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REALIZING CONCORDANT POLYNOMIALS
WITH PRIME KNOTS

STEVEN A. BLEILER

This paper employs the theory of tangles to show that
every knot in the 3-sphere is concordant to a prime knot
with the same Alexander polynomial. From this it is shown
that all algebraic concordances at the polynomial level are
realized by geometric concordances between prime knots.

0. Introduction. This paper examines certain geometrical
building blocks and uses them to illuminate the relationship between
concordances of prime knotes and the Alexander polynomial. Those
polynomials in Z[¢, ¢ '] which can occur as the Alexander polynomial
of a knot in the 3-sphere were classified by Seifert [15], see Levine
[11]; Fox and Milnor [4] demonstrated that the normalized Alexander
polynomials of concordant knots differ by factors of form f(£)f(t™),
where f(t) is a polynomial in Z[¢, ¢7] such that f(1) =1. We will
call two polynomials in Z[t, t™'] concordant if they differ in this
manner. Using the Conway calculus [3], and a variant of the method
recently used by Kirby and Lickorish to prove the primeness of
certain knots [9], we establish that every knot is concordant to a
prime knot with the same Alexander polynomial. Combining this
with some realization theorems of Levine [11], Kondo [10], and
Terasaka [16], it will follow that every polynomial concordance can
be realized with prime knots.

The author is particularly indebted to W. B. R. Lickorish for
indicating the proof of Lemma 1.2, and to the Mathematics Depart-
ment of the University of California, Santa Barbara for the stimulat-
ing atmosphere in which this paper was conceived. The reader is
referred to Rolfsen’s book [14] for the standard results and defini-
tions of knot theory and should interpret this paper in the PL
category.

1. Tangles and the Conway calculus. A tangle is a 3-ball,
T, containing a finite number of disjoint spanning arcs, called strings,

(a) (b) (e) GV (e)
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which meet 8T in standard points of an equatorial circle. Some two-
string tangles are illustrated in Fig. 1.

Following [9] we define a tangle, T, to be prime if

1. Any embedded 2-sphere in 7' which meets the strings trans-
versely in two points bounds a ball which meets the strings in an
unknotted are.

2. No properly embedded disc separates the strings.

In Fig. 1, (a) and (b) are not prime tangles, (¢), (d), and (e) are.
Prime tangles are quite common, indeed, we recall from Kirby-
Lickorish [9].

LemMMA 1.1. For any knot K in S® there is an embedded 2-
sphere, meeting K transversely in four points, separating S° into
3-balls A and B such that

(1) (4, ANK) is a ball with two standard spanning arcs, a
trivial tangle.

(2) (B,BNK) is a prime tangle.

In [9], this is first established for prime knots, and then an in-
nermost circle argument establishes that the tangle sum, illustrated
in Fig. 2, of prime tangles is also a prime tangle. This gives the
lemma.

Figure 2 FIGURE 3

In practice, the lemma asserts that we can consider a knot K as a
prime tangle, called “K-with-ears”, as in Fig. 3. See [9].

The conditions for primeness of a tangle have some nice conse-
quences when combined with some elementary 3-manifold theory.
One such is:

LEMMA 1.2. The 2-fold covering space of the 3-ball, B, branched
over the strings of a prime tangle is an irreducible 3-manifold with
an tncompressible boundary.

Recall that a surface F in a 3-manifold M is compressible if
there exists a dise D in M such that 0D = DN F and oD does not
bound a dise in F. D is called a compressing disc.
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Proof. Let 7: M — B be the branch covering map with deck-
transformation h: M — M. If M is not irreducible, it is known [7],
[17] that there is a 2-sphere, S embedded in M such that S does
not bound a ball, is transverse to the branch set, Fix (k), and is
such that k(S) =S or R(S)NS = ©&.

In the latter case, F' = z(S) is an embedded 2-sphere in B which
misses the strings of our tangle. So F bounds a ball in B which
lifts to two balls in M, one of which is bounded by S, a contradic-
tion.

In the former, we have 7|S:S-— F a branched covering of
surfaces, with finitely many branch points as S is transverse to
Fix (k). For an n-fold such covering, with branching index p, at
the 4th branch point, the Euler characteristics of S and F are related
as in (1.1). See [2] or [12].

