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HOMEOMORPHIC CLASSIFICATION OF CERTAIN
INVERSE LIMIT SPACES WITH
OPEN BONDING MAPS

WiLLiAM THOMAS WATKINS

Let I=1[0,1]. Let ¥f be the Nth degree hat function
from I to I. For example, %f, 3f, and *f are pictured below:

2 3; 4;

We are interested in classifying the spaces which are
inverse limits of the unit interval using these bonding
maps. In particular, for a fixed integer N =2, we are
interested in classifying (up to homeomorphism) the space
Dy, which is 131_1} {I,”f}. The main result of this paper is:

TaeoreM: Dy is homeomorphic to D, if and only if M
and N have the same prime factors.

Overview., Let D, =1lim{I, ¥f}. These spaces are often called
Knaster continua since D, is, in fact, the Knaster Bucket Handle:

=D,

Bellamy [1] and latter Oversteegen-Rogers [2] used D, to con-
struct examples of tree-like continua without the fixed point property.
It appears improbable that their techniques can be modified to con-
struct a similar example from D, This resurrects a question raised
in a paper by J. W. Rogers, Jr.—Are there three topologically dif-
ferent D,’s?

The answer, as previously stated is:

THEOREM. D, is homeomorphic to D, if and only +f M and N
have the same prime factors. (Allowing different bonding maps we
will show there are precisely ¢ tovologically different Knaster type
continua.)
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590 WILLIAM THOMAS WATKINS

Assuming they have the same prime factors we will demonstrate
an inverse limit homeomorphism between the two.

The objective of this section will be to outline, without proofs,
the steps in showing that D, and D, are not homeomorphic. Sub-
sequent sections will provide the details of the proofs.

Consider the composant of D, and D, containing the end-point
as parameterized below.

wi o1 Nt =

4

Consider the special basis about the point 0 in D, and D,.
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Observe that the integer points in U, is exactly the collection
{2n2%: n is a nonnegative integer}. The integer points in V, is exactly
the collection {2n6°: n is a nonnegative integer}.

If there were a homeomorphism h: D,— D, it would take the
end-point-composant of D, onto the end-point-composant of D, in an
order preserving manner. Furthermore we could construct the fol-
lowing infinite lattice of open sets.
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Where n(U,) C V..
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We need two definitions. Suppose A = {a;};>, and B = {b,}=, are
two increasing sequences of nonnegative integers, then:

A D B if and only if a, = b, =0 and b,€ A for every 4.

A k B if and only if A D B and b, = a,; for every <.

Now we construct, from our lattice of open sets, a lattice of
sequences. First we get the chain:

=)

o

S N N

where A, is the collection of integers in U, , and for every ¢ there
is an integer 7, so that A4, 2 A,,,. Each A, is an arithmetic sequence.
Unfortunately, the integers in V; may not be mapped to integers
in U, under r~'. However, each integer in V; will be mapped into
some arc component of U, and at most one integer is mapped into
any arc component. Thus, using a “nearest integer function”, this
allows us to construct a lattice:

B, is the subsequence of A, obtained by picking those integers
in U,, that are on the same arc component of U, containing some
h~'(m) where m is some integer point in V;, .

This lattice has the properties that for every 4 there exist 7,
and s; so that A4, 2% 4,,.,, B, 6% B,,, and A, D B, and B, D A,,,.

At one time I had hoped to show that no such lattice exists.
I have been unable to do this.

By picking some special but very natural chainings of D, and D,
we can establish one more useful fact. We pick a nested sequence
of chainings of D, — % > & > & > &% > .-+ Where % > 57,
means ., refines .&7. Further, U, will be the first link in .o7.
Similarly pick a nested sequence of chainings of D, — <&, > <& >
% S e,

We could then get an infinite lattice of chaining:
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Use the first link in each chaining to construct the same lattice
of sequences we had earlier. Knowledge about the chainings helps
establish that B, must be an arithmetic sequence. (I don’t know
any way of insuring that B, is arithmetic.)

