) = Z" + @, Z"* + --- the irreduci-
ble polynomial of Z of A/p over ck({y, ---,%s)). Let a;, in
E({y, -+, ya}) be the unique preimage of @, and set P,(Z) = Z" +
ApyZ" '+ ---. Let ¢t be the number of minimal primes containing
x,. Set
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— 12
F.(Z) = ZPE:;%<D>P”(Z) ,

F,(Z),---, F, (Z) are constructed analogously. Onechecks that those
are the required separable polynomials for x, ---, @,.

The central Lemma 2.4 can also be obtained using some theorems
of Scheja and Storch, [16], instead. On the other hand, our Lem-
mas 2.3 and 2.4 show that their seemingly weaker definition of se-
parability and our strong separability are equivalent for the consi-
dered type of rings. Therefore, their result 4.2 in [16] follows
from our Theorem 2.5.

The following example serves two purposes. First, it shows
that not every system of parameters is strongly separating. Second,
it makes apparent that separating with respect to a prime, as used
in [16], and strongly separating are different requirements for a
system of parameters.

ExXAMPLE 2.6. Let %k be an algebraically closed, complete and
nontrivially valued field of characteristic p > 2. X?— X, and
XP? — X, are two prime elements of R = k[{X,, X;}]. Set P=
(X —X)R,Q = (X? — X,)R and [ = PN Q. The example we want
to consider is A = k[{X,, X,}]/I. Setting p = P/I and ¢ = Q/I we
have Ass,(0) = {p, q}. Clearly A is a reduced k-analytic ring, equi-
dimensional of dimension 1. We denote by x, and «, the images of
X, and X, respectively under the natural projection. An easy check
shows that x, is a strongly separating parameter. x, on the other
hand projects to a separating parameter in A/p but to a non-
separating one in A/q.

We come now to the main result of this section. We will use
the notation of saturation as in [18], p. 963.

THEOREM 2.7. Let k be an algebraically closed, complete and
nontrivially valued field. Let A be an equidimensional and reduc-
ed k-analytic ring. Then there exists a system of parameters
®y, -, xg of A such that the saturation of A with respect to
k({x, ---, x3}) is defined. We will denote it by ]1<x1,---,xd)- For each
system of parameters for which the saturation exists it is again a
k-analytic ring of dimension d.

Proof. We first have to check conditions (a) through (e) as
stated in [18] p.962: (a) is part of the assumptions; (b) follows
from Lemma 2.1; for (¢): here K = k({z,, - - -, «,}) and obviously 1 € k.



2178 ULRICH DAEPP

According to Lemma 2.3 it is enough to choose a strongly separat-
ing system of parameters in order to satisfy (d). That we can find
such a system follows from Theorem 2.6. For (e): k[{x,, ---, 2,}] S
ANk({x, -+, 2) = R and that A is integral over R follows from
Lemma 1.2.

Now suppose that =z, ---,x, is a system of parameters for
which the saturation is defined. We denote it by A, and A stands
for the integral closure of 4 in ®(A). From Lemma 2.1 and the
fact that A is Noetherian we conclude that A, is a finite A-module.
From Lemma 1.2 it follows that A, is finite over K[{x, ---, 24}].
Since Ekf{x, ---, x;}] is integrally closed in its quotient field we have
R=AnNk{x, ---,2;}) and it follows from [18], 4.1, p.997 that
Spec(A,) — Spec(A) is radicial. Hence A, is a local ring and
dim(A4,) = dim(4) = d. By the second part of Lemma 1.2 we get
that A, is a k-analytic ring.

COROLLARY 2.8. Let k and A be as in Theorem 2.7. If
Xy, c 0, g 18 @ system of parameters for which the saturation exists
then it 1s strongly separating.

Proof. The proof of Theorem 2.5 shows that Zariski’s condition
(d) implies that the system of parameters is strongly separating.