1=

(1.1) Ly = 1F) - (1 _ L) .
n 1 Lt

2

In our case, n and all the p, equal 2, and we conclude that F
is a 2-sphere meeting the strings of our prime tangle in just two
points. As our tangle is prime, F' must bound a ball meeting the
strings in a single unknotted arc. This has 2-fold branched cover
a ball, which must be bounded by S, another contradiction, establish-
ing irreducibility.

For the incompressibility of M, let D be a compressing dise for
oM. Then 6D represents a nontrivial element of 7,(3M) and so
appealing to the Z,-equivariant form of the Loop Theorem, [7], [17]
or more generally [13], we obtain an embedded compressing disc D
with 8D = 6D and either h(D) = D or (D)N D = Q.

In the latter case G = z(D) is an embedded disc in B with
0@, bounding a disc E in 0B which misses the branch set. FE then
lifts to two dises in 0M, one of which is bounded by oD, contrary
to D being a compressing disc.

In the former case, our Euler characteristic formula (1.1) shows
that G is a disec with ¢|D: D — G having one branch point in G. So
0G bounds a disc F in 0B which also has one branch point. So
G CE is an embedded 2-sphere which bounds a ball meeting the
strings in an unknotted arec. As before, the 2-fold cover is a ball
in M, the boundary of which is D and a dise in M bounded by 4D,
again contrary to D being a compressing disc. ]

REMARKS. Similar arguments show the incompressibility of the
boundary of M where M is now the n-fold cyclic cover of the 3-ball
branched over our prime tangle, as the recent work of Meeks and
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Yau [13] gives us a Z,-equivariant form of the loop theorem. In
addition, should M be the connected sum of nonsimply connected
3-manifolds, [13] also tells us that there is an embedded 2-sphere S
in M, not homotopically trivial, such that A(S)NS = @ for all non-
trivial b in the group of deck transformations of M or A(S) = S for
all such 2. Now, modulo the existance of a fake 3-ball, an argument
similar to the case where n = 2 establishes that the n-fold ecyclic
covering space of the 3-ball branched over the strings of a prime
tangle is an irreducible 3-manifold with an incompressible boundary.

O

Given prime tangles P and @, we define their join, PV Q, as
the knot or link obtained by identifying the boundaries of P and @
in such a way that P and @ are connected by “bands”. See Fig. 4.

(

FIGURE 4

If M is now the 2-fold cover of S? branched over the join of two
prime tangles, we see that the 2-sphere which separates S°®into our
prime tangles lifts to an incompressible torus 7T in M. Any embedd-
ed 2-sphere in M which has been isotoped to have minimal transverse
intersection with 7 has no “innermost” component, and so we see
that M is irreducible. This shows, using [7],

ProrosiTiON 1.3. The join of two prime tangles is a prime
knot or a prime link.

Until now we have been unconcerned with orientations, but
these play an important role in computing the Alexander polynomial.

@)

FIGURE 5 FIGURE 6
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We wish our tangles to carry the string orientations as shown in
Fig. 5. Fig. 6 shows that we can assume that the prime tangles
given by Lemma 1.1 carry this string orientation. Notice also that
the join of prime tangles with these orientations is now an oriented
knot or link.

For an oriented link L in S? Conway [3] defines an integer
polynomial, /,(z), the Conway potential function. When the chance
of confusion is slight we will write /(L) for /,(z). For knots, the
potential function is related to the usual Alexander polynomial, 4.(t),
normalized so that 4,(1) = 1, via Fg(t"* — t7V%) = dg(t).

The Conway potential function can be computed recursively,
beginning with 7 (unknot) =1, / (unlink of two unknotted com-
ponents) = 0, and using Conway’s first identity:

(2.1) Ve(z) = V() + 2V g(2)

where R, L, and S are the links differing at a single crossing as
indicated in Fig. 7. See [3] or [5].

0@ T

FIGURE 7 FIcURE 8

There is also a formula for handling oriented two-string tangles,
the determinant fraction of a tangle sum. Let Fy(T), 7,(T) be the
Conway potential function of the link obtained by completing the
tangle T as in Fig. 8a, Fig. 8b respectively. For tangles oriented
as in Fig. 9 (note the difference with Fig. 5), the determinant
fraction, given in formulas 2.2 and 2.8 is a pair of formulas for
the potential function of the tangle sum given in terms of the
potential functions of the tangles themselves. Again see [3] or

[5].