For any arithmetic sequence C let 6C be the difference between
two consecutive elements. Since B, is arithmetic and B, 6 B, we
see 0B, = 66B,. Since B, D A, there is some constant k£ so that
0A, = k6B, = k6°6B,. We know that 64, is some power of 2 and
this is a contradiction.

NoOTATION. We begin with a very particular and convenient
description of the continua under consideration. Suppose N is a fixed
positive integer. Let ?f:[0, N**'] - [0, N] be the “hat-function”
such that 7f,(mN?) = 0 whenever m is even and “f,(mN*) = N* when-
ever m is odd (m =0,1,2, ---, N) and it is linear in between.

DEFINITION. Dy = l(iln {[0, N*], *f;}. That is, Dy is the inverse
limit of the following sequence:

[0, 1] &% 1o, N1 X2 0, N X 1o, N M

With this “parameterization” of D, we shall have a very nice
correspondence between the nonnegative real line and the composant
of D, containing the end-point 0,0, --->. We shall call this com-
posant the O-composant of D,. This composant has a particularly
simple form-namely, it is

{Z = {x,) € Dy|for some k, %, = ®pyy = Cppp = Xpys = *+*}

that is the eventually constant elements of D,. Given any non-
negative real number x denote Z as the unique point on 0-composant
whose coordinates are eventually all x. An integer point # is a point
whose coordinates are eventually the integer «.

Define p: 0-composant x 0-composant — R, where R is the set of
real numbers, by y¢@, y) = |¢ — y|- In a sense this measures the are
length distance between Z and 7.
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Define 7: 0-composant — N, where N is the set of nonnegative
integers, by 7(®) = [z + 1/2], where [ ]: R — N is the greatest inte-
ger function. % is, in a sense, a nearest integer function. The
effect of 7 is to find the integer point 7% “closest” to ¥ as measured
by ¢ and then %(Z) = ».

We wish to investigate the possibility of a homeomorphism
h: D, — D,. Some very specific chainings of D, and D, will be
helpful in this investigation. Let N, = [0, N"] and M, = [0, M"] be
the nth coordinate of D, and D, respectively. Then z,: D, — M, is
the projection of D, onto M,. (x, will also be used to denote the
projection z,: Dy — N,. There should be no confusion when read
in context, however.) Now define the special chainings of D, and
D,:

A =m0, 2™, (27", 8-27"), - -,

(N" — 8.2°m N — 2-™) (N" — 2.2 N"]}
A" = w7 {[0, 21™™), (27", 8-27"), - - -,

(M — 8.2 M — 2°™), (M" — 2.27™ M"]} .

There are four significant properties of these chainings:

1. 77 is refined by .7, (denoted _#7 > _#,") if and only if
j=<mand i <m. Similarly for _z". ‘

2. The first link of _s,"*" intersects only the first link of _s,,".
In general, if ¢ > _4," j < n, then the first link of _s," inter-
sects only the first link of _#7?. Similarly for _~Z,".

4 w
3
1
2
0
The gates in the Oth coordi- 1
nate of D, corresponding to
the super-script 2.
0 .

The gates in the 2th coordi-
nate of D, corresponding to
the super-script 2.
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The 2} chaining of D,

First link in 2} chaining 2
First link in the 2} chaining
First link in the 2§ chaining

The first link of some 67 chaining
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3. For all 4 =1 the set of integer points in the first link of
N7 (resp. #;) is exactly {#|n = kE2N* (resp. n = k2M*) ke N}.

4. p(Z,y) < 1/4 for any % and ¥ on the same component in the
first link of _#7* or _#Z;'.

Non-Homeomorphic Dy’s.

