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FUNCTIONS OF TRANSLATION TYPE AND SOLID
BANACH SPACES OF FUNCTIONS

REINHARD BURGER

Functions of translation type were introduced by H Reiter
and studied by the author in some detail. In this paper we
introduce a class of Banach spaces of functions on a locally
compact group, including the spaces ~^P{G) of Liu-van
Rooij-Wang Necessary and sufficient conditions are given
under which these spaces can be characterized by functions
of translation type. As application it is shown that a sub-
class of these spaces, including Wiener's algebra, satisfies
a certain minimality property. Furthermore, we obtain a
generalization of a theorem on Fourier transforms, due to
Edwards-Hewitt-Ritter, in a very simple manner, whereas
the original proof took several pages.

Our notation follows that of [13]. G always denotes an arbitrary
locally compact group with left Haar measure dx. For a measurable
set MaG let \M\G be the left Haar measure of M. ΔG denotes the
Haar modulus of G.

We write ^(G) for the linear space of all continuous, complex-
valued functions on G, ̂ °(G) for the Banach space of all continuous
functions vanishing at infinity with the norm ||/||oo = supβeσ |/(α;)|
and *5Γ(G) for the subspace of all functions with compact support
(supp). L]0C(G) denotes the space of all locally integrable functions
on G. As usual measurable functions coinciding locally almost every-
where (l.a.e.) shall be identified. The spaces LP(G) have the usual
meaning. The left [right] translation operators Ly[Ry] are defined
by Lyf(x): = f(y~1x)[Ryf(x): = f(xy)] We call two functions wx and
w2 equivalent (l.a.e.), Wi~w2(l.a.e.) if there exist constants Cu C2 > 0
such that CiW^x) ̂  w2(x) ^ C2w1(x)(l.B..e.). ΦΛ shall denote the char-
acteristic function of the set A. Given a measurable, locally essential-
ly bounded function w on G, (LUG), || \\ltW) denotes the space of all
measurable functions f on G such that fw is in L\G) with the norm
11/Hi,w: = \\fw Ili This space is a Banach convolution algebra if and
only if w ~ wx l.a.e. for some w1eL\0C{G) satisfying 0 < wλ < °o and
Wt(xy) ^ Cw^wάy) for all x,yeG (cf. [9]). Moreover, UW{G) possesses
bounded approximate left units since ^Γ(G) is dense in Ll(G).

Throughout this paper we shall always consider Banach spaces
(B(G), || ||B) of measurable functions, continuously embedded into
Iλoc(G) and satisfying the following conditions:

(Bl) B(G) is left invariant, i.e., Ly defines a continuous linear
operator on B{G) for every y e G.
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(B2) B{G) is a solid Banach space of [continuous] functions, i.e.,
feB(G) and \g(x)\ S 1/0*01 l.a.e. for any measurable [continuous]
function g implies geB(G) and ||ff||B<l | | / |U

(B3) B(G) is a Banach convolution module over some Beurling
algebra Ll(G), i.e., heL)v(G) and feB(G) implies h*feB(G) and

REMARK 0.1. (i) Each Banach function space satisfying (Bl) —
(B3) contains S?~(G) as a subspace (cf. [6]).

(ii) If 3ίΓ(β) is dense in B{G) then the map y -> Lyf is con-
tinuous for each yeG and feB(G) (cf. [6]).

(iii) The continuity of the map y —> Lyf is equivalent to the
fact that B(G) satisfies (B3) with w(y): = max(l, ||LJU) and that
Li(G)*B(G) is dense in B(ff) (cf. [7]). Thus, if especially \\Ly\\B = 1
for all yeG, B(G) is an essential Banach convolution module over
L\G).

(iv) If there is a constant C such that \\Ly\\B<*C holds for all
ΐ/eG one can choose an equivalent norm || | |i on B(G) such that
\\Ly\\B = 1 for all y$G, in particular we have \\Lyf\\'B = | (/ | | i for
all feB(G).

