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THE FINE SPECTRA FOR WEIGHTED

MEAN OPERATORS

B. E. RHOADES

In a recent paper [5] the fine spectra of integer powers of the Cesaro
matrix were computed. In this paper the fine spectra of weighted mean
methods are determined. In most cases investigated, the interior points
belong to III l 9 the boundary points, except 1, belong to II2, and 1 and
any isolated points belong to IΠ3, where III,, II2, and III3 are portions
of the state space as described in [3].

From Goldberg [3], if T E B( X), X a Banach space, then there are
three possibilities for R(T), the range of T:

(I) R(T) = X,
(II) R(T) = X, but R(T) Φ X, and

(III) R(T) Φ X,
and three possibilities for Γ"1

(1) T~λ exists and is continuous,
(2) Γ"1 exists but is discontinuous,
(3) Γ~ι does not exist.
A weighted mean matrix A is a lower triangular matrix with entries

"nk=Pk/Pn> where po>09 />„><) for n > 0, and Pn = ln

k=opk. The
necessary and sufficient condition for the regularity of A is that lim Pn =
oo.

In [2] it was shown that, for any regular weighted mean matrix A, the
spectrum, σ(A)9 contains the set {λ || λ - (2 - δ)"11< (1 - δ)/(2 - 8)}
U S, and is contained in the set {λ || λ - (2 - γ)"11< (1 - γ)/(2 - γ)}
U S, where 8 = lim sup ρn/Pn, γ = lim inf pn/Pn, and S
= {/,„//>„ I #1 > 0 }

We shall first consider those regular weighted mean methods for
which 8 = γ, i.e., for which the main diagonal entries converge.

THEOREM 1. Let A be a regular weighted mean method such that
8 = Urn pjpn exists. Ifλ satisfies | λ — (2 — δ)"11< (1 - δ)/(2 - δ) and
λ £ S, then λ E II^ σ(A); i.e., λ is a point of σ(A) for which R(T) φ X
and T~λ exists and is continuous.

Proof. First of all XI — A is a triangle, hence 1-1. Therefore XI — A
1 U 2.
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220 B. E. RHOADES

Consider the adjoint matrix T* =λl — A*. Since A is regular, A* E
B(l) with entries α*> = χ(A) = Umn Λe - Σ^UmM ̂  = 1, α*0 = α*M = 0
forw > 0 andα*^ = ak_Xn_λ forn, k > 0, wheree = {1,1,1,...}.

Suppose Γ*JC = 0. Then

(λ - l)x0 = 0,

and

(1) ίλ-^)xn- f a*kxk = 0 for«>0.

Thus x0 = 0 and, from (1), JC, is arbitrary and, with cn = pn/Pn,

(2) xn = ^ £ f Π (λ - c,) = ̂ ^ x , 0

Now I 1 + (1 — y-)Pj/Pj-\ |< 1 for ally sufficiently large if and only

if

<h where -±=a + iβ.

Case I. Assume at most a finite number of the pk are zero. Then the
above inequality is equivalent to

2(1 + a) + ((1 + af + fi^p/P^) < 0

for all j sufficiently large. The above inequality will be true for all j
sufficiently large if 2(1 + α) + ((1 + a)2 + β2)8/(l - δ) < 0, which is
equivalent to | λ - (2 - δ)' 11< (1 - δ)/(2 - δ).

Let zn = ϊl"jZ2(l + (1 - \/\)Pj/Pj.x). Then

K+.Λ.H i + 0 - iA)/>n-,/^-2l

From the hypothesis on λ, and the discussion in the preceding paragraph,

(3)

for all n sufficiently large, and Σ | zn \ is convergent.
Since | (1 — l/A)/>n_1x1/Pn_2 | is bounded, it follows that Σ | xn \ is

convergent, so that (λ/ — A*)x = 0 has nonzero solutions.
By [3, Theorem II 3.7], XI — A does not have dense range. Therefore

XI - A G III and hence XI - A E III, U III 2 .
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To verify that XI - A E III, it is sufficient, from [3, Theorem II
3.11], to show that XI — A* is onto.

