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OPERATORS SIMILAR TO UNITARY
OR SELFADJOINT ONES

JAN A. VAN CASTEREN

Let T be a bounded linear operator on a Hilbert space. General
necessary and sufficient conditions are given in order that VTV~λ is
unitary for some bounded linear operator V with bounded everywhere
defined inverse. Similarly let B be a closed and densely defined linear
operator in a Hilbert space. General necessary and sufficient conditions
are given in order that VBV~X is self adjoint for some bounded linear
operator V with bounded everywhere defined inverse.

1. Introduction and some preliminaries. Throughout this paper H is a
complex Hilbert space with inner-product ( , ). Let A and B be linear
operators with domain and range in H. Then A and B are said to be
similar if there exists a continuous linear operator V: H -» H with bounded
everywhere defined inverse such that VA — BV. Let T: H -> H
be a bounded linear operator. Then T is said to be power bounded if
sup{| |Γ"| | : n E N} is finite. Again let T: H -> H be a continuous linear
operator and suppose that its spectrum is contained in the circumference
of the closed unit disc. The problem which poses itself is to find condi-
tions on the resolvent family {(λ/ — T)~ι: \λ\¥= 1} which guarantee that
T is similar to a unitary operator. Next let A be a closed linear operator
with domain and range in H. Suppose that its spectrum is a subset of R.
Find necessary and sufficient conditions on the resolvent family
{(λ/— iA)~ι: Re λ 7^0} in order that A is similar to a self adjoint
operator. The main tool we use is what might be called an operator valued
Poisson kernel. If the spectrum of T is a subset of (λ E C: | λ | = 1} and if
T has inverse S, the corresponding Poisson kernel is given by

(1 - r2)(l - re-iθT)'\l - reιθS)~\ 0 < r < 1, -π < θ < +77.

If A is a closed linear operator in H the spectrum of which is a subset
of R, then the corresponding Poisson kernel is given by

ω(ω2l + (ξl - A)2)'1

= ω(((ω + iζ)I - iA)'\(ω - iζ)l + iA)~ι)9 ω > 0, £ E R.

The present results generalize Theorems 1 and 2 in Van Casteren [9],
where more related references can be found too. They are also closely
related to a problem posed by Sz.-Nagy in [3, p. 585]. See also Sz.-Nagy
and Foia§ [8, Chapitre IX, p. 334]. Another closely related paper is
Stampfli [5]. This reference should also have been given in [9].
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First we shall prove some lemmas which will be useful in the sequel.

1.1. LEMMA (a) Let (ak: k G N) be a sequence of nonnegatiυe real
numbers. The following inequalities hold:

n
)"1i

(n + I)" 1 2 *k:n G N < s u p | ( l - r) 2 rkak:0 < r < 1

< s u p | ( « + I)" 1 2 ctk:n ε N .

(b) Le/ α: [ 0, oo) -» [ 0, oo) be a Borel measurable function. Then

έΓ ' supl r 1 Γα(^) ώ : / > Of < supίco Ce~ωsa(s) ds: ω > 0

< supί/ ' 1 Γα(^) ds: t>θ\.

Proof, (a) The following (in-) equalities are readily verified:

(1 - r)r* 2 ak<i (1 - r) f ^α, = (1 - r)2 | r* 2 «y

k \ oo

(1 - rf sup (k + I)"1 Σ «/ Σ (* + ι)r

iteN y=o / * = 0
A:

= s u p ( A : + I ) ' 1 2 < V 0 < r < 1 , Λ G N .
A:eN /=o

From this (a) follows with r = n(n+ϊ)1.
(b) As in the proof of (a) we have

e~xω (ω~l<x(s) ds<ω Γe'ωsa(s) ds = ω

The following lemma will be needed for the proof of Theorem 3.1.

1.2. LEMMA. Let h be a complex valued harmonic function on the right
half plane for which

M : = sup{ f°° \h(ω9 ξ)\dξ: ω > θ)

is finite. The following assertions hold true.
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(a) The function h satisfies the following inequality:

3πω\h(ω, ξ)\ < 4M, ω > 0 ^ G R .