L Functions of translation type* Basic results* Functions of
translation type were introduced by H. Reiter in [14] to show certain
functorial properties of the space @(G) of Schwartz-Bruhat functions.
Their properties are discussed in some detail in [2] and [3]. Let us
shortly recall the definition and derive some results that will be used
in the proof of our main result.

DEFINITION 1.1. A continuous real-valued function ω.G^R,
ω ^ 0, is called a function of [left] translation type if it satisfies
the following condition (V) [(V^)]:

There is an open, compactly generated subgroup G(ω) < G with
the property that for each compact set K c G(ω) there exists a
constant Cκ > 0 such that ω(xa) ^ Cx(£>(ίc)[ft)(α~1cc) ^ Cκω(x)] holds for
all xeG and each aeK.

By V(G)[VL(G)] we shall denote the cone of all functions of [left]
translation type. Furthermore, we put VB(G): = V(G) Π B{G) and we
write VP(G) and V^W{G) if B(G) = LP(G) or UW{G) (analogously Vϊ(G)
and Vtw(G)). Moreover, we denote VB(G)Γ\ V£(G) by V?(G).

REMARK 1.1. (i) Each ωeVB(G) has a representation of the
form ω = Σ ^ i L V n ω n with yneG and ωne VB(G), ωn(x) =£0<=>χeG(ω).

(ii) If G is connected one has to choose G(ω) — G.
(iii) A discrete group G is not of interest for the considerations
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of this paper, since in this case we may choose G(ώ) — {e} and hence
V ?(G) = B(G).

LEMMA 1.1. Let ωeLι(G), ω ^ 0, be given such that ω satisfies
(V) [(F z)]. If ke.9ι?l(G) such that supp & c (?(<#) then ω ~ ω*k and
ω*ke V\G)[Vl(G)].

Proof. We shall only consider the case (V) since the other case
is even easier.

It is obvious that ω*k is a continuous, positive function in L\G).
If we denote K: = supp k, we get:

ω*k(x) = \ AG(y~ι)ω{xy~ι)k{y)dy ^ Cκ-i I AG(y-1)k(y)dy-ω(x)
}κ )κ

and

ω(x) = C'

= C2-ω*k(x)

and hence α>*fce F ](G).

LEMMA 1.2. Lei p be a locally essentially bounded function on
G satisfying p ^ 0 αwcί (̂x^/) <̂  p(x)p{y). Then for every function
ωγe Vτ(G) we can find some a) e Vj{G) such that ω-p ^ co1 holds.

Proof. Let F c G be a symmetric, compact neighbourhood of e
and let Gr be the open subgroup of G generated by V. Then there
exists a constant p>l such that | Kn\G ^ \K\G-pn, n eN (cf. [11]).
Moreover, the existence of a constant q > 0 satisfying

sup {|θ(α) I α e V'1} ^ g7i

follows from the assumptions imposed on p. If we choose now a
constant a > max{p, <?} the function g(x): — Σ?=i a~nΦvn\Vn~ι(x) satisfies
g(y~ιx) ^ α r̂(ίc) as well as gixy) ^ ag(x) for all x e G and each i / e 7
and hence the properties (V) and (VL) are satisfied for G(g) = G\
Moreover, it is obvious that g{x)p{x) ^ 1 holds for all x e G. Using
Lemma 1.1 we get for any ke,9Γ+{G) with suppfccG1 ': g*k — # and
</*/be FZ^(G). If we choose now ωλe V}(G) and putα>: = ωX'(g*k) we
derive ω-p ^ ωλ-(g*k)-p ^ C'-ω^g-p ^ Cf ωx. Since α> e Fr(G) the
proof is complete.

COROLLARY 1.3. Let G be an arbitrary locally compact group.
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Then we have: V?(G) Φ {0}.

Proof. Due to Lemma 1.2 there exists a nontrivial function
ω e Vι'*(G). Hence, by Lemma 1.1 ω*k e F*(G) for each k e 3T+(G) c
B(G) with suppfccG(ft)).