THEOREM 1. If there exists a homeomorphism h: Dy — Dy, then
there exists an infinite sequence of chainings:

A W) > A > WA > oo

If we denote 7 as the first link of _#;"« and %/, as the first
link of _#7«, then the only link of _#» that intersects r™*(7;) is
%, and the only link of A™'(_#;7) that intersects %, is h™(7)).

Further, %, and h(%,) are both so small that for any Z and 7,
both on the same O-composant component of %, n(Z,7)<1/4 and

p#(h(Z), h(H)) < 1/4.

Proof of Theorem 1. Pick o so that j, >4 and W(%)) is a
subset of the first link of _#7{*. Then u(Z, ¥) < 1/4 and p(h(%), h(®)) <
1/4 for any Z and % in the same component of %.

Pick _#;m so that A7 (75) is contained in the first link of _z;/*".
Then %, is the only link of _#;° that intersects A7'(77).

Pick _#;* so that h(%/) is contained in the first link of _s;ro*.
Then h~'(7;) is the only link of A7'(_#;7) that intersects Z/.

Continue this process indefinitely.

Define «, to be the set of integer points in %/, and B; to be the
set of integer points in %;. Then as noted earlier:

a, = {m|m = k2M*, k is a nonnegative integer}
B; = {m|m = k2N™, k is a nonnegative integer} .

DEFINITION. Given two increasing sequences of nonnegative inte-
gers A = {a,}2, and B = {b,}>, we say A D B if and only if conditions
(a) and (b) hold.

(a) for every b, € B, b, is also an element of A.

(o) a, = b,

DEFINITION. A k B if and only if b, = a,, for every n.

Observe that for every » < m there exists an » so that n(a,) M"
7n(a,) and for every i < j there exists an s so that 7(8;) N* 7(B)).

DEFINITION. A4, = 7(a,); B, = 7(h7(B,)).
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THEOREM 2. If there exists a homeomorphism h: D, — Dy, then
there exists an infinite lattice of imcreasing sequences of nonnega-
tive integers so that for every i and j by ;4 — b,y = 0,5, — b, ; and
for every m there exists monnegative integers v, and s, so that
A, M A,,, and B, N B,., and B, D A,,, and A, D B,. The first
element in each sequence 1is 0.

A, = {nonnegative integer multiples of some power of 2}

B |
>4,
B |
A
s
S
|
B / In An = {an,i};;o
ln\/An_H Bn = {bn,i}gc;o
Bn+1\ {.

l

Proof of Theorem 2. Let A, = n(a,). Since a, is the integer
points in %, e _#» and «a,,, is the integer points in Z,,, € #Z;»%
where J,.. = 7., and %, = ¢, there exists », so that A, M™ A,,,.

Step 1. neh™ pB,— A, is an injection. Hence A,D B, =
N(h™(B))-

Proof of Step 1. SupposeZ € B,, T + ¥ and 7 € 8, then u(Z, ) = 1.
The only way n(h™(%)) = p(h™"(¥)) is for r™'(Z) and A'(y) to be on
the same component of %/, which implies ¥ and % are in the same
component of 7, (hence on the same component of 7;) but any two
points on the same component of 7; have (7, ) < 1/4, a contradiction.

St@p 2' 7](h’—‘l(Bn)) - An+1’

Proof of Step 2. h™Y(B,) C h™(7;). More specifically, each 0-com-
posant component of A~'(7;) contains a unique element of A7'(B,).
%i © h™N(Z7), so every 0-composant component of Z/,., is a subset
of some 0-composant component of 27%(7;). Hence, for every element
yea,,, there is a unique ¥ € B, so that ¥ = »('(7)).

Step 8. R, N*» B,.,.
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Proof of Step 3. We observed earlier that for every = there is

some s, so that 7(8,) N°** 9(B,.,). Since noh™: 3, — A, is a one to
one order preserving map B, N°» B,,,.

Step 4. Let p and ¢ be two consecutive elements of a, and J
be the arc from p to ¢q. If .o is a link of _#/ other than the
last link and <Z is the last link of _#;* then JN <7 has exactly
one component and J N % has exactly two components. In particular
J N Z, has exactly two components.

