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IRREDUCIBLE REPRESENTATIONS OF FINITE GROUPS
OF LIE TYPE THROUGH BLOCK THEORY
AND SPECIAL CONJUGACY CLASSES

RICHARD A. BOYCE

This paper is concerned with the study of certain irre-
ducible representations, over the field of complex numbers,
of finite groups of Lie type, and especially with the
characters afforded by these representations. The methods
used are based on the theory of blocks with cyclic defect
groups for certain prime different from the characteristic,
called special primes, relative to which the groups have
cyclic Sylow subgroups. Character values are obtained on
certain regular semisimple classes, and all Deligne-Lusztig
virtual characters relative to certain maximal tori are de-
composed.

0. Introduction. Consider a pair (G, T) where G is a finite
group of Lie type and T a maximal torus of G whose order is
divisible by at least one special prime. Let 2 be a complete set
of orbit representatives for the action of N = Ny (T') on the set
of irreducible characters of T whose orders in the character group
T~ are relatively prime to each special prime dividing |T'|. Then
for each 4r € 2, a family of irreducible characters of G is constructed.
These families, which are pairwise disjoint, resemble closely the
organization of the irreducible characters of G into blocks, and the
behavior of their members reflects in a number of ways the character
theory of N (see Theorem (5.2)).

That special primes exist for a wide class of pairs (G, T) is
established in §2, where they are seen to arise as the primitive
divisors of Zsigmondy [14]. Let (G, T') be such a pair, let 7 be the
set of special primes dividing |T'|, and let X be the set of elements
of T having order divisible by some 7ex. Then the Brauer-Dade
theory and Suzuki’s theory of special conjugacy classes, as adapted
to the peculiarities of this setting in §4 and §3 respectively, are
employed in §5 to show (Theorem (5.2)) that the sets of nonexcep-
tional characters in certain »-blocks of G are independent of remx,
and that the irreducible characters of G which are of interest,
namely those not vanishing on X, arise as follows. If #eT” and
e = [staby (6): T'], then there exist irreducible characters %, ---, X,
of G and signs ¢, -+, ¢, = +=1 such that for all 4,

€
XilX = —tale .
e
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It is shown also that X, (1) = (¢,/e)67(1) (mod s) where s is the z-part
of |G].

One of the primary objectives in the study of representations of
finite groups of Lie type is the decomposition of the Deligne-Lusztig
virtual characters (Deligne-Lusztig [5]) in cases where this has not
yet been accomplished. In §6 such decompositions are given (Theorem
{6.1)) for all Deligne-Lusztig virtual characters arising from certain
maximal tori. Indeed, let & be a connected reductive affine algebraic
group giving rise to a finite group G of Lie type, let .7~ be a
maximal torus of & giving rise to a maximal torus T of G such
that |T'| is divisible by a special prime, and let 6 ¢ T". Then using
the previous notation (subject, however, to a possible relabeling if
a certain transitivity condition holds), the result obtained is that

2(0) = e,
i=1

where RZ(0) is the Deligne-Lusztig virtual character of G correspond-
ing to .9~ and #e¢T". In case G = GL(n, q), this decomposition is
given by Fong and Srinivasan in [7]. Finally, the Deligne-Lusztig
theory is applied in §6 to obtain improvements in §5.

The author is deeply grateful to Professor Charles Curtis, whose
advice was indispensable throughout this work. A debt of thanks
is also due to Professor Gary Seitz, who provided the author with
a number of important ideas and improvements.

1. Preliminaries.

NOTATION. We adopt the exponential notation z° = g~'xg where
« and g are elements of a group. If X is the union of a set of
conjugacy classes of a finite group G and X: X — C is constant on
conjugacy classes, then for ge @G, X¢: X? — C is defined by X°(x%) =
X(x) for all x ¢ X.

Let GF(q) be a finite field of characteristic p > 0 and order g,
viewed as a subfield of its algebraic closure K. For greater detail
in what follows, we refer the reader to [2], [11], and [13]. Let &
be a connected reductive affine algebraic group over K with
coordinate ring .7 and let .o%,, & .o be a GF(qg)-rational structure
for & such that the induced Frobenius morphism F: & — & is a
homomorphism of abstract groups. Denote by G the corresponding
Jinite group of Lie type, by which is meant the finite group &, of
fixed points of F' in Z.

F-stable maximal tori of & are known to exist, and if & is
such a torus, then the abelian subgroup 7 = .7, of G is called a
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maximal torus of G. Furthermore, there exists an F-stable maximal
torus .7’ of & which is contained in an F-stable Borel subgroup <7’
of <, and the pair (&', <#") is unique up to G-conjugacy. Therefore
the classification of the maximal tori of G, which we outline below,
does not depend on our choice of (7', <Z’). Let W(< ') be the Weyl
group /'[!, where _+"' = N (v ). Given an element w = n."’
where mne._7"’, Lang’s theorem guarantees the existence of an
element @ € © such that n = a(Fa)™. It follows that 9~ =a %0 'a
is an F-stable maximal torus of ¢, and hence that T'= o7 is a
maximal torus of G, said to be obtained by twisting by w. More-
over, using the action induced by F on W(< '), we may define an
equivalence relation on W(9'), called F-conjugacy, whereby w, and
w, are related if and only if there is an element w,e W(< ') such
that w, = wyw,(Fw,)™*. Then the assignment

w—— (a9 "a)p

induces a bijection between the F-conjugacy classes of W(~ ') and
the G-conjugacy classes of maximal tori of G.

If F' acts trivially on W(o '), then F-conjugacy degenerates to
the usual notion of conjugacy, in which case we may speak (abusively)
of the Coxeter torus of G, namely any maximal torus of G obtained
by twisting by a member of the conjugacy class of Coxeter elements
in W(o™).

To obtain information about irreducible characters of G, we
shall make use of Suzuki’s theory of special conjugacy classes and
Brauer’s theory of blocks.

DEFINITION 1.1. Let N be a subgroup of G, let &, ---, &, be
distinet conjugacy classes of N represented by the respective ele-
ments n,, ---, %, and assume that the following conditions hold:

(a) For all 4, Cg(n,) < N.

