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SEMI-GROUPS OF QUASINORMAL OPERATORS

MARY EMBRY-WARDROP

Strongly continuous semi-groups {Q.} of quasinormal
operators on Hilbert space are characterized as follows:
there exist Hilbert spaces - and %, a strongly continuous
normal semi-group {N;} on 2° and a strongly continuous
self-adjoint semi-group {i(¢)} on %" such that {Q,} is unitarily
equivalent to {N,)®{{F)L,} on LPL %), where {L;} is the
forward translation semi-group on #%(%7) and (t)f)(x)=
h(t)f(x) a.e. for each f in Z*(%").

1. Preliminaries. In this paper we characterize one parameter
strongly continuous semi-groups of quasinormal operators. The
major result, found in Theorem 6, bears a marked resemblance to
the characterization of quasinormal operators given by Brown in
[2]. He showed that an operator A is quasinormal (A commutes
with A*A) if and only if there exist Hilbert spaces ¥ and .%%; a
normal operator N on & and a positive operator P on .22 such
that A is unitarily equivalent to N@ SP on & @ 7*%(.%") where S
is the unilateral shift on /% %) and (Px), = Pr, whenever {x,}e
H2E).

We shall use the following notation and conventions. £# is a
separable Hilbert space and <#(5#) is the space of continuous linear
operators on S5#. /% 2#) is the Hilbert space of all sequences {x,}
where x,€25# and 3| x,|* < . In particular, /* = #%(%), where
& is the set of complex numbers. .22, denotes the set of non-
negative real numbers. *(5#) will stand for the Hilbert space
of (equivalence classes) of weakly measurable functions from .2,
into &7 such that

S:onf(x)llzdx < oo, In particular, &* = FX¥) .

An operator A on 57 is self-adjoint if A= A*, normal if
AA* = A*A, subnormal if A is the restriction of a normal operator
to an invariant subspace, an isometry if A*A = I where I is the
identity operator on Z#; a partial isometry if (A*A)* = A*A, and
unitary if A is a normal isometry.

We use [3] as a general reference on semi-groups of operators.
The set {S,} = {S,;: t € &#,} is a semi-group of elements of Z(57) if
S;i, =SS, for all ¢ and 7 in <2, and S, = I. We say that {S,} has
a certain property (for example, is quasinormal) if each of the
operators S, has that property. A semi-group {S,} is strongly con-
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104 MARY EMBRY-WARDROP

tinuous if lim,,, ||S,f — f|| =0 for each f in 5 and uniformly
continuous if lim, || S, — I|| = 0. The gemerator of a strongly con-
tinuous semi-group {S,} is the (not necessarily bounded) linear
transformation S defined by Sf = lim,.,(S,f — f)/t, whenever this
limit exists in the strong topology.

One semi-group which will play a prominent part in the develop-
ment of ideas is the forward translation semi-group {L,} on &* %)
defined for each f in F*(#) by (L.f)x) = fx —¢t) if x=¢ and
zero otherwise. It is well-known that {L,} is a strongly continuous
semi-group and the infinitesimal generator of {L,} is defined by f —
—f" for all f in £*>#) for which f is absolutely continuous, f’e
F¥#) and f(0) =0. We shall denote this unbounded operator
by —D. The semi-group of adjoints {L}} is the backward transla-
tion semi-group and for each f in £*(2#F), (L¥ f)(x) = f(x + t). The
generator of {L}} is defined by f — f’ for all f in &*(5#) for
which f is absolutely continuous and f’e &*(57).

The isometric semi-groups (U* U, = I) are obviously quasinormal.
In [5] Cooper characterizes them as follows: a strongly continuous
semi-group {U,} is isometric if and only if there exist Hilbert spaces
< and ¢ and a unitary semi-group {W,} on & such that {U,} is
unitarily equivalent to {W,}@{L,} on L H.L*(%¥). In §2 we
show that {@,} can be factored into an isometric semi-group and a
self-adjoint semi-group, each of which is strongly continuous and
which commute with one another. This reduces the general problem
of characterizing quasinormal semi-groups to that of characterizing
those semi-groups of the form {H,L,} where {H,} is a self-adjoint
semi-group commuting with {L,}. In §3 we complete the character-
ization.