LEMMA 1.4. // JίΓifϊ) is dense in B{G) then VB{G) is dense in

Proof. For every feB+(G) there exists some keJ>t~+(G) such
that \\f — k\\B < ε/2. Moreover, choose some ωe VB{G) with \\o)\\B <
ε/2 and suppkcsupp ft). Then it is easily seen that ω': — ω + ke
VB(G) a n d h e n c e \\f - ω'\\B < ε .

REMARK 1.2. (i) The left version of Lemma 1.2 will be used in
a crucial way in order to prove our main theorem.

(ii) Vhw(G) is dense in (L\,)+(G).
(iii) If JTXG) is dense in B{G) and \\Ly\\B = 1 for all yeG then

F^(G) is contained in ^°((τ). Since the proof is essentially the same
as the proof of Proposition 1 of [2] it is omitted.

II. The main results* Let us begin with the following de-
finition:

DEFINITION 2.1. (i) ?&B(G): = {/ e ̂ (G) | there exists some ωf e
V\G) with |/ i ^ft)/}.

(ii) Let ge^Γ(G\ g Φ 0, and put p(χ): = ||(L.flr)-/Hoo. Then
we define: ^B{G): = {/ 6 ίT(G) | / ' e B(G)}.

(iii) ^ ( G ) : = { Π / 6 ^ / ( G ) } .
If B = Lp we shall write ^(G) and ^C?(G). If £ = L1, we write

and

THEOREM 2.1. ^/fg

B{G) is a Banach space with the norm \\f\\^B): =
H/̂ IU that is continuously embedded into B(G) and satisfies (B1)-(B3)
with respect to each Banach algebra L\(G) that acts on B{G).

Proof. It is obvious that || \\{B) is a norm and that ^£g

B(G) is
a Banach space with this norm, continuously embedded into B(G)
and satisfying (Bl) and (B2). To show (B3) let heLi(G) and fe

be given. Then

(h*f)°(x) = \\{Lxg).{h*f)\U ^ \
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holds and hence ||fc*/H<B> ^ ll&iUII/IU).

Moreover, we shall use the following uniform partition of unity
that was introduced by H. G. Feichtinger in [8] in a more general
form. Let V = F"1 be an open, relatively compact subset of G. Then
there exists a subset Y = {t/J i e zcG such that

( * ) G — \JytV and sup |{%\x e ytV}| ^ C < co
iel xeG

holds. Furthermore, there exists a bounded partition of unity {φι)ieIci
i f °(G), i.e.,

Σ φJLx) = 1 and sup | | ^ |U ^ C < oo ,
is/ iel

such that supp^c^F, ieI.

REMARK 2.1. (i) The spaces 3?P(G) where introduced in [2] and
the spaces ^£gp(G) in [12]. In [12] the independence of the spaces
^€g

p(G) of the function g was claimed but the argument used there
fails, if no additional properties—related to commutativity—are im-
posed on G. In Theorem 2.4 we shall give necessary and sufficient
conditions for the independence of g. In the case B{G) = LP(G) it
turns out that the spaces ^g

p{G) are in fact independent of the choice
of the function g for arbitrary G. Moreover, this theorem shows
that %$B(G) = ^/£g

B(G) if and only if these conditions are satisfied.
Furthermore there will be given an example of a Banach space
satisfying (B1)-(B3) such that ^?g

B{G) is not independent of g.
(ii) In [2] it was shown that f8\G) = W\G) holds, where W\G)

denotes Wiener's algebra as introduced by H. G. Feichtinger in [5]
and, using the main result of [5], 9SP(G) = ^Jtg

p(G) was derived. Our
main theorem gives a direct proof of this result, as well. It seems
to be worth noticing that it is possible to give a characterization
of the Banach space ^€g

B(G) in terms of functions of translation type
without the direct use of a norm.

(iii) The spaces ^€g
p{G) were considered by various authors

using other but equivalent definitions (cf. [1], [4], [5], [10], [15]).
Using the terminology of these authors we have successively: ^£gp{G) —

G) = Z,(G) n £f (G), ^/ίg\G) = WX{G\ ̂ t*(R) = (if °, P) and
, lp). In all these cases except in [5] G is supposed to

be abelian.