(b) If ¢ = 7, then n;, and n; are not conjugate in G.

(¢) If for some ¢, ne N satisfies (n) = (n;), then ne%’; for
some j.

Then &3, -+ -, %, form a set of special conjugacy classes of N
in G.

PROPOSITION 1.2 (Suzuki, Higman). Let G, N, and n,c%:
A <1<m) be as in (1.1). Then

(a) X=U{z:1<i1<m}isa T.I. set in G and NgX) =N
(see Dornhoff [6], p. 60).

(b) There is a basis 6,, ---, 0, of virtual characters of N for
the complex vector space of class functions of N which vanish off X.

(¢) Let Irr (G) ={X,, ---, X}, let Irr (N) = {p, ---, @}, and set
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0, = S auy@; and 69 = S b, X, A <i=<m). Then

'3 »
20 bubi = > 0ua
k=1 k=1

for all 3, 5€{1, -+, m}.

(d) There exist complex numbers c;, determined uniquely by the
equations P;(n;) = S cutn 1=<1=v,1=5 7= m); moreover, these
numbers also satisfy the equations X,(n;) = S cuby A =1 = u,
1=75=m).

Proof. See Dornhoff [6], p. 149.

Detailed accounts of block theory may be found in Curtis and
Reiner [3], Dornhoff [6], or Isaacs [8]. Given a prime number 7
and a subgroup H of G, we adopt the viewpoint that a member
B = B(r) of the set B/(H) = B(H) of all r-blocks of H is a subset
of the disjoint union

Irr (H) U IBr(H) ,

where Irr (H) denotes the set of irreducible complex characters of
H and IBr (H) denotes the set of irreducible Brauer characters of
H relative to » (see [8], Chapter 15). We denote by B’ (resp. B")
the set BN Irr (H) (resp. BN IBr (H)).

If D is a subgroup of G, then the actions of Ny(D) by conjuga-
tion on Irr (Cy(D)) and on IBr (Cy(D)) induce an obvious action of
Ny(D) on Bs(Cx(D)).

Our primary block theoretic tool is the following portion of
Dade’s results on blocks with cyeclic defect groups.

PrOPOSITION 1.3 (Dade [4]). Let Be BZ(G) have nontrivial cyclic
defect group D of order v°. For each ke{0, ---, a}, let D,, C,, and
N, be the subgroups of G defined respectively by [D: D,] = »*, C, =
Ce(D,), and N, = Ng(D,). There exists a block b, of C, satisfying
b = B. Let E = Staby (b)), and e =[E:C]. Then the following
assertions hold:

(a) If be B/(C,), then b° is defined and b° = B if and only if
b" = b, for some n € N,.

(b) For each k{0, ---, a — 1}, the block b, = bj* is defined and
(b)" = {4} for some @, IBr (C,).

(¢) B’ contains certain distinct irreducible characters X,, -, X,
of G such that there exist Signs &, €, +++, €y Yo Ty *+ ) Vo = 1
satisfying the property that if ke{0, ---, a — 1}, then

Lwy) = | Z:z,kl 3 2
k ne
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Sfor each i, where D, = {x) and yec C, is r-regular.

(d) The signs ¢, and v, may be chosen so that ¥, =1. Under
this assumption, replace G by C,_,. Since b,_,e B/(C,_,) has defect
group D, (a)-(d) hold for C,_, and b,_,, giving us mnew signs
), <+, (Var)', where we may assume that (V) =1. Then 7, =
(70)', ey Yo = (7u—1),-

LEMMA 1.4. Retaining the notation of (1.3), assume that G = C,.
Then e=1 and the proposition holds with € =Y, =7 = -+ =
Yo = 1.

Proof. This is Proposition 2.1 of [4].

After the terminology of Brauer (see Dade [4]), the characters
X, ---, X, in (1.8c) are called the nonexceptional characters of B. We
remark however that if the action of E on the nontrivial irreducible
characters of D is transitive, then (1.3¢) holds independently of
which characters of B’ are labeled X,, -- -, X,.

In [5], Deligne and Lusztig establish the existence of a set of
virtual representations of G over C, parameterized by pairs (.7, 6)
where .7~ is an F-stable maximal torus of & and @ is an irreduci-
ble character of 7, over C, the set of which we denote by (9%)"
to emphasize that it forms a group isomorphic to .7,. We shall
confine our attention to the corresponding virtual characters of G,
the one associated with (.7, ) being denoted by R%(4) (or by R.-(6)
if the reference to & is clear).

If 77 is an F-stable maximal torus of ¥, then N,.(7 ) is F-
stable, and the action of N,(Z ), by conjugation on (7;)" lifts to
N T )pl T7 0e(F5)" is said to be in general position if
{we N.(F )pl T5: 6" = 6} = {1}.

For any closed connected reductive F-stable subgroup 5 of &,
denote by o(5#) the common dimension of all maximal GF(q)-split
tori of 5~ If . is an F-stable maximal torus of 57 and % is the
set of all unipotent elements of 5%, then the function Q%: % — C,
defined by QZ(w) = RZ(1,.)(uw) for all ue %, is called Green’s
Junction of 57 relative to 7.

ProposITION 1.5 (Deligne-Lusztig [5]). Let &~ be an F-stable
maximal torus of & with 0, 0’ € (F5)". Then the following assertions
hold:

(@) (BA0), R~(0)e = [{we N(T )p/ T 5: 6° = 6}]|.

(b) If R-(6) is irreducible uwp to sign, them eR.-(0)cIrr (G)
where € = (—1)"(—=1)",

(¢) If x = su (s semisimple, u unipotent) is the Jordan decom-
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position in & of xe€ @, then for any ge G, & (g) = C.(gsg™° is a
closed conmected reductive F-stable subgroup of &, and
70 (@) = |Z(s)r|™ HZG QE " (gug™)0°(gsg™)

where 6° coincides with 0 on T, and is zero on G — T .
(d) R-O)(x) = 6%x) for all xe T, satisfying Cu(x)° = 7.