3. Topological equivalence. As we just have shown the sa-
turation of a k-analytic ring is again k-analytic, provided one takes
a strongly separating system of parameters. As explained in §1,
one can associate analytic set germs with both rings. The purpose
of this section is to show that these germs are topologically equi-
valent.

Suppose we have two analytic rings over k, A and A’, A A’
and A’ is finite over A4, say A" = Aly,, ---, ¥.]. If A =Fk[{z, ---, x,}]
then there is an associated analytic set germ V, in k*. A’ =
E[{x,, -+, %, Y1, -, Yn}] gives then rise to a set germ V, in k*+™,
In this situation we say that V, lies over V,.

If De A then we will write D(x,, ---, x,) for a representation of
D in k[{z, ---, z,}]]. DX, ---, X,) is then the power series which
has the same coefficients as D(x, ---, «,) but has the ring elements
x, replaced by the indeterminates X,. If a = (a, ---, a,) €k" then
D(a) simply means D(X,, ---, X,) evaluated at X, = a,.

LEMMA 3.1. Let k be an algebraically closed, complete and non-
trivially valued field of characteristic p > 0. Let AZ A’ be two
k-analytic rings such that A’ is a finite A-module. Further assume
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that there are De A, D+ 0 and acN such that Da* e A for all
acA’. Then the analytic set germs V, and V,, where V, lies
over V., have representatives (V,, U) and (V,, U') such that above
every ac V, with D(a)+0 there lies one and only one point of V,..

Proof. We first prove the uniqueness: If A’ = Aly, ---, ¥al
then we have Dy? =g, ¢ A for 1<i1<m. We take a set of de-
fining funections for V, and include among them the m functions
DX)Y? — g(X). D(X) and g,(X) are defined as explained previous
to the statement of the theorem. Let a=(a, ---,a,)eV, with
D(a) + 0. Let b and ¢ be two different points above a in V., b=
(@, -, @by -+, b, and ¢c=(a, -+, @, ¢, ---,¢,). Since b and ¢
are in V,, we have D(a)b?” — g,(a) =0 or b2 — g,(a)/D(a) = 0 for
1<41<m. In the same way ¢ — g;(a)/D(a) =0 for 1 <1< m.
Hence b, and ¢; are both solutions of the equation Z?* — ¢ = 0.
Since k is algebraically closed there is sek such that s* = s and
therefore Z?" — r = (Z — s)** = 0. Hence the equation has only one
solution and we conclude that b, =¢; for 1 <1 < m, which shows
that b = e.

It remains to show the existence. If A’ =k[{X,, ---, X,, Y, ---,
Y /B let Fi(X,Y), -, F(X,Y) be a set of generators for B.
Since A’ is a finite A-module we may assume that F(X, YV)e
E[{X}][Y]. Take p big enough such that

[DX)PIF(X, [9X)/D(X)}", - -+, [9.(X)/D(X)] )"
= G(X)ek[{X)] for 1<i<s.

We let U/ = {(b, -, bysm) €k"™]|b;| < €}. We choose ¢ small enough
such that all F(X, Y),1<7=<s converge on U/ and consider
(Vy, U!). Now let @ > 0 such that w < ¢, [g,(a)/D(a)]”* < ¢ for all
1,1 <1 < m whenever ac U, ={(a, ---, a,) €k"||a;] < ®} and such
that all G(X),1 <17 =<s and D(X) are convergent on U,. We can
now include the G, (X) among the generators for an analytic set
(Vy, U,). If ae V,and D(a) # 0 then we let b = (a, [g.(a)/D(@)]*"", ---,
[9.(@)/D(@)]”™ ). beU. and [F,b)]"* = Gya)/D(@) =0 for 1 <4< s.
Hence F,(b) = 0 which implies that be(V,, U,).

We now state two lemmas which are well known in the complex
case. We will point out at the end of this section why the usual
short proofs will not work in this case (see Theorem 3.6).