In §4 we investigate the properties of the infinitesimal generator
of a quasinormal semi-group and give an explicit representation for
it in terms of the characterization of the semi-group.

2. Factoring semi-groups. Let ¢ be a continuous, almost every
where nonzero function from <2, into & and define (S,f)(x) =
(¢(x)/d(x — t))f(® — t) if x = ¢ and zero otherwise for f in &£*(%").
Under suitable boundedness conditions on ¢, {S,} is a strongly con-
tinuous semi-group in Z(<*) [7, p. 334] and is called a weighted
translation semi-group. Such a semi-group is quasinormal exactly
when ¢ is a multiple of an exponential: ¢(x) = Me** [7, p. 340-341].
A straightforward computation shows that {S¥S,} is a semi-group
exactly when ¢(x + ¢ + s)¢(x) = ¢(x + t)¢p(x + s) for all z, ¢, s, or
equivalently, when ¢ is a multiple of an exponential. Therefore
{S;} is quasinormal exactly when {S;*S,} is a semi-group. In Lemma
1 we show that this equivalence always occurs.
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LemMMA 1. Let {Q,) be a strongly continuous semi-group of
operators. {Q,} is quasinormal if and only if {QFQ.} is a semi-
group. Moreover in this case {Q¥Q,} is stromgly continuous and Q,
commutes with {QFQ,} for each r and t.

Proof. Assume first that {Q,} is quasinormal. Every quasi-
normal operator is subnormal [9] and every strongly continuous
semi-group of subnormal operators has a normal extension as a
semi-group [10]. That is, there exists a strongly continuous normal
semi-group {N,} of operators on a Hilbert space °¢; containing 57
with N,/57 = Q,. Since Q, is quasinormal, then 7 is invariant
under NN, [4] and since {N,} is a strongly continuous normal semi-
group, it follows that {N*N,} is a strongly continuous semi-group
and N, commutes with N*N, for each » and ¢. Consequently,
{Q@*Q,} inherits the same properties.

On the other hand if we assume that {Q7Q,} is a semi-group,
then for each ¢ and each nonnegative integer 7, (@¥)"(Q,)"=Q%Q..=
(Q¥Q,)", which is sufficient to imply that each @, is quasinormal [6].

By the polar decomposition of an operator A we mean the
unique representation A = UP where P is the unique square root
of A*A and U is a partial isometry such that ker U=ker P=ker A.
A necessary and sufficient condition that A be quasinormal is that
U and P commute [2]. It is not difficult to show that when A is
quasinormal, the polar decomposition of A" is U"P". The continuous
analogues of these assertions are found in the following theorem.

THEOREM 2. For each t in .2, let U,P, be the polar decomposi-
tion of Q,. Then {Q,} ts a strongly continuous quasinormal semi-
group if and only if

(i) {P} is a strongly continuous self-adjoint semi-group,

(ii) {U,} is a strongly continuous isometric semi-group, and

(iii) P, commutes with U, for each r and t.

Proof. Obviously, if conditions (i), (ii), and (iii) are true, then
{Q.} is a quasinormal semi-group. Moreover, in this case {@,} is the
product of strongly continuous semi-groups and is, itself, strongly
continuous.

Assume now that {@,} is a strongly continuous quasinormal semi-
group. P, is the positive square root of QFQ,. Therefore since
P? and P? commute, so do P, and P, for all ¢ and ». This implies
that (P,.,)* = (P,P,)?. Since the positive square roots are unique,
P, .= PP, and {P} is a semi-group of self-adjoint operators. More-
over, since P, — I = (P, + I)™ (P} — I) and {P?} is strongly continu-
ous by Lemma 1, then so is {P,}. (We use here the fact that
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| (P, + I)*|| £ 1 since P, is positive.)

To show that U, is an isometry, we only need show that
ker P, = {0}. But if P,f =0, then P..,.f = 0 since P, is positive.
Thus by induction there is a sequence t,— 0 such that P, f = 0.
Using the strong continuity of {P,} we arrive at f= 0.

Since ker P, = {0}, any operator commuting with @, and P, also
commutes with U,. Also, Q, commutes with P, for each » and ¢ by
Lemma 1. Therefore since each of {P,} and {Q,} is commutative,
U, commutes with P, and U, for each » and ¢. Also U,U,P,,, =
UP,UP, =QQ, =Q,., = U,P,,., so that U, U, = U,,, on the range
of P,,, which is a dense subset of 2 We have shown that {U,} is
an isometric semi-group.