2. Regular semisimple elements and special primes. If xe¢ G
is semisimple, then x is contained in some F-stable maximal torus
o of &, and if in addition C.(x)° = .7, then & is clearly the
unique maximal torus of & containing « (see Springer-Steinberg [11]).

DEFINITION 2.1. Let xe G be semisimple and let .9~ be an F-
stable maximal torus of & such that xe T = .7,. Let N = Ny (T).
Then we call z regular if Co(x)° = .7, and we call x locally regular
(relative to T') if Cy(x) = T.

By our preceding remark, the notion of regularity is well-
defined.

LEMMA 2.2. Let T = 9 be a maximal torus of G, and let xc T.
Then the following assertions hold:

(@) If x is locally regular (relative to T), then x is regular.

(b) x s locally regular (relative to T) if and only if Cg(x) = T.

Proof. (a)is proved by Springer in [10], Lemma 6.11. Plainly
Cy(x) = T implies that Cy(x) = T, so only the converse of this
remains to be proved. If Cy(z) = T, then by (a), C.(x)° = 7. The
connected component of an affine algebraic group is a normal sub-
group, so .7 <] Cy(x), whence C.(x) < N. (7). Now N.(7 ); =<
N(T), therefore Cy(x) = C,(x)y forces Cy(x) < Ni(T). Hence Cyx) =
Cy(x) = T, and the proof is complete.

It is implied by (2.2a) that if a semisimple element 2¢G is
locally regular (relative to T'), then .7 is the unique maximal torus
of & which contains x. Hence the phrase “relative to T is
superfluous and we shall omit it.

DEFINITION 2.3. Let T be a maximal torus of G. A prime
number + is called a special prime of G relative to T (or simply a
special prime when the references to G and T are understood) if
the following conditions hold:

(@) =TI

(b) For all xe T, »||x| implies that « is locally regular.
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We denote by S7(G, T) the set of all special primes of G relative
to T.

The next result, for the proof of which the author is indebted
to Gary Seitz, implies that blocks of G relative to a special prime
7 have cyclic defect groups, thereby enabling us to invoke 1.3.

PROPOSITION 2.4. Let T = 9, be a maximal torus of G. Assume
that .7~ + &, and let re (G, T). Then each Re Syl.(G@) is cyclic,
and there exists a unique such R contained in T.

Proof. We may choose xe T such that {2, =». Then xe R for
some ReSyl.(G). We show first that R < T. Let 1+ ze¢Z(R).
Ce(x) = T by (2.2b) since x is locally regular. Therefore z, which
centralizes z, must lie in T. Now 2, which has order divisible by
», is locally regular, so B < Cy(z) = T by (2.2b). Since T is abelian,
R is the unique element of Syl.(G) contained in 7.

Suppose now that R is not cyclic. Recalling that 9~ = &7, let
B:.7" — K* be a root, 2, the corresponding root group of &, and
w;: K— 7/; an isomorphism of affine algebraic groups (where K is
viewed additively). Then for all te . and all ac K, tx,(a)t™ =
z(B(t)a). B(R) is a finite subgroup of K*, hence it is cyclic, so
since R is not cyclic there exists a nontrivial element y € B N ker 3.
It follows that yx,(a)y " = x:(a) for all a€ K, so that 7%, < C.(y).
Now %, < C.(y)° since 4/, is connected. But y is locally regular,
so (2.2a) implies that 4 £ .7, a contradiction. Therefore R is
eyclie, thus concluding the proof.

If & =8SL2, K) and F is the map which raises matrix entries
to the power ¢, then G = SL(2, q), the Coxeter torus T of G is
cycliec of order ¢ +1 (see, for example, 1.10 in Chapter II of
Springer-Steinberg [11]), and the only elements of 7" which are not
locally regular are +1 (see Theorem 38.1 and Step 1 of its proof in
Dornhoff [6]). Therefore the case ¢ = 3° shows that not every locally
regular element of T need have order divisible by some r¢ (G, T),
the case ¢ = 5° shows that generally speaking |.&7(G, T)| > 1, yet
the case ¢ = 3 shows that it can occur that (G, T) = @.

We give now conditions which lead to the existence of special
primes in a variety of cases. In particular, the last example above
will be seen to be deviant.

DEFINITION 2.5. Given a power 7 =2 of a prime p and an
integer v > 1, the pair (v, v) is said to be compatible if neither of
the following hold:

(a) =2 and v =6.
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(b) 7 is a prime of the form 2 — 1 for some integer k=1,
and v = 2.

LEMMA 2.6 (Zsigmondy [15]). If (9, v) is a compatible pair, then
there exists a prime number r such that r|7° — 1 and for all positive
integers b < v, ry7’ — 1.

For each positive integer v we denote by f,(x) the vth cyclotomic
polynomial.

PROPOSITION 2.7. In order that SP(G, T)+ @, it is sufficient
that N|/T be cyclic with a generator nT (ne N) of order m and that
there exist an integer s = 1 such that the following conditions hold:

(a) t"=1t for all teT.

(b) fal@IIT].

(e) (g, ms) is a compatible pair.

Proof. By (c), (2.6) implies the existence of a prime 7 such that
r|g™ —1 and for all positive integers b < ms, rtq¢* — 1. Since
q™ — 1 = T] fi(q), the product being taken over all positive integers
b dividing ms, r must divide fi(g) for some b. If b < ms, then
7r|@® — 1 contradicts the property defining ». Therefore »|f,..(q), and
by (b), »||T|.

To complete the proof, we must show that if xze T satisfies
r||®], then Cy(x) =T. But if such is not the case, then the
cardinality d of the class of x in N satisfies d < m. It follows by
(a) that 2°* = #, whence z7’** =1, thus forcing »|¢** — 1 contrary
to the property defining ». Therefore Cy(z) = T.