(b) There exists a complex measure μ on R, which is of bounded total
variation, such that

ί " l <o>o ί e R

(c) Suppose that h is of the form

h(ω, ξ) = F(ω + iξ) + G(ω - iξ), ω > 0, £ G R,

where F and G are holomorphic and where

sup{ω\F(ω)\: ω > 0}

is finite. Then

F(λ) = (27ΓΓ1 Γ (λ - /I,)"1 dμ(η), Re λ > 0,

and

G(λ) = (27Γ)"1 (°° (λ + ίij)-1 dμ{η), Re λ > 0.)"1 (

Proof, (a) The reader is referred to Duren [1, Lemma 1, p. 188].
(b) We refer the reader to Stein [6, Theorem 2, Corollary, p. 200].
(c) Let λ in C be such that Re λ > 0. Then

(λ-iη)-ldμ(η)

Since the left-hand side of this equality is analytic in λ and since the
right-hand side is analytic in λ, it follows that each side is constant. Since
sup{ω I F(ω) | : ω > 0} is finite, we conclude that this constant is zero.

REMARK. Let h be as in Lemma 1.2. Fix ω' > 0. By (a) the harmonic
function

(ω, ζ) » h(ω + ω', ξ) ~ - Γ — y -h(ω\ η) dη,

ω > 0, ξ E R,
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is bounded. Since it has boundary value 0, it vanishes identically. So

A(ω, ξ) = lim A(ω + ω', £) = lim - Γ - -A(ω', η) dη.
«'iθ ω'iO W ^-oo ω

2 + ( £ — γj)Z

An application of the Riesz representation theorem for C0(R) (e.g. see
Hewitt and Ross [4, Theorem 14.4, p. 168]) and of the fact that the dual
unit ball of C0(R) is weak* compact, yields the existence of a measure μ
for which (b) holds.

2. Operators which are similar to a unitary one. In this section H is a
complex Hubert space and T: H -* H is a continuous linear operator with
a bounded everywhere defined inverse S. The theorem we want to prove
reads as follows. Notice that the equivalence of (i) and (iii) yields a
positive answer to Question 1 in Stampfli [5, p. 149].

2.4. THEOREM. The following assertions are equivalent:
(i) T is similar to a unitary operator,
(ii) T and S are power bounded;
(iii) T is power bounded, (I — λS)~ι exists for | λ | < 1 and

s u p { ( l - | λ | ) l l ( Z

is finite;
(iv) For each x in H the expressions

sup{(n+lΓ' 2

and

k = 0

are finite, (I — λS) ] exists for \ λ | < 1 and

is finite;
(v) For every x in H the expressions

sup{(« + I)"1 2 |(Γ )*x||2: n G N
I k=o
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and

sup{(/2 + I)'1 2 llS^f: n G

are finite;

(vi) For I λ | < 1 the inverses (I - λT)~ι and (I - XS)~l exist and for
every x andy in H the expression

sup{(l - r2)fπ\((l - re-iθTY\l - reiθS)'xχ, y)\dθ: 0 < r <

is finite.

The proof of the equivalency of (ii) and (iii) is contained in Van
Casteren [8, Theorem 1].

Proof. The proof of the equivalency of (i) and (ii) appears in Sz.-Nagy
[7]. The implication (ii) => (ϋi) is easy. The implication (iii) =» (iv) is trivial,

(iv) => (vi) Put

From (iv) it follows that M is finite. Next fix x and y in H and put

Mx(xf = supί(l - r2) f rlk\\Tkxf: 0 < r < ll
I Λ=O J

and

M2( yf = sup{(l - r2) 1 r^|(Γ*) V||2: 0 < r < l l .
I J/ί:=0

From Lemma 1.1 and assertion (iv) it follows that Mx(x) and M 2 (y) are
finite. For 0 < | λ | < 1 we have

((i-xτyι(i-λsyιx,y)

= (λ- {(i -|λ|2)(/-\s)-< -ήτ(i-xτyιx,(i-λτ*yι

y).