LEMMA 3.2. Let k be an algebraically closed and valued field.
Let 1=m=n and «,, -+, a, €k ordered such that |a,| < --+ < |a,,].
Then there is a nonnegative real valued function @, on (RY)™ such
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that the following two conditions are satisfied:

(1) |anl < @uty, -+, t,) where t,=|s,—(a, -+, )| and s;
denotes the jth elementary symmetric polynomial.

(2) @u(x, -+, 2,)—0as 2,—0, ---, 2, —0.

A proof can be found in [10], pp. 102-104. Kneser proved the
lemma there only for k4 = C. But the reader checks easily that the
proof works for any algebraically closed and valued field.

COROLLARY 3.3. Let k be an algebraically closed and wvalwed
field, fi(x) = 2 + a,—x2" ™ + -+« + a,and fo(x) = " + b,— 2" + -+ -+ by,
a;, b;ek. Denote the roots of f, by x, ---, %, and suppose c¢ is a
root of f, of multiplicity m. Then for every € > 0 there is a 6 > 0
such that if |a;—b,]<08,0=1=<n—1, then |z —c|<eg ---,
[, — ¢| < e after appropriate enumeration of the roots of f.

This follows from the lemma above. A detailed proof is in [4],
pp. 33/34.

We are now equipped to prove the following theorem.

THEOREM 3.4. Let A = k[{z, ---,2,}] and A =k[{x, ---, ®,,
Yy ***y YUn}] where kb is an algebraically closed complete and non-
trivially valued field. Suppose that

(1) A’ is a finite A-module and A< A'.

(2) A’ is reduced.

(8) A is a radicial extension of A.
Let V, and V. be associated analytic set germs im k* and k**™
respectively. Then there are representatives (V,, U) and (V,, U')
such that the projection w: k"™ — k» induces a homeomorphism on
the analytic sets.

Proof. If char(k) = 0 then k& = C and the theorem is identical
to Theorem 9 of [17], p.429. Hence we assume throughout the
proof that char(k) > 0.

Let P, ---, P, be the minimal primes of A’. Since A’ is reduced
PNn---NP,=(0) is an irredundant primary decomposition. Let
p; = P,NA, then (0) = p,N---Np,. Suppose we could leave out one
of the primes, say p,. Then p,Dp,N--- NP, and we have p, 2 p, for
some 1,2 < 1<s, say p, 2 p,. By the going up theorem, [3], 5.11,
p. 62, there is a prime Q in A’ such that P, @ and QN A = p,.
Since the extension is radicial we have @ = P, and hence P,S P,
which is a contradiction. This shows that p, ---, p, are exactly
the minimal primes of A and A is therefore also reduced. We have
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now @(A) = 9(A/p,)D- - -DP(A/p,) and @(A") = O(A'[P)D- - -DO(A'/P,).
The map (a + p)/(b + p;) — (a + P)/(b + P;) determines a natural
embedding of @(A) in @#(A").

Next we show that there are analytic sets (V,, U) and (V,, U’)
such that above every point of V, there lies exactly one point of
V.. Hence the projection is a bijection between (V, U) and
(VN (Uxk®), UN(UxEk"). We will show this by induction on the
dimension d of A. Suppose d =0, then (V,, U) and (V,, U’) both
contain only the origin and the statement follows trivially. Let us
now assume that d > 0 and that the existence of two sets lying
above each other in the required way is established for all smaller
dimensions. Since A A’ C 0(4’) we can write A’ = 3! Aa, where
a; € O(A"). Since the extension is radicial, each @®(A’/P;) is purely
inseparable over @(A/p;) and hence there is an we€ N such that
a?” = rfs;e O(A), r, s;€ A, for all 1,1 <1<t Let D=T]is;€A.
Then D+ 0 and Da** e A for all ac A’. By Lemma 3.1 we can find
(V4 U) and (V,, U’) such that there is exactly one element in V.
above each element ae V, if D(a) # 0. We consider the analytic
subset of V, on which D vanishes. Let I’ =rad(D-4"),I=1"NA4,
A= A/l and A’ = A’/I'. Clearly, (1), A’ is a finite A-module and,
(2), A’ is reduced. But also (3) holds, the extension A< A’ is
radicial. For suppose p € Spec(A4), then it corresponds to some ¢
Spec(4) with ISp. If P and Q are primes in A, PNA=QNA=1p
then consider the corresponding primes P and @ in A’. Now PN
A=QnNA=75. This contradicts the radiciality of A’ over A, hence
there is at most one prime above p in A’. Further we have A/p =
A/p and A'/p = A’/P. Since A/p — A’/P is purely inseparable so is
A/p — A’/P. In conclusion we have that Spec(4’) — Spec(d) is
radicial. Since D is not a zero divisor in A’ we have dim A’ <
dim A’. By the induction hypothesis we have two sets (Vi, W)
and (Vz, W’) which lie above each other in the required way and
therefore do the sets (V,, UNW) and (V,, U' N W').