We discuss some examples now where (G, T)#+@. Let G=%5
where & is a connected semisimple affine algebra group over K and
F' is the usual Frobenius morphism induced on & by the field
automorphism a — a? of K. Then G is a finite (untwisted) Chevalley
group over GF(q) (see Steinberg [14]). We assume for convenience
that the root system associated with this group is indecomposable,
and we base our classification of the maximal tori of G on the
diagonal subgroup .77’ of %, which is an F-stable maximal torus
of & contained in an F-stable Borel subgroup of &. Note that
F' acts trivially on the Weyl group W = W(7'), so that the con-
jugacy classes of W parameterize the G-conjugacy classes of maximal
tori of G.

Consider a maximal torus T = .9, of G obtained from .7’ by
twisting by we W. We make the further assumptions that Ny( 7 )=
Ny (T) and that (g, |w]) is a compatible pair. The failure of either
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of these conditions is incidental and rare ((2.7) of Seitz [9] implies
that the first holds whenever ¢ = 4). Let P,(X) be the characteristic
polynomial of w, w being viewed as a linear transformation of the
R-space X(.9") @z R, where X(.7') is the group Hom (7', K*) of
characters of .77'. We assert that (G, T) + @ if the following
conditions hold:

(2.8) Cr(w) = (wy ;

Indeed, in the presence of (2.8) it follows from §2 of Srinivasan [12]
that N/T = {w), that T = T{ and N = N; for some ge & where
T,={te 7" tr=Ft}) and N, = {n,€ N.(9'): n} = Fn,}, and that
there exists an element =»,e N, such that tm = F't, for all ¢, e T,.
Since Fix = «? for all t€. 7', the above facts imply that there exists
an element ne N such that ¢ = ¢ for all teT. Now by 1.7 in
Chapter II of Springer-Steinberg [11], |T|=|P,(q)|, so in the presence
of (2.9) the assertion follows from (2.7) with m = |w| and s = 1.

By Proposition 80 and Table 3 of Chapter [1], (2.8) and (2.9)
always hold if w is a Coxeter element of W. Moreover, using
Carter’s terminology and tables in [1], we conclude that (2.8) and
(2.9) also hold, for example, if w corresponds to one of the admis-
sible diagrams E(a,), E{a,), Eya,), or Eya,), in which cases w is not
a Coxeter element.

The algebraic groups considered above are all semisimple. How-
ever, by essentially the same discussion, (G, T) can be shown to
be nonempty for certain finite groups G = &, of Lie type where &
is not semisimple. For example, let G = GL(m, q) and & = GL(m, K),
let F' be the usual Frobenius morphism of &, and let T = 9, be
the Coxeter torus of G. Then G = %, is a finite group of Lie
type, and we may conclude as before that (G, T) = @ provided
that N.(9 )y = Ng(T) and that (q, m) is compatible. (The order of
a Coxeter element of the Weyl group associated with & is m.)

We return now to the case where G = &, is an arbitrary finite
group of Lie type, and we observe that our requirements in the
above examples that Ny (T)/T be cyclic and that N.(9 ), = N(T)
are not accidents.

PROPOSITION 2.10. Let T = .7, be a maximal torus of G such
that .9 + & and (G, T)* @. Then

(@) NgT)/T s cyclic.

(b) N.(F)r = No(T).

Proof. Let re (G, T), and let xe T have order . Set N =
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Ny(T). Since z is locally regular, Cy(<x)) = Cy(x) = T. Now (&) { N
by (2.4), so N/T is embedded in Aut ({x)). But <{x) is ecyclic of
prime order, hence Aut ({x)) is cyclic, and (a) follows.

As for (b), we observe that N,(9 ) < N always holds. Now
if ne N, then .7~ and .7 " are both maximal tori of & containing
x, which is regular by (2.2a). Therefore .7~ = 7 " and ne N.(9 ),
as desired.

3. Special conjugacy classes and special primes. Henceforth
we fix a maximal torus T = 9, of G and we set N = Ny(T). We
assume that the set (G, T) = {r, ---, r.} of special primes of G
relative to T is not empty. As justification for invoking (2.4), we
assume also that 7~ =+ &.

N acts by conjugation on T", and we denote by N, the stabilizer
in N of ¢ T". Note that by (2.10b), ¢ is in general position if and
only if N, =T.

Foreach j (1 < j < m), let R; be the unique r;-Sylow subgroup
of G contained in T whose existence is guaranteed by (2.4). Set
R=R, X --- X R,, and let @ be the unique subgroup of T satisfy-
ing T=QXxR. Set @ ={yeT :R<ker}and R-={NeT": @<ker}.
Denote by Y the set of regular elements in T, and by Y~ the set
of characters in 7" which are in general position. Set

X ={xweT:r;||z| for some 5}, and
X~ ={pe T :r;|]|0] for some j}.

In view of (2.2a), @ # X Z Y. Each element x€ T can be ex-
pressed uniquely in the form z = ab (a€ @, be R), and ze X if and
only if b = 1.

Analogously, T~ = @~ x R~, so that each character e T" can
be written uniquely in the form 6 = ¢\ (€@, Ve R"), and e X~
if and only if A # 1,.

LEMMA 3.1. =X~ <Y .

Proof. Since T" = T as abstract groups, @ # X~ is clear. Let
0 =arneX (+re@Q,1, # A€ R"), and choose ne N,. It follows that
n € N,, whence z"x™* e ker A |, where z is a generator of the cyclic
group R. Since )\ # 1,, we may choose k = 1 such that (z"z7")* =
1 # a*. It follows that n centralizes x*, whose order is divisible by
some special prime. This forces ne T, thus concluding the proof.

LEMMA 3.2. X 4s the union of a set of special conjugacy classes
of N in G.
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Proof. We prove first that the assertion holds with X replaced
by Y. Indeed, Y is a union of conjugacy classes of N, forif ye Y
and ne N, then since by (2.10b) N = N.(9 ) < N.(9 ), we obtain
C.(y"° = (Cou(y)°)* = 9 = .7, thus forcing y" to be regular. Let
{yy, +--, ¥.} be a complete set of representatives for the classes of N
contained in Y.

For each ¢, .9~ = C.(y,)° <{C.(y;) implies that C.(y,) < N.(v),
hence Cg(y;) = C.(y)r = N.(7 )r = N.