Supposey — (λl - A*)x, x, y E /. Then (λ - l)x0 = y0 and

00

(4) ( λ - c π _ , ) x n - Σ Pn-χXk/Pk-x=yn, n>0.
k = n+\

Choose JC, = 0 and solve for x in terms of y to get

(5) " P o l **/**-i=.Vi
k = 2

00

(6) (\-Cn_χ)Xn=yn +pn_λ Jg Xk/Pk_λ.

For example, substituting (5) into (6), with n = 2, yields

(λ - cι)x2=y2+pι 2 **//>*-! =y2+Pi\ 1 ^ / ^ - i - ^2/Λj,

so that x2 = (Λ - P\y\/Po)/λ-
Continuing this process, if B is a lower triangular matrix defined by

By = x, then B has entries

0̂0 ~ χ _ i 9 Kn — ~χ9 Π > 1,

_ ~P\ _ Λ - l

and 6nΛ = 0 otherwise.
To show that B E B(l) it is sufficient to show that Σn \ bnk \ is finite,

independent of k.
Σ J ί U = l / | λ - l | . We may write 1 - Cj/λ = I - Pj/λPj =

{Pj-x/Pj){\+{\-\/\)Pj/Pj-λy Also, s u p Λ > 1 | ^ _ 1 / / > r t _ 2 | < M < o o .
Therefore

i / oo n-2

3
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and, fork > 1,

B. E. RHOADES

χϊ + Tχn
M

n — 2

Π λ / P,

Since A: > 1, the series in the second inequality is dominated by the
series in the first inequality which, from (3), is absolutely convergent.
Therefore H^Hj < oo.

Since ( λ J — A)~λ is bounded, it is continuous, and λ E \\lxσ(A).

Case II. Suppose an infinite number of the/?^ are zero. Since limn pn

= oo, there are an infinite number of nonzeropk. Denote these by {pn}-
From (2) for n φ 1 + nk9 xn = 0. Otherwise,

x, = (1 - 1/λ)
Pn.

" * - ' 7 =
Π (l - (i - i/λ)-

Now apply the same analysis as in Case I to verify that Σ | zn | converges,
and hence XI — A* has nonzero solutions.

To show that XI — A* is onto, the presence of an infinite number of
pk — 0 merely introduces more zero entries in B. For the non-zero entries,
the same argument as Case I applies.

THEOREM 2. Let A be a regular weighted mean method such that
8 — \im pn/Pn exists, and δ < 1. Suppose no diagonal entry of A occurs
an infinite number of times. If λ = δ, or λ = ann, n — 1,2,3,... and
8/(2 - δ) < λ < 1, then λ E \\\λσ(A).

Proof. First assume that A has distinct diagonal entries, and fix j > 1.
Then the system (a^I — A)x = 0 implies xk — 0 for k — 0 ,1 , . . . J — 1,
and, for n >y,

The above system yields the recursion relation

which can be solved for xn to yield

(7) xl+m = 7Γ
P x cm

ΓJxJcj

/ = !

1 -c.
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Since (1 - cj+i)/{\ - cj+i/Cj) = (PJ+, - pj+i)/{Pj+i ~ Pj+i/Cj) =
P,+,_,/(^+,-i + (1 - l/Cj)pJ+i) = (1 + (1 - \/Cj)pJ+i/Pj+ι_xy\

m

*J+m = V Π (1 + (1 - l/Cj)pj+i/Pj+i-ι).
i=\

Since 0 < Cj < 1, the argument of Theorem 1 implies that

for all / sufficiently large. Therefore x G c implies x = 0 and a^I — A is
1-1, so that Cjl-A G 1 U 2.

Clearly c}l — A E III. It remains to show that Cjl — A* is onto.
Suppose (Cjl — A*)x — y, x9 y E /. By choosing JC.+ 1 - 0 we can

solve for x o ? ,x7 in terms of yQ9 ,>̂  + 1 . As in Theorem 1, the remain-
ing equations can be written in the form x — By, where the nonzero
entries of B are

(8) b.

bj + 2J+\ 2;

j+m-2

"j

n
_ _ Pj+m-X

Π \ι~f \,l<k<m-l9 m>2;

j+m-2

mj+ 1 Π

, = y + i
CJ

> 2.

