PACIFIC JOURNAL OF MATHEMATICS
Vol 104, No 1, 1983

LINEAR TRANSFORMATIONS THAT PRESERVE
THE NILPOTENT MATRICES

PETER BOTTA, STEPHEN PIERCE AND WILLIAM WATKINS

Let sl, be the algebra of n X n matrices with zero trace and entries
in a field with at least n elements. Let 90 be the set of nilpotent matrices.
The main result in this paper is that the group of nonsingular linear
transformations L on sl,, such that L(90) = 9 is generated by the inner
automorphisms: X — S~'XS; the maps: X — aX, for a # 0; and the
map: X — X' that sends a matrix X to its transpose.

Introduction. Let M, be the algebra of n X n matrices over a field K
and let S be an algebraic set in M,. There are a number of theorems
characterizing the linear maps L on M, that preserve S, i.e. L(S) C S. For
example there are results for {X: det X =0} by Dieudonné [4], {X:
rank X < 1} by Jacob [8] and Marcus and Moyls [10], the orthogonal
group by Pierce and Botta [2] and other linear groups by Dixon [5]. In
every instance the transformations L that preserve these various algebraic
sets have one of these two forms:

(1) L(X)=PXQ, forallX
or
(2) L(X)=PX'Q, forallX

where P and Q are in M, . There are conditions on P and Q which depend
on the algebraic set S. For example if S = {X: det X=0} and L is
nonsingular then P and Q are nonsingular; if S is the orthogonal group
then PQ =1 and P must be a scalar multiple of a matrix in the
orthogonal group over the algebraic closure of K. For a good survey of
further results of this type see Marcus [9].

In this paper we characterize the nonsingular linear transformations L
that preserve the set 9 of nilpotent matrices. Since the linear span of 9 is
the space sl, of matrices with trace zero, we may as well assume that L is a
transformation on sl,. (In order to see that U spans sl,, let E;; be the
matrix whose only nonzero entry is a 1 in position (i, j). The nilpotent
matrices E, and E; + E,;, — E;, — E, for i # j spanssl,,.)

Actually we characterize all nonsingular semilinear mappings that
preserve nilpotence. The main theorem can be extended to matrices with
entries from an integral domain. The extension follows from a modifica-
tion of a result of Chevalley [3, p. 104, Théoréme 3].
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THEOREM. Let n = 3, K be a field with at least n elements and suppose
that L is a nonsingular linear transformation on sl, such that L(9U) C 9.
Then L either has form (1) or (2), where PQ is a non-zero scalar matrix.

Without the assumption that L is nonsingular the theorem is false.
Any map whose image is contained in the algebra QL of the strictly upper
triangular matrices preserves nilpotence. The proof of the theorem de-
pends on a result of Gerstenhaber about maximal spaces of nilpotent
matrices. We also use some elementary algebraic geometry and the funda-
mental theorem of projective geometry [1, p. 88, Theorem 2.26].

LEMMA 1 (Gerstenhaber [6]). Suppose K has at least n elements and I
is a space of nilpotent matrices. Then dim O < n(n — 1) /2. If dim M =
n(n — 1)/2, then there exists a non-singular matrix S such that O =
S!S, where A is the algebra of strictly upper triangular matrices.
Moreover, any matrix of nilindex n is contained in exactly one maximal
nilpotent algebra.

Tangent Spaces. Let K[X] = K[X,,,...,X,,] be the ring of poly-
nomials in n? variables with coefficients in K. For r = 1,2,...,n, let
E(X) € K[ X] be the rth elementary symmetric function of the matrix
X = (X;;), i.e. E(X) is the sum of all principal r X r subdeterminants of
X. We let J be the ideal in K[X] generated by E\(X),...,E,(X) and
rad J = {F € K[X]: F¥ €J for some positive integer k}. Clearly we
have = {4 € M,: F(A) = 0forall F€ J}.If A € 9 then

tan(J, 4) = {B eM: D a+m)| =0 forallFEJ}

=0
and

tan(rad J, 4) = {B EM,;: idlti(A + tB)

=0 forall F € rad J}.
t=0
Both of these are vector spaces and the second is the usual tangent space
at the point 4 of the algebraic set 9U. Further, the second is a subspace of
the first.

If A and B belong to 9 and are similar then their tangent spaces
defined above are related by the appropriate similarity. Further note that
C € tan(J, A) if and only if (d/dt)E(A + tC) |, =10 for all r=
1,2,...,n. If A € 9Uis of nilindex n, then, by taking A into upper Jordan
canonical form, one sees that the equations for X € tan(J, A) are, up to a
similarity,

n—j
0= 2)(j+i,i+l’ j:1’2a---’n-
i=0
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Therefore dim tan(J, 4) = n?> — n. Since J is generated by n polynomials,
if N is of nilindex n we have [7, p. 28, 37]

n? — n <dim 9 < dimtan(rad J, N) < dimtan(J, N) = n?> — n.
So if N is of nilindex n then tan(rad J, N) = tan(J, N).