To show that {U,} is strongly continuous we argue as follows:
For f and g in 57

[F = Uf, 0| =I{f —Q.f, 9 + {P.f — f, U*g)|
s=(lf = @QSfl + IPf — fIDlgll,

and consequently

If = Usfll=llf = QS+ 1PSf =11l

Strong continuity of {Q,} and {P,} now implies strong continuity
of {U,}.

REMARK 1. We note that {@,} is normal if and only if {U,} is
unitary. This follows from Theorem 2(ii) and the fact that a quasi-
normal operator is normal if and only if the partial isometry in the
polar decomposition of € is normal.

In view of the nice behavior of the sets {U,} and {P,} when {Q,}
is quasinormal, we shall write {Q,} = {U}{P,} and call {U,} the iso-
metric factor of {Q, and {P,} the positive factor.

3. A characterization of quasinormal semi-groups.

THEOREM 3. Let {Q, be a strongly continuous quasinormal
semi-group. There exist Hilbert spaces ¥ and 2%, a strongly
continuous normal semi-group {N,} on & and a strongly continu-
ous self-adjoint semi-group {H,} on £(2°) commuting with {L,},
such that {Q.,} is wunitarily equivalent to {N, P{H,L,} on ¥ P
FH2¢). Conversely, any semi-group constructed in this fashion is
a strongly comtinuous quasinormal semi-group.

Proof. The converse is immediate since {N,} is trivially quasi-
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normal and {H,L,} is a strongly continuous quasinormal semi-group
by Theorem 2.

Assume that {@,} is a strongly continuous quasinormal semi-
group. By Theorem 2 {Q,} = {P,}{U,} where {P,} is self-adjoint and
commutes with the isometric semi-group {U,}. Cooper’s theorem
[5] tells us that {U,} is unitarily equivalent to {W,} @ {V,} where
{W,} is unitary and defined on &, and & is the range of the
projection lim,.. U,U*. Moreover {V,} is unitarily equivalent to
the forward translation semi-group {L,} on .&#*(2¢") for some Hilbert
space %

Since by Theorem 2 P, commutes with U, for each 7 and ¢, then
< reduces {P,}. Thus we have {P,} unitarily equivalent to {K,} @
{H,} where {K\} is self-adjoint and commutes with {W,} on & and
{H,} is self-adjoint and commutes with {L,} on #*%"). Thus {Q,}
is unitarily equivalent to {K,W, @ {H.L,} on & P &£*(>%"), and
{K,W.} is normal since {W,} is unitary and commutes with {K,}.

The semi-group {H,L,} is completely nonnormal in the sense
that there exists no subspace which reduces {H,L,} and on which
{H.,L,} is normal. The last step in characterizing quasinormal semi-
groups is to characterize the self-adjoint semi-groups commuting
with {L,} on &*(2¢).

Each h in &Z(%") induces an operator h in Z(F*(.5¥)) by
(hf)(x) = hf(x) a.e. whenever fe.£*% ). Each such induced
operator & commutes with {L,} and if {h(t)} is a (self-adjoint) semi-
group in £#(%°), then {n(¢)} is a (self-adjoint) semi-group in
FB(F*(2%7)). (We shall show in Theorem 5 that the strong con-
tinuity of either implies strong continuity of the other.) All of
this leads to the following: {h(t)} is a strongly continuous self-
adjoint semi-group, commuting with {L,} whenever {i(f)} is a strongly
continuous self-adjoint semi-group on 527 In Theorem 5 we shall
show that this is the only way to construct a positive factor for
a quasinormal semi-group with isometric factor {L,}. The key to
this result lies in the following lemma concerning the commutant
of {L,}.