From (8),

(9)
oo n l °°

V \h I - PJ+l i 1 V

For m > 1,

Λ-2

Σ Λ-, Π

« — 2

P 1TT
1 A

1 -
CJ

Since pj+m/Pj+m_λ is bounded, and pJ/PJ+m_ι < 1 for each m > 1, to
show that II51| j is finite, it is sufficient to show that the series in (9)
converges. We may write

Pn-X =Pn-lPn-2Pn-3'Pj ^ Pn-λ

Pj ?n-2Pn-3 * PjPj Pn-2

1

(1 - Cn_2) (1 - CJ+ι)Cj
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Substituting in (9) the series then becomes

Λ 00 „ Λ-2

7 n=y + 3 "«-2 ι=y+l I 1 C '

Note that

Λ

From the hypothesis on λ, (3) is satisfied for all i sufficiently large,

and the series in (9) is absolutely convergent.
Suppose A does not have distinct diagonal entries. The restriction on

λ guarantees that no zero diagonal entries are being considered. Let Cj Φ 0
be any diagonal entry which occurs more than once, and let k, r denote,
respectively, the smallest and largest integers for which c} — ck — cr. From
(7) it follows that xn = 0 for n > r. Also, xn = 0 for 0 < n < k. Therefore
the system (Cjl — A)x — 0 becomes

n-\

(11) (cj - cn)xn - 2 aHixt = 0, k < n < r.

Case I. r - k + 1. Then (11) reduces to the single equation

(cj - ck+x)xj+λ - ak+λkxk = 0,

which implies xk = 0, since Cj = cr = ck+u and p3 φ 0. Therefore x - 0.

Case II. r > k + 1. From (11) one obtains the recursion formula
*„ = JVn(<7 ~ c ^ + ^ x ^ , / ^ , fe < n < r. Since xdτ = 0 it then follows
that JCM = 0 for A: < n < r. Using (11) with n - k + 1 yields x* = 0 and
so again x = 0.

To show that Cjl - A* is onto, suppose (Cjl - A*)x ~y,x,y^L By
choosing xJ+ x - 0 we can solve for x09 x,,... ,xy in terms of ̂ 0 , j 1 ? . . . , ^ + lβ

As in Theorem 1 the remaining equations can be written in the form
x = By, where the entries of B are as in (8), with the other entries of B
clearly zero.

Since k <y" < /% there are two cases to consider.

Case I. 7 = r. Then the proof proceeds exactly as the argument

following (8).
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Case II. j < r. Then, from (8), bj+mJ+k = bj+mJ+x = 0 at least for
m > r — y + 2. If there are other values of n,j < n < r for which cn = c ,
then additional entries of B will be zero. These zero entries do not affect
the validity of the argument showing that (9) converges.

If δ = 0, then 0 does not lie inside the disc, and so it is not considered
in this theorem.

Let λ = δ > 0. If ann φ 8 for each /i > 1, all i sufficiently large, then
the argument of Theorem 1 applies and 81 — A G III,. If ann — 8 for
some w, then the proof of Theorem 2 applies, with c} replaced by δ, and,
again, 81 - A G III,.

Therefore, in all cases, Cjl — A G 1 U 2.

THEOREM 3. Let A be a regular weighted mean method such that
8 = lim pn/Pn exists and pn/Pn > 8 for all n sufficiently large. Ifλ satisfies
I λ - (2 - δ)" 1 1= (1 - δ)/(2 - δ), λ ψ 1, 8/(2 - δ), then λ G ll2σ(A).

Proof Fix λ Φ 1, δ/(2 - δ), and satisfying | λ — (2 — δ)" 1 | =
(1 - δ)/(2 - δ). Since XI - A is a triangle, it is 1-1 and XI - A G 1 U 2.

Now consider (λ/ — A*)x = 0. As in Theorem 1, x 0 — 0, x, is
arbitrary and {*„} satisfies (2) for all n > 0. From the hypothesis there
exists a positive integer N such that n>N implies cn >: δ. This fact,
together with the condition on λ, implies that I 1 + (1 — l/λ)pn/Pn-\ | ^ 1
for n>N. Thus \xn\>cpn_x/Pn_2 for n>N, where c is a constant
independent of n. We may write

Pn-χ/Pn-2 = (Λ

From [4, p. 290], Σpn/Pn diverges, so {xn} G / implies xx — 0, hence
JC = 0 and λ / - ^ * E l U 2 . Since λ G σ(A\ and λ φ 1, δ/(2 - δ),
λ G I I ( Λ )

THEOREM 4. Let A be a regular weighted mean method. Then 1 G
III3σ(y4).