Now if ¢! = y, for some 4, some k, and some ge G = %5, then
7= (C.(y)°) = C.(y)° = C.(y)° = ., so that ge N.(5 ), = N.

Finally, suppose that {(y> = (y,> for some ye N and some 7.
Then C.(y)° = C.(Ky))° = C.({y»)° = C.(y)° = 7, therefore y is
conjugate in N to some y,. We have proved the assertion for Y.

Now X is clearly a union of classes of N, and we represent
these classes by «;, ---,2,€ X. (a) and (b) of (1.1) hold for the z;
by inheritance from Y. As for (1.le¢), if xe N satisfies (&) = <{x,>
for some ¢, then xe T and |z| = |«;|, so the lemma follows.

In view of (3.2), (1.2b) guarantees the existence of a basis of
virtual characters of N for the C-space of class functions of N which
vanish off X. Our goal is the construction of such a basis. Since
Q@ <{N, N acts by conjugation on Q. Fix a complete set 2 of orbit
representatives for this action. R <] N, so for each e 2, N, acts
by conjugation on R~ — {1,}. Fix a complete set A(y) of representa-
tives for this action.

DEFINITION 3.3. For each e 2 and each Me A(y), set 6y, =
A — (PN

N plainly acts by conjugation on X~

LEMMA 3.4. {yn:ire 2, ved(y) U{1;}} s a complete set of re-
presentatives for the orbits of T~ under the action of N.

Proof. By the uniqueness of the expression for each of the
members of 7 in the form 4\ (r€ @, A€ R™) and by the identity
(@A) = A" (¢e@Q,NveR”,neN), one may deduce easily that
{yn:pe 2, Ne A(4r)} is a complete set of representatives for the N-
orbits of X~. The lemma then follows from the disjoint union
T"=Q UX".

We are prepared now to discuss the irreducible characters of
N. Henceforth, for each e T", we denote by C(0) the set of
irreducible constituents of 62, and by n, the index [N,: T1].
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PROPOSITION 3.5. (a) For each € 2, the maps 0+ 6% (6 € C(y))
and yn = (PN (A€ A(p)) are injective. Moreover,

Irr (N) = U (5™ 5.6 Cop} U{W™: ne 4@

all of the indicated unions being disjoint.

(b) Let €. Then |C(¥)| = Ny, 8|y = + for each 6 C(y), and
“/TN = Zaect%)aN-

(e) For each ye 2, ¥y = — Ny Sucamm( )|

Proof. (a) Set 4= 92U {yN:pec2, neA()}. Since T <] N, and
by (8.4), the Clifford theory (see, for example, Isaacs [8]) implies
that all irreducible characters of N are obtained, each once, in the
form 6(6)¥, where # ranges over 4, and for each #e 4, 6(f) ranges
over C(6). By (3.1), each fe 4 of the form N (€2, M€ A(y)) has
stabilizer T, hence 6(6)" = (yA)" is irreducible. This proves (a).

(b) By (2.10a), N/T is cyclic. Let N/T = {(nT) where ne N,
and set m = |N/T|. Then n™ = t, for some ¢,€T. Given €2, let
&y ooy Cay be the ny distinet zeros in C of X" — 4(t,). Now Ny =
(T, n™"+y, and each of its elements may be expressed uniquely in
the form tn'™™ (teT,0 =<1 < my). For each je{l, ---, ny}, define
d;: Ny — C by

0,(tn™/mr) = ()G .

Then the d; are distinct linear characters of Ny satisfying d,, = 4.
Now Frobenius reciprocity implies that (0, v"¥)y, =1 for all j,
hence by comparing degrees we obtain v = >};4;. It follows that
¥ = >}; 67, thus proving (b).

(¢) Fix re Q. Let o be the regular character of R. Then by
decomposing elements of X relative to the decomposition T' = QX R,
it is straightforward that 3;c,w(¥N)¥7 coincides on X with |, &
(0 — 1z), hence with —qr. Therefore, choosing a right transversal
D of Ny in N, we compute that for each z¢ X,

w3 W@
= My nEZJJ ZG%V‘) (Q‘k\X)N%(xn)
= —ny > 4 (x")
= (@) .

This concludes the proof of the proposition.

PROPOSITION 3.6. The set {0y, 4 €2, M€ A()} forms a basis of
virtual characters for the C-space of class functions of N which
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vanish off X.

Proof. If ipe 2 and ne A(y), then 0y, = (4 — 4\)Y is clearly a
virtual character of N, and it vanishes off X since 4 — 4\ vanishes
off X. Moreover, the set S = {0y,: € 2, A€ A(+)} is easily seen to
be linearly independent.

The dimension of the space V of class functions of N which
vanish off X is equal to the number of classes of N contained in X,
and since each such class consists of locally regular elements of T,
we conclude that dim V = |X|/[N: T]. Similarly, the number of
orbits in X~ under the action of N is | X |/[N: T]. Therefore, since
| X™| = |X]|, the result follows from the fact that |S| is equal to
the order of {y\:+re 2, N € A(yr)}, which by (3.4) is a complete set of
representatives for the orbits of X~ under the action of N.

4. Block theory for special primes.

LemMmA 4.1. Fix r;€ (G, T) and let B(r;) e B (G) have non-
trivial defect. Then R; is a defect group of B(r;).

Proof. Let D be a defect group of B(r;) satisfying D < R; < T.
By inheritance from R;, D is generated by a locally regular element
of T, thus Cy(D) = T. Now by Brauer’s theory (see Theorem 64.10
of Dornhoff [6]), there exists a block b(r;) ¢ B (T) with defect group
D and satisfying b(r;)° = B(r;). But since T is abelian, D = R;
follows, as desired.

Our objective now is the application of Dade’s results (1.3) to
our present setting. For each j, let Q; be the unique subgroup of
T satisfying T =Q; x R;. Set Q; ={#cT":R; < ker6} and R; =
(e T":Q; < kerd}. Since Q; <| N, N acts on @; by conjugation.
Let 2; be a complete set of orbit representatives for this action.
We may, and henceforth we shall, assume that 2 £ 2,. Set X, =
{xe T:7;||x[}. Then clearly X; & X. If B(»;) e B/ (G), we denote
by o(B(r;)) the defect of B(r;).