Proof of Step 4. This is simply the observation that the 0-com-
posant goes from the first link, through each link in order to the
last. It then turns around and goes from the last link to the first
in reverse order.

The following diagram may be helpful.

& is the last link of _z;t
#, is the first link of _2z
%, is the first link of _#Z;.

7
7
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Consider the continuous one to one, onto function f: nonnegative
reals — O-composant, so that f(z) = Z. Then
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f (%) looks like:

[ 1 ]
7 T ]
0 a1 ay,2 Q13 a4

Step 5. The number of B, elements between any two consecu-
tive A, elements is constant.

Proof of Step 5. Note that any maximal subchain of _#* con-
tained in %/, has only one link containing integer points. Call this
link Z. Step 2 implies A, C B, so that if there exists some Z € g,
and ¥y€ Z,N Z so that n(h(Z)) = n(¥), then there is some %, € g,
for every ¥,€ Z, N Z so that np(h™'(%,) = 7(¥,).

We know how the arc connecting two consecutive elements of a,
passes through the links of _Z. If Z e _# and 2 N B, # @ and
% is not an end link then any arc connecting two consecutive ele-
ments of «, passes through % exactly twice. That is there are
exactly two components of 7 that are subsets of the are.

If 2 is an end link then there is only one component of %
that is a subset of the arec.

B, either contains all or none of 7(8, N ). Since this hold for
every Z/ € _#;* where Z/ N[, # @ the number of B, elements
between any two consecutive A, elements is constant.

Step 6. b,,,, — b,, is a constant for all 4.

Proof of Step 6. Suppose b,; = b, = @, . Then b,, = b,,;, and
since the number of B, elements between two consecutive A, elements
is constant, b,, = @,.¢, and in general b,, = a,,x. Since @, yinx —
a,.x is a constant, b,,,, — b, ; is also a constant.

The steps have established Theorem 2.

THEOREM 3. If there exists a prime p so that p|N and pt M
then there does mot exist a homeomorphism h: D, — Dy.

Proof of Theorem 3. If 2 divides N and 2 does not divide M
then D, has one end point and D, has two end points, hence D, is
not homeomorphic to D,.

Consider the case when p # 2, p divides N and p does not divide
M. Theorem 2 says that B, is arithmetic. B, N°t B, then implies
that B, is arithmetic and in particular N*(b,,,, — b,.) = b, ;11 — D.,;
for every ¢ and j. Further, since A, is arithmetic, B, D A, implies
there exists a fixed integer ¢ so that ¢N°u(b, .y, — b)) = @551 — Q5,5
for all 2 and j. This is impossible since the left hand side is divisible
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by » and the right hand side is two times some power of M and
hence not divisible by ».

Homeomorphic Dy’s.

THEOREM 4. If M and N have the same prime factors then D,
18 homeomorphic to Dy.

It will be more convenient at this point to consider D,, = l(i__m {I, “f}
where *f:[0,1] —[0,1] so that for n=0,1,2, ---, N “f(n/M) =0
whenever 7 is even and ¥f(n/M) = 1 whenever #» is odd.

These open functions satisfy the property:

MNf:Mj‘oNszfoMf and hence an=N'nf.

For notational convenience we will denote “f by M in this section.

Proof of Theorem 4. It will be sufficient to show that if M =
P pRpB ... p°» is a prime factorization of M and B = p, p,p; - - - 9,
that D, is homeomorphic to Dy.

Step 1. Suppose there is a prime p dividing R and M = pR,
then D, is homeomorphic to D;.

Proof of Step 1. Construct the inverse limit map h: D, — D,

Sy JECNY JEUSY LNy

L I B

ITe——T—1I I—1

h is an open, continuous, onto map. It is left to show that &
is one to one. Under the specified conditions p* divides M so M/p*
is an integer.