Hence

•-XT)-l(I-\S)-lx,y)\*
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So

- re-iθT)-\l - reiβsyxχ, y)\dθ

-re-''T)-χx\Ul-re'βT*yxy\dβ

1/2

( oo o \ 1 / 2 / °° ?\

Σ '•"ll^ll Σ r"||(r )M
. Λ = 0 / \ * = 0 /

= 2πM\ _

<2πMMι(x)M2(y)(l - r2)'x.

Hence (vi) follows.
(vi) => (ii) Fix Λ; and y in H. Since T = S'1 it follows that

{\ - r2)(l - re-iθT)'X{I - relβsyx

00

A:=-oo

So

- re-iθTyx{l - reiβS)-χχ, y) dθ, « e Z .

With r = I n \ (| n \ +1)" 1 we infer

\{T"x,y)\<e sup —^

So sup{| (Γ"x, 7) I : A2 E Z} is finite for each Λ: and y in H. By a Banach
Steinhaus argument it follows that sup{| |Γ"| | : n E Z} is finite. Hence (ii)
follows.

(ii) => (v) Trivial.
(v) => (vi) Fix x and j in H. Put

Mx(xf = sup{(l - r2) I r2*||S*x||2: 0 < r < 1

and put

M2(yf = supj(l - r') 2 r2i(Γ*)V|Γ: 0 < r < 11.
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From Lemma 1.1 and (v) it follows that Mx(x) and M2(y) are finite. For
0 < r < 1 we have

- r2)/_^ |((7 - re-i§T)-ι(-re"S)-ιx9 y)\dθ

1/2

α+Ίi . ,,2 \ I / 2

^ ||(/ - re'^ΓVII dθj
Hence (vi) follows.

Next we shall give an example of an operator T: /2(Z) -* /2(Z) which
is not similar to a unitary operator but for which, for each x in /2(Z), the
expression

supj(2« + I)"1 2 ll^Jcf: Λ G N |

is finite.

EXAMPLE 1. Fix 0 < 2γ < 1 and put ak = (l + \k\)~Ύ, k G Z. Let
(e^: /c E Z) be the standard basis in /2(Z) and define the operator
T: /2(Z) -> /2(Z) by

Then

r-rι j *C 'J -I jr— rw
I J P ^^ P K Ί r— A

ak

Fix x in /2(Z). Then

2 ||Γ^||2<W2.supα,-2 2 «L
j=-n k<ΞZ j=~n

Since 0 < 2γ < 1, it follows that

1
k E sup 2 OL\

Z,nGN (2n + \)ak ;=-n
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is finite. Consequently

sup](2/i+ I)"1 2 \\TJx\\2:nem

is finite. Since \\TJ\\ = (1 + |y |) γ , it follows that T cannot be similar to a
unitary operator.

3. Operators which are similar to a self adjoint one. In this section A
denotes a linear operator with domain and range in a Hubert space H.
The operator iA is said to generate a strongly continuous semigroup

P — I
iA — s- lim — .

no t

It generates a strongly continuous group {Pr* / G R) if

p r

iA = s- lim — .

For more details on semigroups see Yosida [10, Chapter IX]. For the
proof of Theorem 3.1. we need Stone's representation theorem; see Yosida
[10, Corollary 2, p. 253]. Furthermore we shall use PlanchereΓs theorem in
L2(R, H); e.g. see Edwards and Gaudry [2, §3.4, p. 53] or Stein [6, Chapter
II, §5, pp. 45-47].

We want to prove the following theorem

3.1. THEOREM. Let A be a linear operator with domain and range in a
Hubert space H. The following assertions are equivalent.