LemMMA 4.2. (a) For each j, the set {b(r;):b(r;) e Bz (T)}
coincides with the set of cosets of R; im T~. Moreover, if b(r;) e
B, (T), then b(r;)" contains precisely one element @ which s
determined uniquely by the property that for all 6€b(r;), @ = 0l,,.

(b) For each j there is a bijection

Q; ——{B(r;) € B,(@): 3(B(r;)) # 0}

given by +r — b(r;)%, where b(r;) is the unique r;-block of T such that
reb(r;).
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Proof. We omit the proof of (a), which is straightforward and

holds when T denotes an arbitrary abelian group and #; an arbitrary
prime.

As for (b), fix jef{l, ---,m}. Then T = C4R;) since R; is
generated by a locally regular element of T. Therefore, in view of
(4.1), (a), and the fact that since T is abelian each 7;-block of T has
defect group R;, the result follows from a version of Brauer’s first
main theorem (see Theorem 64.10 of [6]).

DEFINITION 4.3. For each je{l, ---, m} and each € 2;, denote
by by(r;) the unique 7;-block of T satisfying by(r;)’ = +R;, and
denote by By(r;) the 7;-block of G given by By(r;) = by(r;)°.

PROPOSITION 4.4. Fix je{l, ---, m} and € 2;. Then there are
Ny distinct nomexceptional characters Xy, - -, XWW, in By(r;), and
there exist signs €y, - -+, €y, » = £1 such that

X%,ilx,' = (5%,i/n1/f)"/’N|Xj

Jor all 1€{1, ---, ny}.

Proof. By (4.2b) and (4.1), By(r;) has nontrivial cyclic defect
group R;, so we may apply (1.8) with » = »;,, B = By(r;), and D = R;.

We observe that if 0 <k < a, then C, =T and N, = N in (1.3).
The first equality holds because D, is generated by a locally regular
element of T. The second follows from the facts that N normalizes
every subgroup of R;, and if N, normalizes a subgroup H of G,
then it must also normalize Cyz(H). Therefore, for 0 < k < a, we
replace C, by T and N, by N in (1.3).

Now by(r;)¢ = B, so we may take b, = by(r;) in (1.3). By (4.2a),
and since T = Q; x R; and N, = N, we conclude that E = Ny in
(1.3), hence e = [Ny: T'] = ny.

Let Xy, ---, Xy " be the nonexceptional characters of B and
&ty Sngr Yoy Yy oy Yo the signs given in (1.8¢). We show
that these signs may be chosen so that v, =7 = --- =7,,=1.

Indeed, invoking (1.8d), we choose the signs so that 7, =1, and we
apply (1.8) to C,_, and b,_,. But C,_, =T = C, and b,_, = by(r;) by
our previous observation, so in effect we are applying (1.8) to C,
and by(r;). Thus by (1.4) we obtain new signs (7)) =) = -+ =

(Y,_) =1, which, by (1.8d), forces v, =7, = -+ =7,_, = L.
With this choice of signs, and in view of (4.2a), (1.3c) enables
us to compute that if xe€ R} and y e Q;, then for each 1€ {1, ---, ny},

Ly i(@y) = (&y,i/| NpT'|) n;N Pu(y™)
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= (&yq/| Ny ) % ¥(y")
= (eyi/ny) | T "%:V P ((xy)™)
= (&yi/np)P" (xy) .

Since zy is a typical element of X, this concludes the proof of the
proposition.

COROLLARY 4.5. With notation as in (4.4), if € 2 and )€ A(),
then Xy, ¥° — (Y0N)%)g = €yi for all ie{l, - -, ny}.

Proof. In the following calculation we employ Frobenius
reciprocity, the fact that " — (yA)” vanishes on N — X, the
proposition, and (3.5):

Xy p* — (N)Ne = Lpaly, ¥ — (Y0) ")y
= (Ep,i/np) (P, ¥V — (YN)V)x

= Epyi

5. Irreducible characters of G. We now assimilate the infor-
mation of §4 in such a way that all primes in .$”(G, T) are dealt
with simultaneously. Denote by E the set

{9eG:7r;||g| for some je{l, ---, m}}.

LEMMA 5.1. (a) E = U,X? the union being disjoint in the
sense that X' N X* + @ f and only if X? = X".
o) Y%y = 7|z for all complex-valued class functions ¥ of N.

Proof. (a) X* < Eis plain for all y € G, and the other inclusion
follows by applications of Sylow theory and (2.2b) to the r;-part of
an element ge¢ E, where 7;||g|. The assertion on disjointness holds
since by (8.2) and (1.2a) X is a T. I. set in G.

(b) It suffices to show that if xe X and geG, then 2’e N
implies that ge N. But again by applications of Sylow theory and
(2.2b) to the r;-part of #’ in N, where 7;||x|, we conclude that
2’¢ X, thereby forcing XNgXg™ # @. Since X is a T. I. set in
G with normalizer N, it follows that ge N, as desired.

In view of (5.1a), the values of a class function of G are known
on FE if they are known on X.

THEOREM 5.2. For each €2, there exisls a sign &y = =*1,
together with an trreducible character Xy, of G and a sign &y, =



268 RICHARD A. BOYCE

+1 for each 1€{l, ---, ny}, and an irreducible character Xy, of G
for each )€ A(4r), such that the following assertions hold:
(a) For each e 2 and each )€ A(3r),

g
9 — @V = (Zenidne) — exlys
(b) The map
f: {(";’7 7\’): q){/‘G.Q, 7\'6/1(“;[")} U {("/’\’ 7’): qll‘e.Q, 1 = = ,n’?/f}_")]:rr (G) ’

given by f((4, B)) = Xy 5 18 1nJective.

(e) Given €, the set Xy 01 < 1 < ny} coincides with the set
of momexceptional characters in By(r;) for all r;€ (G, T).

