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A HOMOGENEOUS EBERLEIN COMPACT SPACE
WHICH IS NOT METRIZABLE

JAN VAN MiILL

We give an example of a first countable, hereditarily
normal, homogeneous Eberlein compact space which is not
metrizable. This answers a question of A. V. Arhangel’skii.

1. Introduction. A compact Hausdorff space is called Eberlein
compact, if it is homeomorphic to a weakly compact subset of a
Banach space. For information concerning Eberlein compact spaces,
see [1], [3], [5] and [7].

If X is Eberlein compact, then X is metrizable if X satisfies
the countable chain condition, [2], [5], or if X is linearly orderable,
[4]. In view of these facts, the following question due to
Arhangel’skii [3, p. 91 problem 5], is quite natural: is there a mon-
metrizable homogeneous' Eberlein compact space? The aim of this
paper is to construct such an example which in addition is zero-
dimensional, first countable and hereditarily normal. The symbol
“X~ Y” means that X and Y are homeomorphic spaces. I am
indebted to Mary Ellen Rudin for spotting some inaccuracies in an
earlier version of this paper.

2. Preliminaries. A family &# of subsets of a topological
space X is called separating provided that for any distinet z, ye X
there is an F'e &% such that either xcF and y¢F or yeF and
x¢ F. The family # is called point-finite if each x e X belongs to
at most finitely many elements of . It is called o-point-finite if
Z = Ui F., where each .#, is point-finite.

The following purely topological characterization of Eberlein
compacta, due to Rosenthal [8], is convenient for topologists.

THEOREM 2.1. A compact Hausdorff space is Eberlein compact
iff it has a o-point-finite separating family of open F,-subsets.

Let C denote the usual Cantor set in [0, 1] (notice that 0eC)
and let X be any space. Topologize X x C in the following way:
(a) a basic meighborhood of a point {x, 0> has the form

(UxC)— ({2} x D),
where Uc X is open, contains € and D C — {0} is compact;

1 A space X is called homogeneous provided that for any two points x, y € X there
is an autohomeomorphism h: X—X with h(z)=y.

141



142 JAN VAN MILL

(b) a basic neighborhood of a point {x,c) where ¢ >0 has the
form

{2} x U,

where UcC — {0} is an open meighborhood of c.

The topological space we obtain in this way will be denoted by
X(C). Observe that the projection 7: X(C) — X onto the first coordi-
nate is continuous. In addition, the function f: X — X(C) defined by
flx) = {x, 0> is an embedding.

LemMMA 2.2. (1) X(C) is compact Hausdorff iff X is compact
Hausdorff,

(2) X(C) is first countable iff X is first countable,

(8) X(C) is Eberlein compact iff X is Eberlein compact.

Proof. (1) We only need to show that X(C) is compact if X
is. Let % be an open cover of X(C) by basis elements. Finitely
many elements of Z cover X X {0} and the remaining part of X(C)
consists of finitely many compact sets. We conclude that % has a
finite subcover.

Observe that (2) is trivial and that for (3) we only need to
show that X(C) is Eberlein compact if X is Eberlein compact (closed
subsets of Eberlein compacta are Eberlein compact). To this end,
let & = U #, be a separating family of open .#,-subsets of X
such that for all n the family .#, is point-finite. In addition, let
{Chim=1,2, ---} be a countable basis for C — {0} consisting of
compact open sets. For all n, me N define

. ={FxC: Fe 7},
and
G n = {{} X Cpt xe X}

respectively. Observe that both ., and &, are point-finite, that
F, consists of open F,-subsets of X(C) and that &, consists of clopen
( = closed and open) subsets of X(C). Since trivially,

z=U.suU&.
is separating, Theorem 2.1 implies that X(C) is Eberlein compact. []

3. The example. Let X be any space. Define X, =X and
X... = X,(C). The projection from X,,, onto its first coordinate is
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denoted by f, . Put
X =1lim(X,, £,

(e, X={rxelle X,: fo.x(®ps) =, forall ne N}). Letrw,,: X — X,
be the projection. Observe that

Tz = fux°Tnirx -

LEMMA 3.1. (1) If AcX, then A~ n;i(4)c X.
(2) X,~ X for all neN.

Proof. Obvious. O

We claim that € is homogeneous, nonmetrizable and Eberlein
compact. By a repeated application of Lemma 2.2(3) it follows that
each C, is Eberlein compact. Consequently, by Theorem 2.1,

I.C.

is Eberlein compact which implies that € is Eberlein compact, being
a closed subspace of J[y-.C,. Similarly, each C, is first countable
and consequently, C is first countable. It is clear that C is not
metrizable, since it maps onto the nonmetrizable space C, (C, is not
metrizable since it contains an uncountable family of pairwise dis-
joint nonempty open subsets). Obviously, C is zerodimensional.