The commutant of a collection . of operators on . is the
algebra ' ={T:Te<F (2% ) and TA = AT for all A in .},

LEMMA 4. Let {L,} be the forward translation semi-group on
F%7). Then {L)Y N{L} = {h:he B (%))}

Proof. We have already observed that each % isin {L,}’. Since
(L¥ f)(@) = f(x + t), a quick check shows that each % is also in {L}}'.
Now assume that H commutes with {L,} and {L}}. Without loss
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of generality we may assume that H is self-adjoint since each of
Re H and Im H commutes with {L,} and {L}}. Let {e,:me4} be a
complete orthonormal basis of the separable Hilbert space .2 and
identify % 2") with Y, @ £* %) in the usual fashion [8, p. 32].
The coordinate functions of each element f of (%) are defined
by fu.(x) = {f(x), e,y and the matrix [T,.] of an operator T on
LX) is defined by T..f = (T'(fe,). Whenever fe.F* (fe, is
the element of #*(9%") whose value at z is f(x)e, a.e.) Straight-
forward computations show the following:

(1) [(Ly)am] is diagonal and (L,),, = L{®, the forward translation
by t on &¥* = LH¥);

(2) HpY = H,, for each » and m since H is self-adjoint;

(3) H,,commutes with L{” for each n and m since H commutes
with L, and the matrix of L, is diagonal.
But the forward translation semi-group on & is irreducible [1, p.
76]. Thus the self-adjoint operators on &* commuting with {L{}
are the scalar multiples of the identity operator I on &2. It now
follows from (2) and (3) that Re H,,, Im H,, and consequently H,,
are scalar multiples of I. Let H,, = h,,I. For each f in &*( %)
and each n

(1) (Hf)n = Zmed Hnmfm = ZmEA hnmfm'
Let ke 27 and define f(x) = k for 2 in [0, 1] and 0 elsewhere. Then
(Hf)o(@) = Dimes Puuk, for 2 in [0, 1] and 0 elsewhere. Also || f]| =

1
lell and Siuesl Shmes hunltnl? = Sucal | (HF)u@) Fder = || HF | Thus the
matrix [h,,] defines a (bounded) operator i on 2. Finally, we see
from equation (1) that for each f in &%), (Hf)(x) = hf(x) a.e.
so that H = h.

LEMMA 4 is the continuous analogue of the fact that {A} N {A*} =
{m: me ¢} when A is the unilateral shift on 2% %) [8, §4].
The connection between the unilateral shift on S5#*( %) and the
forward translation semi-group on Z#*( <., .2%") is discussed in [11,
p. 29-31].

THEOREM 5. The strongly continuous self-adjoint semi-groups
on L%, commuting {L,}, are induced by the strongly continuous
self-adjoint semi-groups on 7.

Proof. First let {h(t)} be a strongly continuous self-adjoint
semi-group on .%. We have already noted that {h(f)} is a self-
adjoint semi-group on ¥ %), commuting with {L,}. We need to
show that {r(t)} is strongly continuous. Let f be an element of
£ 2%7). Then for each =z, lim,,h(t)f(x) = f(x), since {h()} is
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strongly continuous on .27 Moreover {h(f)} is bounded on finite
intervals [3, p. 8]. Hence for ¢ in [0, 1] ||R(@)f(x)| = M| f(x)| and
consequently by the Lebesgue Dominated Convergence Theorem,
|R@)f — f|l — 0, showing that {h(t)} is strongly continuous.

Secondly, assume that {H,} is a strongly continuous self-adjoint
semi-group, commuting with {L,} on &% 9#°). By Lemma 4, H, =
k() for some h(t) in #(%"). To verify that {i(t)} has the desired
properties we proceed as follows: Let ke .2 and define f by f(x)=
k if x€]0,1] and 0 otherwise. Then fe &% % ) and

(1) A+ 8k = (H../)®) = (HH,f)(x) = b()(H,f)(x) = h(t)h(s)k,

(2) S, £ = WO @, f@)dds = ROk, B,

(3) IHf = £l = IM®f@ — f@) Fde = | ROk — k.
Thus {h(f)} is (1) a semi-group, (2) self-adjoint, and (8) strongly
continuous.

We combine the results of Theorems 3 and 5 to arrive at the
continuous analogue of Brown’s characterization of quasinormal
operators.

THEOREM 6. {Q,} is a strongly continuous quasinormal semi-
group if and only if there exist Hilbert spaces & and %, a strongly
continuous normal semi-group {N,} on & and a strongly continuous
self-adjoint semi-group {h(t)} on 9% such that {Q.) s unitarily
equivalent to {N} @ (Rt)L} on & @ F(%).