(d) For each 4rc 2 and each 1€{1, ---, ny},

5¢.ixﬁhilx = 'l—“ﬁ'NIX = —&y > X‘%,zlx .
Ny 2€ ()
(e) For each €2 and each \e A(y),
nyp
Lpoe = ep(¥N)¥lx  and  eyXy e = giei/f,ix’ib‘,iIG—E .

(f) Let XeIrr (G) be distinct from all Xy, and all Xy,. Then
X vanishes on E.

REMARK. We shall see in §6 that ¢, is independent of e,
and that (e), (f), and the first equality of (d) all hold if X is replaced
by Y and E by U,.cY".

Proof. (a) Letref2 and ned(+). Since 2 < 2,, (4.4) and (4.5)
imply that there exist signs ey, ---, &y,,, and distinct irreducible
characters Xy.;, - -+, Xy,.y € By(7)’ (i.e., the nonexceptional characters
in By(r,)) such that

&
(5.3) Xxb,iLrl = —ij N]X1 and Xy, 0926 = Eys -

For each {elrr (N) and each XeIrr (@), let a. = (¢, 04,)y and b, =
(X, 6%.,)s. Then by (3.2) and (3.6), we may invoke (1.2¢) to obtain

b= >, ai,

£
7elrr (@) Lelrr(N)

which by (3.5) forces 33,0} = ny + 1. Now by (5.3), 34 b%, , = ny,
and it follows that there exists a sign ey,; and an irreducible
character Xy, of G, distinct from X, , for each 7, such that

nYr
0% = (g; %%m) — &pky,a -



FINITE GROUPS OF LIE TYPE 269

The signs ey,; are independent of Mne A(y), for if e and
Ny Ao € A(y), then (1.2¢) and (8.5) imply that (0% e%.) + ey apa, =
ny + 1, thus forcing ey, = &y,;. Therefore we are justified in
replacing &y, by &y.

(b) We have remarked already that for each +r€2 and each
M€ A(vp), the characters Xy, - -, Xy uy, Ly, are distinet. Moreover,
if e and M\, N, €A4(y), then Xy, =Xy, implies by (a) that
05,3, = 0%, Now it follows from (5.1b) that induction is an iso-
metry, hence a monomorphism, from the C-space of class functions
of N vanishing off X into the C-space of class functions of G. We
conclude that 6y, = 0y, whence (yr)" = (yA,)". (8.5a) now forces
A= N

Therefore in view of (a) we must show that if r, e 2 are
distinet with A, € A(y) and A, € A(4),), then no irreducible constituent
of 65, can be an irreducible constituent of 6%, ,. But by the proof
of (@), {Xy,:1=1=my} < By (r) and {Xy,;: 1 =7 < ny,} S By, ().
And by (4.2b), By (r)" N By,(r) = @, so it suffices to show that
Xy, # Xy, for all 1e{l, ---, ny} and all \ € A(y,), because then by
(), Xz, = Xy, (Vi € AQyry), § =1, 2) cannot oceur since (65,5, 07,.:,)¢ =
(0«,’»1,11, 9¢2,zz)zv = 0.

In order to do this we invoke (1.2d). The class functions 0y,
may be indexed by pairs (4, N) (v € 2, M€ A(+y)). Let C be a complete
set of representatives of the classes of N contained in X. By (1.2d)
there exist uniquely determined complex numbers ¢,.y,; (x€C, 4 2,
N € A(y)) satisfying
(5.4) C@) = 25 >0 Cowp 2Oy

Y@ 22 A
for all {eIrr (N) and all xeC, where ay ;. = (, 6y,,)y. Moreover,
the numbers ¢,.y; also satisfy
(5.5) X@) = 25 2% Cowyiby,ax

e 2EAY)
for all X € Irr (@) and all x ¢ C, where by, = (X, 0%.,):. Now by (3.5),
for all e 2 and all xe A(y),

1 if {=6" for some deCy)

(5.6) Uy = {—1 if £ = (GN)"
0 if Celrr(N) is otherwise .

And by (a), for all 4+e 2 and all A e A(y),

(5.7) bw’l;x = =&y if X = th,z

j ey, if X =2Ay, for some ie{l, - -, ny}
‘ 0 if Xelrr(G@) is otherwise .
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Fix 4'e 2 and i¢{l, ---, ny}, and set
B ={yeR: Xy, =%y, for some red(p)}.

‘We must show that B = @. By our previous discussion, ' ¢ B and
if 4r€ B, then there is a unique element Ay € A(y) such that Xy, =
Xypay Let xe X, N R*. Then by (56.3), (5.5), (6.7), (5.6), (5.4), and
(3.5¢) respectively,

&y i M) () = Ay, ()

= Coir 2109 20707

= Copinfrr 38 Cy: —&
Ze%%’) = 1ﬁe23 x.“ﬁnly,( ’51’)

leua

= Ty Z(‘% Casp? 20 25 OV

P ';('1#) Coipr, 20y, 2 m/rz,/,)N(ew)

= =ty 20 (PNT@) + 3L ep(yng) (@)
ea(y) YeB
= SELy(@) + 3 eniig) (@) -
n%, PeB

It follows that Diy.zep(yng)¥(x) = 0.
Next we observe that for each & B, ey(yn)"(@) = Xy, ().
Indeed, it follows from (a), (5.3), and (5.1b) that

Epkyp 2, (@) = (:Z: Sw,kxw,k(w)> — (4 — Pnp)(@)
= (3L @) — 4@ — @)
k=1 ny
= (¢X¢)N(x> ’

and the observation follows. Therefore 0 = 3iyep Xy, (@) =
| Bl (&gr, o/ )" () by (5.8). Finally, 4¥(x) = [N: T'] since ' € @~ and
xe R, so 0 = |Bley ;[N: Ny, whence B = @&.