LEMMA 2. If A, B € 9Uare both of nilindex n then AB = BA if and only
if tan(rad J, A) = tan(rad J, B).

Proof. A is of nilindex n so its minimal and characteristic polynomials
are equal. Therefore, if AB = BA, then B is a polynomial in 4. By the
above remarks, we may assume that

(0 1. 0 --- 0]
o o1 --- 0
o o0 --- 0
4= : E
0 0 0 1
0 0 0 0
SO
0 a a, a,_,
0 0 g a, ,
0 0 0 a, ,
B = ,
6o 0 0 - a,
o o o - 0

where a;, € K. Since B is of nilindex n, a; # 0. A direct computation
shows that

nl*

4 p(B+ tX)’ =ar X,
dt 1=0

Hence the equation for B arising from E, is X,,, = 0, which is the same as
for A. One has that

r—1 n—j

n—r

— r—1

=q 2 Xoyii1 t 2 Aj 2 Xj+ii+]
=0 i=0 j=1 i=0

d
d—tE’(B + tX)
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for suitable constants 4, depending on a,...,a,_,. By induction, the
equation for B arising from E, is

n—r

r—1 —
a, 2 Xoiiin1 =0,
i=0

and since a, # 0 this is the same as for 4. Since tan(J, 4) = tan(rad J, 4)
the results follows.

On the other hand, suppose tan(rad J, 4) = tan(rad J, B). We may
assume A is as above. Let E;; be the matrix with 1 in the (i, j) position
and zeros elsewhere. Then

E,E€tan(rad J, 4), i>},
and
E,—E. ., €Etan(rad J, 4), i=<j.

Ji

Writing B = (b, ), we have

d e i
EEZ(B+tEji),=0:bif’ ifi>j,
d . e
EEZ(B+t(Ejl_Ej+li+l))lI: = i(bij_bi+lj+l) ifi=<j.

Therefore b,; = 0if i >j and b;; = b, ;,, if i =j, and B is a polynomial
in A.

LEMMA 3. If L: sl,, = sl is a nonsingular linear transformation with the
property that L(9) = 9N, and A € 9N, then L(tan(rad J, A)) =
tan(rad J, L( A)).

Proof. The map L: K[X] - K[X] defined by L(f)(A) = f(L(A)) is
a K-algebra homomorphism. Since L is nonsingular and L(9U) = 9U and
rad J = {f€ K[X]: f(N)=0, for all N €9}, we have L(rad J) =
rad J. Thus

tan(rad J, L(4)) = {B EM,: %(L(A) + tB)

for all f € rad J}

=0

for all f € rad J}

t=

~{uerem: L +u(©)

=0 forallfe€ rad J}

dt t=0

- {L(C) e LU (4410

= L(tan(rad J, A)).
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Proof of theorem. First we observe that L(9U) = 9U. This follows
from Lemma 1 of Dixon [5] and the fact that L is nonsingular.

We now show that L preserves nilindex n. If 4 € 90 and rank 4 < n
— 2, then A kills two linearly independent vectors v, w. Let O,, O, be
maximal nilpotent algebras containing 4 and killing v, w respectively.
Every maximal nilpotent algebra kills exactly one line, so 9, # 9N,. By
Lemma 1, L maps maximal nilpotent algebras to maximal nilpotent
algebras and again by lemma 1, L preserves the matrices of nilindex ».

Now we show that if 4 € 9 has rank one, then so does L(A4). Let U
be the unit auxiliary matrix E, + --- +E,_, .

First note that the only members of @ which commute with U and
E,, are multiples of E|,. Thus the centre of any maximal nilpotent algebra
is one-dimensional and is generated by a rank one matrix.

Let A € 9 have rank one. Then for some nonsingular S, S~'4S = E, .
Let 9N = SAS™'. Then A4 generates the centre of M. Let ¥ € I have
nilindex n. Then ¥V and A4 + V have nilindex » and commute. It follows
from Lemmas 2 and 3 that L(A + V') commutes with L(V'). Hence L( A)
commutes with L(V). Since the nilindex n matrices in 9N generate I,
L(A) is in the centre of the maximal nilpotent algebra L(91). Hence
L( A) has rank one.

We next define two bijections on the lines (through the origin) of K”
and use the fundamental theorem of projective geometry. For each line
(v) € K", define two n — 1 dimensional subspaces of I by

M(v) ={X€N|ImX=(v)},
M'(v) = {X'| X € M(v)}.

We will show that L(M(v)) = M(w) or M (w) and L(M'(v)) = M(w’)
or M(w’) for some w,w” € K". The bijections will be ¢(v) =w and
0(v) =w'.