Suppose A(Z) = h(¥), then

M% ° P(7y(X)) = M—2 ° p*(7x(¥))
p D

= M 7x(¥)) = w(¥y) .

This establishes the step. A simple repetition of the step proves
the theorem.

(@) = M (7(%)) =

Counting the homeomorphism classes. We now have the
theorem:

THEOREM 5. D, is homeomorphic to Dy if and only if M and
N have the same prime factors.
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This yields countably many distinct homeomorphism classes. By
considering a slightly larger collection of spaces we can show that
there are uncountably many distinct homeomorphism classes.

Consider the collection of inverse limit spaces with open bonding
maps as before but not necessarily with fixed bonding maps. That
is consider any sequence of primes {p,}, where p, = 1. Define the
functions &, : [0, 125 p.] — [0, TI" p.], where &7, (m [I"p;) = 0 when-
ever m is even and &, (m [["p,) = [I"p; whenever m is odd (m =
0,1,2, ---,p,,,) and linear in between. Then define D, = l(i_r_l_n {[o,

1" p.], 22} to be the following inverse limit space:

[0, 11210, 51 -2 [0, pp] <2 [0, pipib] -

This generalizes the previous notion since Dy is D,,, where p, = N

for all ¢ = 0.

Let P represent the set of all primes and 27 represent the set
of all nonempty subsets of P. The cardinality of 27 is uncountable.
For each set in 27 we will now construet an inverse limit space that

is not homeomorphic to any of the others.

For each K in 2”7 construct a sequence that repeats each element
of K infinitely often. For example let p,, p,, p,, --- be the elements
of K. (To insure a unique construction we might assume p;, < b\,
for all 4.) Construct the sequence 1,p,, p;, Py, Doy Ps, sy Doy Psy Dy D1y P2
Ds, Py, Py, - - call this sequence K. Let I be the sequence 1, a,, 9, quy

G2y O3y G1p G2y * v °

THEOREM 3a. If K and L are distinct subsets of 2F then Dz and
D; are not homeomorphic.

The line of proof follows the same reasoning as the previous
section. That is we first investigate conditions imposed by a homeo-
morphism k: Dz — D; and then show that these conditions cannot be
met when K and L are distinct subsets of 27.

Without loss of generality we can assume that 2(0) = 0, so that
the O-composant is mapped onto the O0-composant. We consider
special chaining defined exactly as before and note that they have
nearly the same properties. The only change is in the third prop-
erty. Now the integer points in the first link of the chain 977 are
exactly:

{(n|n = k2 f[ p,. Where k is a nonnegative integer} .

The following theorems have almost word for word the same
proofs as their counterparts in previous sections.
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THEOREM la. If there exists a homeomorphism h: Di; — D;, then
there exists an infinite sequence of chainings:

IEH > L) = I > WL >

If we denote 7, as the first link of £ and %, as the first
link of 927«, then the only link of .%77/» that interseects h7(7;) is
%, and the only link in A7(&;7) that intersects %/, is A7Y(79).

Further, %, and h(%,) are both so small that for any Z and %,
both on the same 0-composant component of %, u(x, y) < 1/4 and
1(h(x), h(y)) < 1/4.

THEOREM 2a. If there exists a homeomorphism h: Dz — Dy, then
there exists am imfinite lattice of increasing sequences of nonnegative
integers so that for every i and j by, — b, = by,;0, — by,; and for
every n there exists monnegative integers r, and s, so that

A, rl_-[-1 P A, and an:[ll q; By

and B, D A,,;, and A, D B,. (It is easy to see that if 2% and &

are distinct subsets of 2%, that 1is, there exists q€ £\ 22, then s, con

be chosen so that q divides [[:»_, q; for every m but q does not divide
b for any m.)

THEOREM 3a. If there exists a prime q€ L\9 then Dz is not
homeomorphic to Dj.
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