THEOREM 3.2. C has the property thgt all of its momempty
clopen subspaces are homeomorphic (hence C is strongly homogeneous
in the sense of [8]).

Proof. By induction on n we will show that 7;%(U) ~ C for
all nonempty clopen UcC,. This is clearly true for » =1 since
all nonempty clopen subsets of C are homeomorphic to C which
implies that

a(U)~ U C

for all clopen UcC, (Lemma 3.1(1)). Now suppose the statement
to be true for » and take a nonempty clopen UcC,,, arbitrarily,
If Un(C, x {0})) = @ then U is homeomorphic to C by definition of
the topology of C,,,. Consequently, by Lemma 8.1(1), (2) it then
follows that

Tih(U)~ U C .
Therefore assume that UN(C, x {0})) = @. By definition of the
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topology of C,,, there is a finite F < C, and for each x € F a clopen
S, < C not containing 0 such that F' x {0}c V = Un (C, x {0}) while
moreover

E=(VXC)_-(UmeF{x} XS&B)CU'

For each € F let h,: C — S, — C be a homeomorphism such that in
a fixed neighborhood of 0 each %, is the identity. Define h: E—V X
C by

h({a, bY) = {a, b if agF,
h({a, bY) = <a, k(b)) if acF.

Clearly, h is a homeomorphism. Therefore
Titno(B) ~ T V)~ C,

by induction hypothesis. Put G = U — E. Then G is a clopen sub-
set of C,,, which misses C, X {0}. If G = @ then we are done, and
if G #= @ then observe that

Tt o(G) ~ c

since G ~ C (cf. the above remarks). Consequently, 7%, (U) is the
disjoint union of two clopen copies of C, hence is itself homeomor-
phic to C since C is the disjoint union of two clopen copies of itself.
This completes the induction.

Now let AcC be clopen and nonempty. There is clearly an
index n € N and a nonempty clopen B C, such that

TiH(B)=A.
Therefore A = 7;%(B) ~ C. n

The above theorem shows that C is homogeneous, for any zero-
dimensional strongly homogeneous first countable space X is homo-
geneous. This is well-known and for completeness sake we will
include the trivial proof. Take x, y € X. Since X is first countable,
there is a clopen neighborhood basis {V,:n e N} for « and a clopen
neighborhood basis {W,: ne N} for y such that

(1) Vi=W, =X,

(2) V,. is properly contained in V,, and

(8) W.,,, is properly contained in W.,.

For each neN let h,.V,— V,,,— W, — W,,, be any homeomor-
phism. The function h: X — X defined by

hz) =1y,
ha) = h(a) if acV,— V..



A HOMOGENEOUS EBERLEIN COMPACT SPACE 145
is clearly a homeomorphism mapping « onto y.

REMARK 3.8. It is not by accident that our example is first
countable. By [5, 4.3] every Eberlein compact space is first count-
able at a dense set of points, consequently, a homogeneous Eberlein
compact space must be first countable. Notice however that we
used the first countability of C to show it is homogeneous.

4. C is hereditarily normal. In this section we will show that
C is a continuous image of a compact linearly orderable topological
space. This implies that C is hereditarily normal (even monotonically
normal).

Let L, = C and let L, = C X C with topology generated by the
lexicographical ordering. Let g,: L, — L, be the projection onto the
first coordinate. Observe that g, is order preserving. Let «n: L, —
C, be the identity and let h: C — C be an arbitrary onto map such
that

h0) =0 and A(l)=0.
Define +,: L, — C, by
v:({a, b)) = <a, k(b)) .

Because 1(0) = 0 = h(1), 4~ is continuous.
It is easily seen that the diagram

g1
1‘—L2

mf Vz

C1 (—f: Cz
commutes. Suppose that we have defined L, and +,. Let L, , =
L, x C with topology generated by the lexicographical ordering and
let g¢,:L,.,— L, be the projection. Define +,.:L,, —C,,; by
(e, b)) = {a, h(db)), where h is defined as above. Observe that
g. is order preserving and that

(1) fn,Co"/"n+1=",b‘n°gn'

Put L =lim(L,, g,). Since the maps g, are all order preserving,
“«—

L can be ordered in a natural way (It is easy to describe the order-
ing of L. Alternatively, the orderability theorems given in [6] or
[9] are also easily applied.). By (1), the space L maps onto C so
that € is hereditarily normal.

As was pointed out to me by Dave Lutzer, it is also easily seen
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that C is hereditarily paracompact, since L is a first countable
compact LOTS and L maps onto C.
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