It remains to show that the projection restricted to the ana-
lytic sets and its inverse are topological maps. For the projection
this is clear and for (x,, ---, x,) — (@, -, ®,, Yy, ***, Yn) this follows
fairly easily from Corollary 3.3. For details see [4], pp. 37/38.

The main theorem of this section follows now easily.

THEOREM 3.5. Let k be an algebraically closed, complete and
nontrivially valued field. Let A be an equidimensional and reduced
k-analytic ring. Let x, ---, x; be a strongly separating system of
parameters of A and A, the saturation with respect to this system.
Then the two associated analytic set germs are topologically equi-
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valent.

In fact, the homeomorphism can be induced by the natural pro-
jection of the ambient spaces if the representations of the rings are
chosen so that the associated set germs lie above each other.

Proof. By Theorem 2.7, A, is k-analytic and hence a finite
k[{x}]-module. This shows that A, is finite over A. Since 4,Z@(A)
and A is reduced, we conclude that A, is reduced. The fact that A,
is radicial is proven in Theorem 4.1, [18], p. 997. We can now apply
Theorem 3.4 and get the second half of our theorem. Lemma 1.3
shows that the particular representation of the ring does not mat-
ter and therefore finishes up the proof.

Lemma 3.2 and the part in the proof to Theorem 3.4 which es-
tablishes the continuity of the map can be proven much more easily
in the case when &k = C. The shorter proofs are based on the fact
that every bounded sequence in C has a convergent subsequence.
The following theorem shows that we do not have this faet avail-
able in our situation and that we can therefore not hope to adapt
the usual proofs.

Recall that a space is called sequentially compact if and only if
every sequence has a convergent subsequence.

THEOREM 3.6. Let k be an algebraically closed, nontrivially
valued field of positive characteristic and let A, = {xek|z| < a},
where ac R*. Then A, 1s not sequentially compact.

Proof. Since A, is metric it is paracompact; see [5], p. 186,
Theorem 5.3. By [9], p. 162, E), part (d), A4, is sequentially compact
if and only if .it is countably compact. The latter is the case if
and only if A, is compact, [5], p. 230, Corollary 3.4.

Now suppose A, is sequentially compact and hence compact.
Then % is locally compact, since addition is continuous. Since
char(k) > 0 the valuation is nonarchimedean and from Theorem 1 of
[14], p. 245, it follows that the valuation is discrete, that is [k — {0}
is a cyclic subgroup of the positive real numbers. Say |x| is a
generator of this group. We can assume that |[x| > 1. It is easy
to see that |#| = min{|y| > llyek}. Since k is algebraically closed
there is a €k such that o* =2z and therefore 1 <|a| < |z|. This
contradiction shows that A, cannot be sequentially compact.