(¢) In the proof of (a), the characters X, (1 <14 < my) arose
as the nonexceptional characters in Bwy(s,). So if (G, T) = {r}
there is nothing to prove. Therefore, let »;€ &7(G, T) be distinct
from »,. Let X (1 <7 < ny) be the nonexceptional characters in
By(r;) (see (4.4)). As in the proof of (a), X, is an irreducible con-
stituent of %—(yA)¢ for all < and all A € A(yr). Suppose X, € {Xy,: 1=
kE<ny} for some 7. It follows from (a) that X,=Xy, for all x e A(y),
and then from (b) that |A(y)| =1. Since R; is invariant under the
action of N on R~, this forces R™ = R;, and S“(G, T) = {r,} follows,
in violation of our choice of 7;.

(d), () In view of (c), the proof of (a) may be adapted to show
that for each e 2 and each ¢2e{l, ---, ny},
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Eqpi
X‘/’,ilXj = 2t
Ny

P x;
for all jefl, ..., m}. Since X = J; X, the first equality of (d)
follows. This equality, together with (a), implies the first equality
of (e), which in turn, together with (8.5¢), implies the second
equality of (d). Finally, for each e 2 and each \ € A(3), 4% — (yn)°
vanishes on G — FE since « — 4» vanishes on T — X. Therefore the
last part of (e) follows from (a).

(f) By (@), byz = 0 for all e 2 and all xe A(y). Thus (5.5)
implies that X vanishes on H, and this concludes the proof of the
theorem.

COROLLARY 5.8. The following congruences (mod|R|) hold in
VA

@) Zpi(1) = Ey/np)y™(1) (ye2,1 S0 = ny).

©) Xy (1) = ep(pM)¥(1) (€ 2, N e Aly)).

() XA) =0 whenever Xelrr (@) 1s distinct from all Xy, and
all ny';.

Proof. Fix~'efRand ie{l, - -, ny}. Set 2 =0 — {4'}. From
Frobenius reciprocity and (5.2a, b), it follows for all € @~ and all
re RT — {1,} that

ey if 4 = for some neN

— AN, Xl = i
(q;r YNy Lo, )z {0 otherwise .

Therefore, setting ay = (3, Xy |r)r for all +re @, we conclude
that for all e N and all xe B~ — {1,},

Uy — &yry i =
Ay if Q.
Now for each € 2, let dy be the order [N: Ny] of the orbit of
o under the action of N on T". Then by the uniqueness of the
expression 6 = A (€ Q, v€ R”) for each /¢ T", we compute that
X%’,i(l) = y;.A (0: X%’,i|T)T‘9(1)
= E d%);ﬂ‘t (”&WV, X‘W’,ilT)T

Yef

= lRl(q/%,dwaw) + dyfay + (R — L)@y — eyp,0)]

(“}If\n)Vy X'//",iIT)T = {

= |RI[(S dpay) — dyep,] + SEty¥(1) .
Ve Woprr

This proves (a), from which, in view of (5.2a), (b) follows. The
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proof of (¢) is similar to but easier than that of (a).

Since R* is a union of conjugacy classes of N, each of order
[N: T], we conclude that (|R|,[N:T]) =1. Therefore for all Xe
Irr (@) it follows from (5.8) that |R||X(1) if X is distinct from all
Xy and all Xy, whereas X(1) is relatively prime to |R| otherwise.

6. The connection with the Deligne-Lusztig theory. Let
e = (—1)(—=1)’, as in (1.5b).

THEOREM 6.1. For each €, each 1€{l, ---, ny}, and each
NeA(y), let Xy, €piy Xy and &y be as im (5.2). Then &y = e.
Moreover, (after a possible relabeling of the characters Xy, -+, Xy uy»
Xy2 and the signs ey, -+, Epuy, € in case |A(y)| = 1)

2y
R2(yN) =€y, and R7(y) = Z:,l ey, ik -

Proof. For e T, we write R”(f) in the abbreviated form
R(#). Fix pe 2. Since by (2.2a) each element of X is regular, (1.5d)
implies that for all A e A(y), R(y) — R(yn) and % — (¢A)° agree on
E=U,.;X° From the fact that  — 4\ vanishes on T' — X for
all M e A(y), it follows that ¢ — (4\)¢ vanishes on G — E, and the
character formula (1.5¢) implies that R(yr) — R(y\) vanisheson G — E
as well. Thus by (5.2a),

(6.2 Rep) = R = (B endlons) — ey

for all ne A().

Now using (1.5a, b), it suffices to show that for all 4e£2 and
M€ A(p), R(yN) = Xy Fix pe 2. (1.5) implies for all A€ A(y) that
eR(\) eIrr (G) and R(¥), R(yn)e = 0, If N € A(y) satisfies R(yrh,) #
Xy, then (6.2) implies that eR(y\,) = Xy, for some k. It follows
that Xy, is not an irreducible constituent of R(4). But then by
(6.2) again, Xy, = eR(y\) for all ned(y). By (5.2b) this forces
[A()| = 1. So again we conclude that R = {(x) where |2| = and
+ is the unique element of (@G, T).

It follows (see Dade [4]) that By(r)' consists precisely of
Xy + 5 Xypny (the nonexceptional characters of By(r)), and Xy ;.-
Since A(y) = {\,}, the action of N on R™-{1,} is transitive, hence
(1.3¢) is independent of which characters in By(r)' are called the
nonexceptional ones. Therefore all of our previous results remain
valid if we relabel the elements of By(r)’ and the corresponding
signs in such a way that Xy, = eR(y\,). Then (6.2) implies that
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R(y) = i ey Xy, as desired. This concludes the proof of the
theorem.

It should be remarked that the information contained in (6.1) is
complete in the sense that

{B2(0): 0 T™} = {R7(yN): yre 2, v e A(y) U (L)}

This follows by (3.4) and the character formula (1.5¢).

Thanks to (6.1), the multiplicity of each X ¢ Irr (G) in each R’ (0)
is known (up to sign). Therefore for X ¢ Irr (G), we may apply the
formula 7.6.2 of Deligne-Lusztig [5], which states that for all regular
elements y in T,

) = 3 0 RZ0)0) -

ert

Familiar arguments then show that (5.2¢), (56.2f), and the first
equality of (5.2d) remain valid if X is replaced by Y and E by
UgeG Yg'
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