COROLLARY 7. Let 22 and {h(t)} be as in Theorem 6. If >
is finite n-dimensional, then there exist real numbers a,, - - -, a, such
that {R@)L,} is unitarily equivalent to e*'L® @ --- @ e**L{, where
{L®} is the forward translation semi-group on F¥(&).

Proof. Since %  is finite dimensional, the generator i of {h(¢)}
is bounded, and since % is self-adjoint, k is diagonal. Let {¢,} be a
basis of %% such that the matrix of & is diagonal with diagonal
elements a,, ---, a,. Then {i(¢)} is diagonal with diagonal elements
e, ... e"», Recall from the proof of Lemma 4 that [(L,),.] is
diagonal and (L,),, = L®. Thus the matrix of A(f)L, is diagonal
with (h(t)L,)., = (e'**)L{, as desired.

We see now that the quasinormal weighted translation semi-groups
introduced at the beginning of §2 were quite typical. By Corollary
7 each quasinormal semi-group is a finite direct sum of quasinormal
weighted translation semi-groups whenever the auxiliary space .9~
is finite dimensional. We can go a little farther: if {h(¢)} is uniformly
continuous and if the infinitesimal generator of {h(¢)} is a diagonal



110 MARY EMBRY-WARDROP

operator on .27, then the proof of Corollary 7 is valid whether ¢
is finite or infinite dimensional. Consequently we can conclude that
[R@®)L,} is unitarily equivalent to a direct sum of quasinormal semi-
groups of the form {e**L{”}. However, if %  is infinite dimensional
and we choose a self-adjoint operator s on % with no point spect-
rum, then the induced operator % on (%) also fails to have
point spectrum and consequently {¢**L,} is not unitarily equivalent
to a direct sum of quasinormal weighted translation semi-groups.

4. The generator of a quasinormal semi-group. Recall that
the (infinitesimal) generator of a strongly continuous semi-group
{S,} is the operator S (not necessarily bounded) defined by Sf=
lim, , (S,f — f)/t, whenever this limit exists in the strong topology.
We shall denote the domain of S by <(S). In general if {S;} is
the product of two strongly continuous semi-groups {R,} and {T,},
the most one can show is that B + T'c S in the sense that 2 (R)N
2(TYc 2(S) and that R+ T =S on ZR)N=2(T). However
quite a bit more can be said about the generators of a quasinormal
semi-group and its isometric and positive factors.

THEOREM 8. Let {Q,} = {UHP,} be a strongly continuous quasi-
normal semi-group and let @, U, and P be the generators of {Q,},
{U,} and {P,}, respectively. Then

(i) 2@ cz2@

(ii) @) = 2P)n 2(U)

(iiiy @ =P+ Uand Q* =P — U on 2Q) and

(iv) Q*(Z@)) c @) and QQ* = Q*Q on Z(QY.

Proof. Assertion (i) follows from the fact that ||QFf — F || =
1Q.f — f|| for all f and t. Moreover Q*f = lim, , (QFf — f)/t on

Z@).

To prove (ii) and (iii) we first prove that 2(Q)c Z(P) and
P =(1/2)(@Q + Q*) on 2(Q). For each f in 5# and each t >0, P,f—
f=@ 4+ DQFQS — )+ Qf— ). But as ¢—0, (P, + D)™
converges strongly to (1/2)I, Q@ converges strongly to I, and if fe
@), @.f — f)/t converges to Qf and (QFf — f)/t converges to
Q*f. Therefore lim,., (P,f — )/t =(1/2)Qf + @*f), so that f e Z(P)
and Pf = (1/2)@Qf + Q*f).

Now observe that for each f and ¢

(2) Qf — f=ULSf — 1)+ (USf — 1)
Equation (2) immediately implies that 2/(P) N 2(U) c Z(Q) and
@) N DP)c Z2(U). We have already shown Z(@Q)c Z(P).
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These three set inclusions yield 2(Q) = 2(P)N.2(U). Therefore,
equation (2) can be used to conclude that Qf = Pf + Uf for all f
in 2(Q). Finally since Pf = (1/2)(Qf + Q*f) for all f in Z(Q), we
also have Q*f = Pf — Uf for all f in 2(Q).