4, Multiplicities. Another necessary condition for equisingu-
larity, an algebraic one, is that the local rings have the same mul-
tiplicity. This requirement is discussed in this section.
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Recall that % and <Z are two ideals and A £ .<Z then U is said
to be a reduction of <& provided we can find a positive integer 7
such that A" = A+

THEOREM 4.1. Suppose k is an algebraically closed, complete
and nontrivially valued field. Let A be an equidimensional and
reduced k-analytic ring. Suppose x, ---, 2, 18 a strongly separat-
ing system of parameters and the ideal it generates is a reduction
of the maximal ideal of A. Denote by F} the least Galois extension
of k({x,, - - -, x;}) which contains ®(A/p;), where {p,, ---, p,} = Ass,(0).
Further assume that char(k) and [Ff:Ek({x, ---, 2;})] are relatively
prime for all 5,1 < j<s. Then A and A, have the same multi-
plicity.

One can adapt the proof of Theorem 4.1 of [19], pp. 455-460.
In our case one has to use Theorem 1 of [13] to show the validity
for nondomains directly. The possibility for that is already remark-
ed on p.460 of [19]. Some other small changes are necessary but
they do not justify the reproduction of this long proof here. For
a completely written out proof in our case, see [4], pp. 42-48.

Recall that the system of parameters =z, ---, x; of a local ring
(A, m) is said to be transversal if e((x, ---, z,)A) = e(m).

COROLLARY 4.2. Let k be as im Theorem 4.1. Let A be a

k-analytic integral domain. Let x, ---, x; be a (strongly) separat-
ing and transversal system of parameters. Denote by F'* the least
Galois extension of k({x, ---, x5}) which contains @(A). Suppose
that char(k) and [F*:k({x, ---, x})] are relatively prime. Then

o(A) = e(4,).

Proof. The statement follows from Theorem 4.1 if we can show
that (x, ---, #;)A is a reduction of the maximal ideal in A. This
follows from [15], p. 16, Theorem 3.2, if we can show that all mini-
mal primes in the completion of A are of dimension d = dim(A4).
Theorem 44.1 of [12], p. 188 shows that A is analytically irreducible,
that is, the completion is even a domain.

It is not known to me if anything can be said about the multi-
plicity if the parameters do not generate a reduction of the maxi-
mal ideal. The same question was raised in [19], p. 460 for the
characteristic zero algebroid case. However, there are nontrivial
cases to which the above theorem applies. To show this, is the
purpose of the following example.
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ExampLE 4.3. This is a ring satisfying all conditions of Corol-
lary 4.2 and having nontrivial saturation. Let % be an algebraically
closed, nontrivially valued field with char(k) > 8. We consider A =
E{X, YI)J(Y* + Y* + X*+ 2XY). It is easy to check that 4 is a
domain and dim(4) = 1. We write ¢ and y for X and Y modulo
the relation. m = (x, ¥) is the maximal ideal and « is a system of
parameters since m*<(x). Hence A = k[{x}][y] where ¥* + ¥* + 2xy +
2> = 0. () is a reduction of m since m*x) = m®. One also checks
that it is (strongly) separating. f(Z) = Z° + Z* + 2xZ + a* is irre-
ducible in k[{x}][Z] and hence in k({x})[Z]. Therefore [@(A): k({x})] =
[E({xh)(¥): k({x})] = deg(f(Z)) = 3. F* is the splitting field of f(Z)
over k({x}), hence char(k) and [F'*: k({x})] are relatively prime. That
A is not saturated can be seen as follows: If it were saturated
then A were an Arf ring since dim(4) =1 and A is Cohen-Maca-
ulay, [11], p. 682, Corollary 5.3. Then we would have dim,,,(m/m?*) =
e(4), by [11], p. 661, Theorem 2.2. Since (Y* + Y* + 2XY + X*) <&
(X, Y)* and K[{X, Y}] is a regular local ring of dimension 2, we
have dim,,(m/m?) = 2. To calculate the multiplicity of A we use
[21], p. 299, Corollary 1 and get e(xA) = 3. Since (x) is a reduction
of m = (x, y) we have e(4) = 3. This contradiction shows that A is

not saturated.
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