Proof. Since (/ - v4)e = 0, / - A is not 1-1 and hence / - A G 3. It
remains to show that R(l — A) Φ c. Let z E c such that z0 φ 0. Then

- A)x - z\\ > | z 01>| z0 1/2 for all Λ: G c. Therefore z ( )

THEOREM 5. Let A be a regular weighted mean method with γ =
liminf pn/Pn. If there exists values of n such that 0 < cn < γ/(2 — γ), then
λ = cn implies λ G IΠ3σ(yl).
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Proof. Let ck be any diagonal entry satisfying 0 < ck < γ/(2 — γ). Let
j be the smallest integer such that cj = ck. Since c0 = 1, j > 0. By setting
xπ = 0 for n>j+ 1, JC0 = 0, the system (c^ / — A*)x = 0 reduces to a
homogeneous linear system of j equations in j + 1 unknowns, so that
nontrivial solutions exist. Therefore Cjl — A E III.

If Cj — γ/(2 — γ) then clearly Cjl — A E 3. Assume 0 < cy <
γ/(2 — γ) and let r denote the largest integer such that cr — ck. Solving
(crl - A)x = 0 leads to (7) withy = r.

Pick ε = min{γ(l - γ)/(2 - γ)2, γ/2 - 1/(1 + 1/c,.)}. (Since cy <
γ/(2 - γ), γ/2 - 1/(1 + 1 /cj) > 0.) Choose iV large enough so that, for
m>N,cm+j+x > γ — ε. From c} < γ/(2 — y) it follows that

<7+ w +i/cy ~ 1 > ((2 - γ)Λ)c 7 . + m + 1 - 1 > ((2 - γ)/γ)(γ - ε) - 1 > 0

since ε < γ(l — γ)/(2 — γ).
For m > ΛΓ, from (7),

1 - c

1 -
C;7+w+i

1 - γ +
C:j+m+\

< i,
_ -

since ε < γ — 2/(1 + \/cj). Consequently {xn} E /, hence {xn} E c, and
Cjl — A is not 1-1.

Suppose A has a zero on the main diagonal and γ > 0. Let j denote
the smallest positive integer for which cy = 0. Let ej denote the coordinate
sequence with a 1 in the y th positive and all other entries zero. Then
Aej = 0, and c I — A — -A is not 1-1. By setting x0 = 0, xn — 0 for
n >j + 1, the system (Cjl — A*)x — 0 reduces to a homogeneous linear
system of j equations iny + 1 unknowns.

When the diagonal entries of A do not converge, it was shown in [2]
that the spectrum need no longer be a disc. This fact was illustrated by
considering weighted mean methods with diagonal entries c0 = 1, c2n —
I//7* cin~\ ~ V#> n > 0, where 1 <p < q. Under these conditions, σ(A)
= {λ\(p- \){q - 1) I λ |2 > | 1 - pλ 11 1 - #λ |}. The boundary of the
spectrum is either an oval, two ovals tangent at a point on the x-axis
between 0 and 1, or two disjoint ovals, depending on the relative sizes oίp
and q. It will now be shown that the fine spectra of these methods behave
exactly as the fine spectra for the weighted mean methods considered in
Theorems 1-5.

THEOREM 6. Let A be a regular weighted mean method defined by
co - !> cin - 1/P> cin-\ ~ V ^ n,> 0, where 1 < p < q. Ifλ¥=
1//?, \/q, 1 and satisfies (p - l)(q - 1) | λ | 2 > | 1 - pλ 11 1 - qλ \ , then
λ E IIIλσ(A).
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Proof. Since λ ¥= \/p, 1/g, or 1, λ / — A is a triangle, so it is 1-1, and

Suppose (λl — A*)x — 0. Then, as in the proof of Theorem 1, x 0 = 0,
xx is arbitrary and, from (2),

Xir, —

Po Pλ

From the hypotheses on A it follows that

Pln =
PoP"~Y

Pln-\ ~

n-\

{p-\γ-\q-\γ

so that

_ l * 2 ι , + l I _

2n-x

1 M
\\-p\\\\-q\\

pq\λ\2

\λ\2(p-l)(q-l)
i

Consequently there exist nonzero sequences {xn} E / such that
( λ J - A*)x = 0 and λl - A* is not 1-1. Therefore XI - A E III.