LEMMA 2.2. Let VaG and {2/J ίeIcG be given such that (*)
holds and let (φdiei be a partition of unity corresponding to the
covering (ytV). Then each ωe V\G) satisfies
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Proof. II φtω \U = s u p β e Γ | φ^y^ωiy.x) \^\\ψi \UCva){yi) = C

and therefore Σ< e 111 ΐ̂<*> IU ̂ C χ ΐ e J α>d/<). Furthermore supa 6 G \ {i \ x
<: C" implies Σie/Φ^r ^ C and hence

Σ ί f(x)dx ^C'λ f(x)dx
iel JyiV JG

for each feU+{G).
From this relation we derive:

Σ
i e /

LEMMA 2.3. For αίZ ge<5Γ(G), g Φ 0, we have W(G)cL^?g\G).

Proof Let / 6 %>B(G) with | /1 ^ ω and ω e VB(G). Then ω'(x) =
^ ) α)|U = sup{|flr(y)α>(a?2/)l, yesxxppg} ^ C^H^IUft)^) and | | / | | ( B ) ^

| |α>| | ( B ) ^ C||α>|U < oo since J8(G) and ^g

B(G) satisfy (B2).

Now we are able to prove our main theorem.

THEOREM 2.4. The following conditions are equivalent.
(1) RaB»<zB and p(a): - sup {|ί(βo/1U/ll/ 9IU), / e ^ / ( G ) } is

locally bounded for all g 6 J%^(G), g Φ 0.
( 2 ) SS5(G) = ^jζB(ff) /or αM <? e J Γ ( G ) , g Φ 0.

(3) ^y£r

g

B{G) is independent of the choice of the function g e
<%Γ(G), g Φ 0, α^d different functions g yield equivalent norms.

Proof. (1)=>(2) We have to show that to every f e ^
t h e r e e x i s t s s o m e ωfe VB(G) w i t h \f\ ^C-ωf,C < oo.

Since p is locally bounded, strictly positive and satisfies p{xy) S
p(x)p{y) we can choose functions ω, ωLeV}>(G) such that ω-p<*ωί

holds (Lemma 1.2). If we now put:

ωf(x): = \\(Lxω)-f\U

we obtain:
( i ) I/(a?) I = C |I/.ω(a?)/(α?)| ̂  C % W .
(ii) α)/ is continuous and a)f ̂  0.
(iii) α)/(α?α) = ||(Lββω) /||oo - suVyeG \ω{a~ιx~ιy)f{y)\

^ sup^β l ^ " 1 ! / ) / ^ ) ! - ^ = Cκ-a)f(x) for all xeG.
(iv) Without loss of generality we can assume that supp^ con-

tains an open, symmetric neighbourhood V of e satisfying g(v)-C ^ 1
for all vβV. Now choose a set {yi}ieIczG such that (*) is fullfilled
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and a corresponding partition of unity. Then we have:

265

Now Lemma 1.2 and Lemma 2.2 yield:

II ωf |U ^ C Σ II 9>*ω lU II Rn{fg) IU ^ C "
i / /

U

Hence ωfe VB(G) and j / | ^ ωf.
( 2 ) => ( 3 ) is a simple application of the closed graph theorem.
( 3) ==> ( 1 ) Let g e ,%^(G) be given and Kc G be compact. Then

there exists /ι e . 5 ^ (G)
C ϋ/^IU for all fe
supα 6 / c ||J2α(/ff)ίU ^ C lj/^
bounded.

such that supαejfi: | Lag \ ̂  h and || fh \\B ^
we obtain
p is locally

(G) = ^tfh

B(G),C<oo. Thus
for all fe.,/?fJ(G) and hence

From now on we shall always assume that the conditions of the
above theorem are satisfied and therefore we shall write ^/fr'(G)
instead of ,^f/(G).