(i) The operator A is similar to a self adjoint operator,
(ii) The operator iA generates a bounded strongly continuous group;
(iii) The operator -iA generates a bounded strongly continuous semi-

group, (λl — iA)~x exists for Re λ > 0 and

sup{Re λ | (λJ - iA)'ι\\: Re λ > o)

is finite;
(iv) The operator -iA generates a strongly continuous semi-group

{Pt: t > 0} for which the expressions

suplrιft\\Psx\\2ds:t>θ) and supίr1 j\p?xfds:t > θ)
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are finite for each x in H, for which (λ/ — iA)~x exists for Re λ > 0 and for
which

sup{Re λ||(λ/ - iA)~]\\: Re λ > θ}

is finite;
(v) The operator -iA generates a strongly continuous group {P,: / G R}

for which the expressions

: ί >θ) and supίr1 f\\P.sxf ds: t > θθ) and supίr1 f\\P.

are finite for each x in H;
(vi) The operator A is closed, (XI — iA)~λ exist for Re λ φ 0 and for

each x, y in H the expression

supJ2ω/_°° |((ω2/ + (ξl - A)2)~lχ,y)\dξ: ω > o

is finite and

Proof The equivalency of (i) and (ii) follows from Stone's Theorem
(see Yosida I.e.) and from Sz.-Nagy [7].

(ii) => (iii) Let -iA be the generator of the bounded group {Pt: t GR}.
For Re λ > 0 we have

(λ/ - iA)'ιx = ΓeλsP_sx ds, x G H.

Put M = sup{ || P_s ||: j > 0}. Then

Re λ | | (λ/ - iA)~x\ < M, Re λ > 0.

(iii) => (iv) Trivial.
(iv) => (vi) Let -M and {P,: ί > 0} be as in (iv). Put

(1) Mλ{xf = supjr1 jfV,jc||2 ds: t > θ}, x G H,

put

(2) M2(x)2 = sup{/- !jfV^f * : t > θ}, JC G H,
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and put

(3) M = sup{||2Re λ(λ/ - iA)~λ - /||: Re λ > θ) .

Let λ = ω + iξ in C be such that ω — Re λ > 0 and let x and y be in H.
Then

= ({2ω(λ/ - iA)~ι - l}(λl + iA)'ιχ, (XI - iA*)~ιy).

From (3), the definition of M, it follows that

So by Schwarz' inequality we infer

(4)

Γ \\((ω + iξ)I-
•' — oo

Since -iA generates the semigroup {Pt: t > 0}, the operator +iA* gener-
ates the semigroup {P*: t > 0}; see Yosida [10, Chapter VII, Theorem 3,
p. 196 and Chapter IX, §13]. Since

((ω - iξ)I + iA)~λx = Γe-{ω-*)sPsx ds

and since

((ω + i£)l - iA*Ylx = ί°°e"(ω+/θJPjr*JC έfr
ô

it follows form (4) and from PlanchereΓs theorem in Hubert space that
k 2

/Il̂ ll
•'o •'o

From Lemma 1.1 (b) and by (1) and (2) it follows that

- A)2)~lχ,y)\dξ < 2ττMM1(x) M2(y).

Since M, M^x) and M2(y) are finite, assertion (vi) follows.
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(vi) =» (ii) Fix JC and y in H. The function

(ω, {) ι-> 2ω((ω2/ + (ξl - A)2)~\,y)9 ω > 0, { G R,

is harmonic and by (vi)

supJ2ω/_°° |((ω2/ + (ξl - A)2)'lχ9y)\dξ: ω > 0J

is finite. So by Lemma 1.2(a) there exists a complex Borel measure μx y,
which is of bounded total variation, such that

( Y xj ω > 0, ξ G R.

Since l im λ _ o o λ((λ/+ iA)~λx, y) — (x, y) it follows from Lemma
1.2(c) that

(5) {{\I-iA)-ιx,y) = (!«)-* Γ (λ-iηyldμx<y(η), Reλ>0.
*' — 0 0

It also follows that

(6) ((Xl + iA)-ιx9y) = (2π)-ιΓ (λ + ii,)"1 dμX9y(η)9 Reλ>0.

We also conclude that

(7) ty

Next consider, for ω > 0 and t in R, the identities

Γ β " l 1 + * ' 2ω((ω2/
— 00

=

— 0 0
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From these identities we conclude that the expression

Γ e^^ 2ω((ω2/ + ({/ - A)2)~lχ,y) dξ

does not depend on the choice of ω. So for each t in R there exists a
continuous linear map Pt\ H -» H such that

(8) (Ptx9y) - (27Γ)-1 Γ e « ^ 2ω({ω2I

Next pick λ in C, Re λ > 0. From (8) and (5) it follows that

(9) Γe-λί(Ptx,y)dt = ±-Γ (λ - ί,)"1 dμx

Since sup{|(jP,.x, y)\: ί G R } is finite and since lim,_0(^*> y) —
(Pox,y)9 it follows from (9) and (7) that

(Pox,y) = lim λΓe-λί(Ptx,y)dt = {2π)'ιμX9y(R) - (x,y).