Note now that if fe =2(Q?, then by definition fe 2(Q) and
Qfe Z(Q). But then fe Z(P) and Qfe & (P) by (ii). Consequently
(P,f — f)/t — Pf and since P, commutes with Q, Q(P.f —f)/t — PQf.
Every generator is closed [3, p. 10] so that Pfe 2(Q) and QPf =
PQf. Similarly Ve 2(Q) and QVf = VQf. Finally, since Q*f =
Pf — Vf, we know that @*fe & (Q). Moreover QQ*f=Q(Pf—Vf)=
PQf — VQf = Q*Qf by (iii) since Qf e 2(Q).

The fourth conclusion in Theorem 3 indicates that the generator
@ behaves very much like a normal operator. In general it is not
true that Q*(Z(Q)) € Z(Q) (for example, if @ = —D, the generator
of the forward translation semi-group on %?). Thus the assertion
QQ* = Q*Q on Z(Q) is not meaningful. We also note that the
first conclusion of Theorem 8 cannot in general be strengthened.

Although we have not been able to verify it we conjecture that
if @ is the generator of a strongly continuous semi-group {@,} and
@ satisfies conditions (i)-(iv) of Theorem 8, then {@,} is quasinormal.

REMARK 2. Since a generator is closed and densely defined [3,
p. 10], it is bounded if and only if it is everywhere defined. It
follows now from Theorem 8(ii) that @ is bounded if and only if
both U and P are bounded. But this is equivalent to {Q,} being
uniformly continuous [3, p. 13] and normal, the normality resulting
from each of the quasinormal operators @, being invertible (and
hence normal) when @ is bounded.

It is well-known that the generator of a normal semi-group
{N,} is normal. Applying Theorem 8 we note that the generator of
{N,} is the sum of the generators of the unitary factor {W,} and
the positive factor {K,} of {N,}. The generator of {W,} is ¢+7, where
T is self-adjoint [8, p. 93] and the generator of {K,} is self-adjoint.
To complete our analysis of the generator of a quasinormal semi-
group we need to determine the generator of {A(f)L,}, the completely
nonnormal part of {Q.}.

COROLLARY 9. Let {h(t)} be a strongly continuous self-adjoint
semi-group on 5% with gemerator h. The gemerator of {h(t)L,} is
i + (—D), where —D is the generator of {L} on £*(5%") and h is
defined by (hf)(@)=hf(x) for all f in L") such that f(x)e Z(h)
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a.e. and (hf)(+) e LH(%).

Proof. By Theorem 8 we know that the generator of {A(f)L,}
is H + (—D), where H is the generator of {A(f)}. We need to show
that Z/(H) = 2/(h) and if fe 2(H), then (Hf)(x) = hf(x) a.e.

First let fe ='(h). Then lim,, (h(t)f(x) — f(@)/t = hf(x) a.e.
and hf(-) e £*(9%). But |[(()f(@)—f(@)/t]] = SuDozis: [|AQ) || |2 S (@)]]
[3, p. 88] for all ¢ in [0, 1] and once again the Lebesgue Dominated
Convergence Theorem applies. The result is that (R(t)f — f)/t — kf
in the #*(2") norm. Consequently fe £ (H) and tHf = hf.

Now let fe Z(H). By [3, p. 10] kDf — f = goiT(s‘)Hfds. Con-
sequently, for almost all x, h(f)f(x)—f (fc)= S h(s)(Hf)(x)ds. But since
{h(s)} is strongly continuous, lim,,, 1/t§ h(s)k[;is = h(0)k = k for all k
in 227 Therefore lim,, (h(t)f(x) — f (xj)o/t = (Hf)(z) for almost all z.
But then f(z)e 2 (h) a.e. and hf(x) = (Hf)(x). Thus fe =2'(h) and
hf = Hf, completing the proof.

Using Corollary 9 it is now easy to construet a quasinormal
semi-group such that neither the isometric nor the positive factor
is uniformly continuous. We let {L;} on &%*) be the isometric
factor. The Hille-Yosida theorem [3, p. 36] guarantees that the
unbounded diagonal operator with diagonal (-1, —2, -+, —mu, ---)
is the generator of a strongly continuous semi-group {i(¢)} on .
The induced semi-group {h(f)} on &*(?) is self-adjoint and strongly,
but not uniformly, continuous. Thus neither factor of {R(f)L,} is
uniformly continuous.
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