COROLLARY 2.5. %iπ(G) is a Banach space with the norm \\ \\ΛB)

and satisfies the conditions (B1)-(B3).

- {/ e a?(G) ( /* e B(G)}.

REMARK 2.2. The following statements are easily derived from
Theorem 2.4.

( i ) If A e 9S}.(G) then we have ,^β

(ii) If ΛrB* c B.iG) c B2(G) then ^
(iii) The spaces lp(Lq) of measurable functions being locally in

Lq and globally in lp (cf. [1], [10], [15]) satisfy of course the condi-
tions of our theorem. Especially l\cέ'°) = ^//p holds (cf. [1]). It
is easy to see that also ,,/fp = ^TlPm holds.

At the end of this section we shall introduce a new family of
Banach spaces satisfying (B1)-(B3) that will give us an example of
a Banach space that does not satisfy the conditions of Theorem 2.3.

For a continuous function f on G and a closed subgroup H < G
f/H shall denote the restriction from / to H. For simplicity we
write H//J2ΊI, instead of \\f/H\\LHlI).

DEFINITION 2.2. Let 1 <; p ^ Then we define
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E'(β, H): = {/ 6 L"{G) (Ί <ίro(G) I sup II {Lxf)IH\l < 4 .

THEOREM 2.6. EP(G, H) is a Banach space with the norm

U,/. = 11/ II, + II/IU + sup
G

satisfying (B1)-(B3) with respect to L\G).

Proof. It is a matter of routine to check that EP(G, H) is a
Banach space and satisfies (Bl) and (B2). Moreover, even \\Lyf\\EίP =
11/IU.P holds. Now let feL\G) and geEp(G,H) be given. Then
we have

|| (Lx(f*g))!H\l ^ i ( I £./(») I I Oiv-'h) I df/eZΛ
J// JG

= ί |L,/(y)|ί \g(y-1h)\dhdy^ \\f\\rBχιpUL1lg)/H\\1.
JG JH yeG

and hence ||/*βr|Ufl> <; | | / | | r | |^IU, P .

EXAMPLE. Let us consider the space E°°(G9 H), where G denotes
the "ax + 6"-group, i.e., G = {(a, b)\a, beR, a > 0} with multiplication
(α, b)-(a\ b'): - (αα', α6' + 6) and if: = {(dn, 0)\neZ,d fixed}, where
d will be chosen in a appropriate way. Then H is a non-normal
subgroup of H.

Now let g, k e J^.(G) be given such that #0) ^ 0 and A (e) Φ 0,
and let JEΊ: = supper and K2: = suppfc. If furthermore, c = (clf c2),
c2 ^ 0, is given and cn: — (dn, 0) (cl9 c2) then a simple computation
shows that c? can be chosen such that

( * ) K2cnKzΉ Π KzCnKrΉ = 0 holds for all n, m ^ 1, n Φ m .

Now define /(a?): = Σ«si (lM)i2c-ifc(x). Then we have

)/ |U = Σ

due to (*) since supp(/3) = (J^i ^c^T1 and hence /, fae^°(G).
Moreover (*) implies

1
\\(Lxf)/H\\1 ^ g(e) 1\\(Lx(f9))/H\\1 ^ g(e) x sup—1| (Lx~ihg)-(Rc-ίk) W^

hίϊi n

^ t f O r i l i H U I & I U f o r a l l xeG .

Therefore we have /, /ffeJ?°°(G, H). On the other hand we have:
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i ^ Σ/'(O = Σ -
£1 £l %

since {(dw, 0), n^l}cffnsupp(J?β(/')) and g(e), k(e)Φθ .

Thus / and f9 are functions in E°°(G, H) such that Re{f9) is not in
E°°(Gf H) and hence the space E°°(G, H) does not satisfy the condi-
tions (l)-(3) of Theorem 2.4.

Ill* Applications*

THEOREM 3.1. 331>W(G) is the minimal space in the family of all
Banach spaces satisfying (B1)-(B3) with respect to UW(G).