FIGURE 9
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(2-2) VN(P + Q) = VN(P)VD(Q) + VD(P)VN(Q)
(2.3) Vo(P+ Q) = Vp(P) V@) -

We wish to examine the case of PV @, the join of two prime
tangles oriented as in Fig. 5. Fig. 10 shows that P VV Q is just the

)
SR

FIGURE 10

“numerator” of the tangle sum of the prime tangles 7P and 1Q,
obtained by rotating P and @, respectively, through 90 degrees.
Note that <P and t¢Q carry the orientations of Fig. 9 and thus those
of [3] and [5], so we can apply (2.2) to obtain

(2.49) ’ V(PN Q) = Vy(iPW5(iQ) + V x(iP)V 4 (1Q)
or more usefully

(2.5) V(PV Q) =TVyP) V(@) + Vy(P) V&) .

2. Some results. A particularly useful tangle is the K-T
grabber, pictured in Fig. 1la, and here occasionally denoted by KT.

TR 'Q\/j/g; D
(a) (b) (e)

The name is suggested by its use and the fact that KT has as its
“numerator” a twelve crossing projection of the eleven crossing
Kinoshita-Terasaka knot, which has Alexander polynomial 1, Fig. 11b.
Further, KT has as its “denominator” the unlink of two trivial
components, Fig. 11e, and so we see that V' (KT) = 1 and V,(KT) = 0.

LeEMMA 2.1. The K-T grabber is a prime tangle.
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Proof. Condition 1 is immediate as each spanning arc is un-
knotted. If condition 2 failed, the Kinoshita-Terasaka knot would
be a 2-bridge (rational) knot. We assert that such a knot cannot
enjoy a trivial Alexander polynomial. For the 2-fold branched cover
M of a 2-bridge knot K is a Lens Space, implying that the
determinant, | H,(M)| = | 4x(—1)|, is greater than 1. O

Notice also that K-T grabber carries the string orientations of
Fig. 5. We are now ready to prove

THEOREM 2.2. Any knot K in S° is (ribbon) concordant to a
prime knot with the same Alexander polynomial.

Proof. Apply Lemma 1.1 to K, to get a prime tangle, called
“K-with-ears”, carrying the string orientations of Fig. 5. Now
join the K-T grabber to K and ecall the resulting knot L. See
Fig. 12.

e

Ficure 12

Notice that a ribbon move at b shows that L is (ribbon) concordant
to K. The primeness of L follows from Lemma 1.3 and applying
formula (2.5) we see that

Vi(2) =V (KTW (K) + V(KT 5(K)
=1-Fg(2) + 0-Fy(K) = Vi(2) .

And so 4g(t) = 4.(t). |

REMARK. The K-T grabber is not the only prime tangle that
could be used in the proof of the above theorem. There is, in fact,
an infinitude of such tangles. For more on this, see [2].

Our realization results now follow easily.

COROLLARY 2.3. Given f(t) in Z[t, t™*] with f() =1, there is a
prime ribbon knot R with Agx(t) = fO)fE™).
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Proof. Apply Terasaka’s method [14] to obtain a ribbon knot K
with 4.(t) = f(t)f(¢"). Apply Theorem 2.2 to K to obtain R. O

COROLLARY 2.4. Given polynomials g(t), f(t) in Z[t, t7*] satisfy-
wmg g(t) = g(t™) and g(1) = f(1) = 1, there exist prime concordant
knots K, L with 4x(t) = g(t) and 4,(t) = g@&)f&)f(E™).

Proof. Use the surgery method of Levine [11], clearly outlined
in [14], to obtain a knot, K, realizing g(t). Alternately, one can
use the band method seen in Kondo [10] to obtain K. The knot
given by the latter method has unknotting number- equal to 1, and
is thus very close to being prime. If not, however, just apply
Theorem 2.2 to get the knot K. Next obtain a slice knot with
Alexander polynomial f(#)f(¢™!) and take the connected sum of this
knot and K. The resulting knot has g(¢)f(¢)f(t™*) for its Alexander
polynomial and is concordant to K as well. Applying Theorem 2.2
to this knot gives L. 1

Combining 2.8 and 2.4 we have shown, as advertised in the
introduction:

THEOREM 2.5. Every polynomial concordance is realized by prime
knots.
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