Hence Po — I. From (9) it also follows that

(10) Γe~XtPtx dt = (λ/ - iA)~xχ.

)~1
Since the map λ h » ( λ / - L4)~1,Reλ>0, satisfies the resolvent equation,
to wit

= (μ - λ)(λ/ - iA)~\μI - iA)'\ Re λ, Reμ > 0,

it follows that [Ps: s > 0} is a semigroup. This means

This semigroup is weakly continuous. By a standard result on semigroups
it is strongly continuous. By (10) its generator is given by iA. Similarly the
family {P_s: s >: 0} is a strongly continuous semigroup with generator
-iA. Consequently the collection {Ps: s E R} is a strongly continuous
group for which sup{| (Psx, y) \ : s E R} is finite for each x9 y in H. It
follows that sup{||PJ|: s E R} is finite. This proves (ϋ).

(ii) => (v) Trivial.
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(v) => (vi) Let -iA be the generator of a group {?; 5 G R} for which
(v) is satisfied. Then A is closed, limλ_>00 λ((λ/ + iA)'ιx9 y) = (JC, y), x9 y
in H and (XI — iA)~x exists for Reλ φ 0. By PlanchereΓs theorem in
L2(R, H) we conclude

2ωfJ({o>2I+(ξ-A)2ylχ,y)\d£

= 2ωΓ |((« - iξ)I+ iA)-\(ω + /£)/ - U)~lx,y\di

= 2ω Γ |((ω + / |)/ - iA)-χχ,
•'—00

< 2« Γ ||((ω + /{)/ - i

<2<o(£° |((ω + ιί )/-

' / 2

. /-00 li /•" I I 2 \1/2

X

2ω-2πl/ e-2ωs\\P_sxf ds I 1/ e-2ωΛ | |P/yf ίfc

. '/2

2π • sup2ω /
\ ω>0 J0

( sup 2ω /"""ί-^iP^II2 ώ)
\ ω>0 •'O /

From (v) and from Lemma 1.1 it follows that the latter expression is
finite. Hence

sup)J2ωJ°° |((ω2/ + (|/ - A)2)'lχ,y)\dξ: ω > θ |
v 00 J

is finite. Whence (vi) follows.
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REMARK. Under suitable modifications the implication (vi) => (ii) is
valid in Banach spaces too.

We conclude with an example of a group (Ps: s G R ) of linear
operators acting on L2(R) which is not bounded but for which

sup{(20-'£k

is finite for each/in L2(R).

EXAMPLE 2. Fix 0 < 2γ < 1 and put φ(x) = (1 + | x |)γ, x E R. De-

fine for each s in R the operator Ps: L2(R) -» L2(R) by

PJ(χ) = φ{*^)

s)f(χ + s), χ£i?,/εi2(R).

Then the family {Ps: s E R} is a strongly continuous group for which
II Ps || = φ(s) and for which

suP{(2/r7_ i

+V,/ii2 < f a : i > o

is finite for each/in L2(R). Define the operator A as follows. Its domain
D(A) is given by

and 4/> f ^ D(A)9is given by

) = if(x) + r^.τJj-f(x)t x e R

Then -L4 generates the group {?; ί E R}. Since sup{HPj|: s E R} = oo,
the operator A is not similar to a self-adjoint one.
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Added in proof. An announcement of these results can be found in:
J. A. Van Casteren, Operateurs similaires a des operateurs unitaires, pp.
453-455 of Actualites Mathematiques: Actes du 6e Congres du Groupe-
ment des Mathematiciens dΈxpression Latine, Luxembourg 7-12 sep-
tembre 1981, edited by J. P. Pier and published by Gauthier-Villars, Paris
1982.
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