Proof Let /e9S l w (G) be given. By Remark 1.2 (resp. Lemma
1.4) VltW(G) is dense in (Lι

w)+(G) and hence, given ε > 0, there exists
ω e VUW(G) such that | / | ^ ω and \\ω\\1>w ̂  | | / ] | 1 ) W + ε. Choosing any
i e ^ G ) such that supp A; is contained in the component of the
identity (which in turn is contained in G(ω)), Lemma 1.1 yields ω ^
Ck (ω*k) and Ck does not depend on ω. Thus we get

I I / I U £ \ \ ω \ \ B £ C k \ \ k \ \ B \ \ ω \ \ U w ^ C'k{\\ f \\ltW + ε) f o r a l l ε > 0 .

Hence | | / |U ^ C\\f\\Uw for every / e S J ^ G ) .

REMARK 3.1. This theorem reduces to Corollary 3 of [2] and
to Theorem 4 of [5] in the case w = 1. The case w Ξ 1 was also
generalized in an other direction in [8].

For the rest of this section we shall assume that G is abelian
and that B(G) satisfies (B1)-(B3) with respect to L\G).

THEOREM 3.2. Let feL\G) with compact support be given. If
feB(G) then fe^B(G) and there exists a constant M depending
only on B(G) and supp/ such that \\f\\{B) ^

Proof Take any function k e ^tl(G) such that k = 1 on supp /
and k e ^Z\G) = ^S\G) (in fact for every function k e S?~+(G) with
ίceL\G) one has ke^&\G)f since W(Gr) is a Segal algebra, cf. [2],
[13]). Thus there is a function ωeV\G) with \ίc\ <ί ω and from
/ ~ /.fc we derive |/ | ^ |/|*α>. Since it is obvious that |/|*α>e VB(G)
we have/e 3S5(G). Moreover, (f)gίi\f\*ωg holds (see proof of Theorem
2.1) and hence | |/| | i B ) - \\(f)9IU ^ II &IUII/IU - ΛΓ||/lU with ΛΓ = || α> !],<

since ωg ~ ω (see proof of Lemma 2.3).C O
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REMARK 3.2. (i) This theorem generalizes earlier results of F.
Holland (cf. [10]), Edwards—Hewitt—Hitter (cf. [4]) and J. Stewart
(cf. [15]). Besides, our proof seems to be the simplest one. For
arbitrary abelian G this theorem was first established by Edwards—
Hewitt—Ritter in the case B(G) = LP(G), 2 <: p < w, in order to
prove their main results on multipliers. But their proof, using the
theory of entire functions, runs over several pages. The proofs of
Holland (G = B) and Stewart (G abelian) use Holder's inequality
together with other results from Harmonic Analysis.

(ii) Let / satisfy the hypothesis of Theorem 3.2 with B = lp{Lq)
(cf. [1]). Under these assumptions felp(&) is stated in Lemma 2
of [1]. Using Theorem 3.2 together with Remark 2.2 (iii) we get
fe ^fp(G) = Zp(£f). This improves part of this lemma, since lp{c^)^
lp(&) (except for discrete G).

Added in proof. In the paper "Banach convolution algebras of
Wiener's type" (to appear in Proc. Conf. "Functions, Series, Operators",
Budapest) H. G. Feichtinger introduced so called Banach spaces of
Wiener's type W(B,C). The construction involves a certain compact
set QczG. In order to show the independence of Q the author assumes
C to be right invariant. Since it can be shown that for the special
case B = ^°(G) this independence is equivalent to the independence
of the spaces ^fg

c(G) of the function g, it follows from our example
that one cannot omit a condition related to right invariance of C.
Right invariance of C also implies W(G) = ^£%G) = W(<έ?°(G), C).
In fact even for arbitrary spaces W(B, C) our condition (i) of Theorem
2.4, if modified in the obvious way, is necessary and sufficient for
the independence of Q. However, a characterization of the spaces
W(B9 G) in the sense of Theorem 2.4 by functions of translation
type is impossible for general B.
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