We note a few facts about M(v). Any nonzero member of M(v) has
rank one. If v,w € K", and are nonzero, then M(v) and M(w) are
conjugate, and if w = Av, 4 nonsingular, then M(w) = AM(v)A~". In
tensor notation, M(v) = v ® v* and M‘(v) = v ®v. (Here, L means
orthogonal complement with respect to the dot product.) It is easily
verified that M(u) N M(v) = M(u) = M(v) if u and v are linearly de-
pendent and 0 otherwise, and that M(u) N M (v) = (u®v) ifu-v=20
and is 0 otherwise. Finally, observe that any » — 1 dimensional subspace
of 9T with all of its nonzero matrices having rank one must be an M(v) or
an M'(v). It follows that for v € K", there is a w &€ K" such that
L(M(v)) = M(w) or M'(w).

Suppose we have v, w € K" with L(M(v)) = M(v’) and L(M(w)) =
M'(w"). Since n = 3, pick u orthogonal to v and w. Then M(v) N M*(u)
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and M(w) N M‘(u) are one dimensional. If L(M'(u)) = M(u’) then
M(u') N M(v") = L(M'(u) N M(v)) has dimension 1; which is impossi-
ble, as M(u’) N M(v’) has dimension 0 or n — 1 =2. If L(M'(u)) =
M'(u"), we reach a similar contradiction. A similar argument holds when
we examine the images of M‘(v) and M‘(w). Thus, by replacing L with
the map X —» L(X)" if necessary, we may assume that for any nonzero
v € K", L(M(v)) = M(w) and L(M'(v)) = M'(u) for appropriate u, w
e K"

Thus we define two maps ¢, § induced by L on the lines of K”". We
have L(M(v)) = M(¢(v)) and L(M'(v)) = M'(6(v)) forv € K".

Since L(91) = 9, L™ also preserves nilpotence and hence ¢ and 6
are bijections on the lines of K”.

Now we show that ¢ and @ preserve coplanarity of lines in K” and
thus satisfy the hypothesis of the fundamental theorem of projective
geometry. Let (u,), (u,), (u;) be three distinct coplanar lines in K”".
Then

2n — 1 = dim(M(w,) + M(u,) + M(u,))
= dim L(M(u,) + M(u,) + M(u;))
= dim(M((P(“l)) + M(p(u,)) + M(‘P(“s)))-
If (u,), p(u,), (u,) are linearly independent then
dim(M(@(u,)) + M(p(u,)) + M(9(u;))) = 3n —3
and this is impossible since n = 3. Thus ¢(u,), ¢(u,), ¢(u3) are coplanar
and ¢ satisfies the hypothesis of the fundamental theorem of projective
geometry. So does @. Thus there exist semilinear maps S and 7 on K" such
that @(u) = (Su) and 6(u) = (Tu), for all nonzero u in K".
There are linear maps P and Q on K" and automorphisms ¢ and 7 on

K such that Sv = P(ov) and Tv = Q(7v). (The automorphisms act com-
ponentwise.) Then

L(M(v)) = M(Pov) = PM(ov)P™"
and
L(M'(v)) = M (Qrv) = Q" M'(70)Q".
Suppose u - v = 0. Then dim(M(u) N M‘(v)) = 1 and so

dim(M(Pou) N M'(Qrv)) = 1
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and thus (Pou) - (Q7v) =0, i.e,,
u-o'(P'Qro) = 0.
Let R be the semilinear map defined by
Ro = ¢7'(P'Q0).

Then u - v = 0 implies u - Ro = 0. Thus R = dI is a scalar map, 6 = 7
and P'Q = dI.

Replace the map L with the map X —» P~'L(X)P. Then L(M(v)) =
M(ov) and L(M'(v)) = M‘(ov), for all nonzerov in K”. Thusifu - v =0
then L(u ® v) = c¢(u ® v)o(u ® v), where c is a scalar valued function. If
v € (u,, u,)", then by comparing L((u, + u,) ® v) with L(u; ® v) +
L(u, ® v) we get c(u, ® v) = c(u, ® v). Similarly if u € (v, v,), then
c(u®v)) = c(u®v,).

Now we show that ¢ is a constant function. Suppose that u, - v, = 0
and u, - v, = 0. Pick v; € (u;, u,)*. Then c(u; ® v,) = c(u, ® vy) =
c(u, ® vy) = c(u, ® v,). Thus c is a constant function say c(u ® v) = k.
Then L(u ® v) = ka(u ® v), for all u, v withu - v = 0.

Since L is linear, o is the identity automorphism. The rank one
nilpotent matrices span sl, and so the theorem is proved.

REMARK. When n = 2, the same result is obtained by a simple
computation.
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