It will now be shown that λl — A* is onto. Supposey = (λ J — A*)x,
x, y E /. Then (λ — l)x 0 = y0 and (4) holds. Solving (4) for x in terms of
y yields the matrix B, from x = 5y, with entries as described in the
paragraph following (6). Σn \ bn0 \ — 1/| λ — 1 | < oo.

02) "
7 = 1

, _ CJ1 X
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The series on the right can be written in the form Σλ + Σ 2 , where

oo „ 2/1-1

Δ _ I \ I 11
„=, Po\*\ j=\

Pln-X
2n-2

£/1 - —

1 °°
— V

kλ-i|

n - l

1 -
9 λ

2 R"-\
(p~l)(q-l)\λ\2

 n%

where R=\pλ-l\\qλ-I \/{p - \){q - 1) | λ | 2.
Similarly,

i 2
From the hypothesis on λ, both series are convergent geometric series.
For&> 1,

Pn-\ «π c,

Since the above series is dominated by the series in (12), II5II! < oo.

THEOREM 7. Let A be as in Theorem 6. If λ— l/p, l/q then λ G

Proof. Suppose λ = \/p. Then λl — A maps c into {(l/p — l)x0,
-alQx0 + (l/p - l/q)xu -a20x0 ~ a2lxl9 -a3Oxo - a3lxx - a32x2 +
(l/p — l/q)x3, }, so that (λ/ — ̂ 4)x = 0 implies x0 = x, = 0. By
induction, one solves successively a pair of equations of the form

whose only solution is x2n = ^2^+1 ~ 0? since the determinant of the
coefficients is equal to p2n/pP2n+2 Φ 0.

If λ = l/q, then λl — A maps x into {(l/q — l)x0, -alQx0, -a2Oxo —
a2λxx + (l/q — l/p)x2, }, and (λ/ — A)x = 0 forces x0 = 0. Again
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one solves successively pairs of equations, this time of the form

Since the determinant of the coefficients is equal to p2n+\/(IP2n+3 ^ 0>
Λ: = 0, and XI — A is 1-1. Clearly λ/ — A G III, and it remains to show
that λ/ — ̂ 4* is onto.

Suppose (XI — A*)x = y, x, y G /. As in the proof of Theorem 2,
choosing xJ+x = 0 w e can solve for xo, ,jcy in terms of yo, ,.yy +i, and
the remaining values of x are determined from x = j?j, where 5 is as
defined in (8). Since cj+2 — Cj for each j > 0, it is clear from (8) that
bj+mJ+m-k = V m J + i = 0 for /: > 3, m > 4. Also, 6 y + m J + w _ 2 = 0 for m
even. Consequently B has at most three nonzero diagonals, with bounded
elements, and B G B(l).

THEOREM 8. If A is defined as in Theorem 6, and λ satisfies

then λ G H2σ(^ί).

Proof. Since XI — A is a triangle, it is 1-1, so that XI — A G \ U 2.
Now consider ( λ / — A*)x = 0. Then, as in the proof of Theorem 1,
JC0 = 0 and xn satisfies (2) for n > 0. It then follows that

and

2n+\\ \pλ-l\

Therefore {xn} G / implies x = 0 and XI - A* G 1 U 2. It then follows
thatλ G H2σ(Λ().

From Theorem 4 it follows that 1 G III 3 σ(^) .
Cartlidge [1] demonstrated that certain weighted mean methods be-

long to B(lp), p > 1, and computed their spectra. For example, he showed
that, if 8 = Mm pn/Pn > 0, then A E B(lp) and

a(A) = {λ || λ - (2 - δ ) " 1 1 ^ ( 1 - «)/ (2 - i)} U S.

It can be shown that the results of Theorems 1-5 are true for each such A.
Based on the results established in this paper, the following is a

reasonable conjecture.
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Let A be a weighted mean method, A E B(lp), for some p satisfying
1 <p < oo. Then all interior points of σ(A) belong to III1? all boundary
points, except 1, and possibly γ/(2 — γ), belong to II 2 , and 1 and all
isolated points belong to IΠ3. If γ/(2 — γ) is a diagonal element of A,
then γ/(2 - γ) G III3. Otherwise γ/(2 - γ) E II 2 .
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